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Abstract

Two main approaches exist for numerical computation of multiphase flow models. The im-

plicit methods are efficient, yet inaccurate. Better accuracy is achieved by the explicit methods,

which on the other hand are time-consuming.

In this paper we investigate generalizations of a class of hybrid explicit-implicit numerical

schemes [SIAM J. Sci. Comput., 26 (2005), pp. 1449–1484], originally proposed for a two-fluid

two-phase flow model. We here outline a framework for extending this class of schemes, denoted

as WIMF (weakly implicit mixture flux), to other systems of conservation laws. We apply the

strategy to a different two-phase flow model, the drift-flux model suitable for describing bubbly

two-phase mixtures. Our analysis is based on a simplified formulation of the model, structurally

similar to the Euler equations. The main underlying building block is a pressure-based implicit

central scheme. Explicit upwind fluxes are incorporated, in a manner ensuring that upwind-type

resolution is recovered for a simple contact discontinuity.

The derived scheme is then applied to the general drift-flux model. Numerical simulations

demonstrate accuracy, efficiency and a satisfactory level of robustness. Particularly, it is demon-

strated that the scheme outperforms an explicit Roe scheme in terms of efficiency and accuracy

on slow mass-transport dynamics.
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1 Introduction

Numerical methods for hyperbolic conservation laws may be divided into two main classes; the ex-

plicit and the implicit methods. For each wave velocity λi associated with the system, the stability of

explicit numerical schemes is subject to the CFL criterion

1x

1t
≥ |λi |, (1)
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whereas suitably chosen implicit numerical schemes are unconditionally stable with respect to the

time step. However, this improved robustness comes at the price of impaired accuracy.

Consequently, when there is a large disparity between the various eigenvalues λi , a possible tech-

nique is to split the system into its full wave decomposition and then

• resolve the fast waves by an implicit method;

• resolve the slow waves by an explicit method.

By this, one aims to obtain an accurate resolution of the slow waves without being hampered by

stability requirements pertaining to the fastest waves.

Such hybrid explicit-implicit methods are most naturally obtained in the context of approximate

Riemann solvers; see for instance [7] or [15, 24] for applications to two-phase flows.

However, this full wave structure decomposition is generally computationally costly; in particular,

this is the case for standard two-phase flow models [6, 31]. Efficiency considerations motivated us to

consider alternative strategies for numerically identifying the various waves of the two-phase system.

In a series of papers [10, 11, 12], we investigated a flux hybridization technique, where upwind res-

olution was incorporated into a central pressure-based scheme by a splitting of the convective fluxes

into two components.

In [10, 11, 12], we considered the two-fluid two-phase flow model. The primary aim of this paper

is to extend the WIMF scheme of [11, 12] to the related drift-flux two-phase flow model, allowing us to

violate the CFL criterion pertaining to the sonic waves while recovering an explicit upwind resolution

of a certain class of material waves. This allows for improved efficiency as well as accuracy compared

to fully explicit methods.

Furthermore, we discuss in more detail how appropriate flux hybridizations may be obtained from

an analysis of known linear phenomena associated with more general models. In this respect, we aim

to shed some light on how the WIMF approach may be extended to other systems of conservation

laws.

Our paper is organized as follows: In Section 2, we present the drift-flux model we will be working

with. In Section 3, we construct an implicit central scheme for the drift-flux model, based on ideas

developed in [11, 12, 14]. In particular, we propose a linearized scheme able to preserve a uniform

pressure and velocity field.

In Section 4, we outline a framework for a general construction of WIMF-type schemes. In Sec-

tion 5, we apply this framework to hybridize the implicit central scheme with an explicit upwind

scheme – in such a way that the upwind flux is precisely recovered for a special class of moving or

stationary contact discontinuities, while allowing for violation of the sonic CFL criterion. In particu-

lar, the resulting WIMF scheme preserves such contacts when the CFL number is optimally chosen.

In Section 6, we present numerical simulations where we compare the behaviour of the WIMF

scheme to a fully explicit approximate Riemann solver. The results of the paper are summarized in

Section 7.

2 The Two-Phase Flow Model

To avoid excessive computational complexity, workable models describing two-phase flows in pipe

networks are conventionally obtained by means of some averaging procedure. Different choices of

simplifying assumptions lead to different formulations of such models [30, 32].

The models may be divided in two main classes:



A WIMF Scheme for the Drift-Flux Model 3

• two-fluid models, where equations are written for mass, momentum and energy balances for

each fluid separately.

• mixture models, where equations for the conservation of physical properties are written for the

two-phase mixture.

Mixture models have a reduced number of balance equations compared to two-fluid models, and

may be considered as simplifications in terms of mathematical complexity. The missing information

must be supplied in terms of additional closure laws, often expressed in terms of empirical relations.

A more detailed study of the relation between two concrete two-phase models, one two-fluid model

and one mixture model, can be found in [13].

When the motions of the two phases are strongly coupled, it would seem that mixture models

present several advantages [5]. Mathematical difficulties related to non-conservative terms and loss of

hyperbolicity, commonly associated with two-fluid models, may be avoided. Some physical effects,

such as sonic propagation, may be more correctly modelled [16]. Finally, the simplified formulation

of the mixture models may allow for more efficient computations for industrial applications [25].

For these reasons, mixture models are of significant interest both to the petroleum and nuclear

power industries [35]. The particular model investigated in this paper is termed the drift-flux model –

it is in widespread use by the petroleum industry for modelling the dynamics of oil and gas transport

in long production pipelines [24, 25, 28].

2.1 Model Formulation

Following [8], we express the model in the form below:

• Conservation of mass
∂

∂t

(
ρgαg

)
+

∂

∂x

(
ρgαgvg

)
= 0, (2)

∂

∂t
(ρℓαℓ) +

∂

∂x
(ρℓαℓvℓ) = 0, (3)

• Conservation of mixture momentum

∂

∂t

(
ρgαgvg + ρℓαℓvℓ

)
+

∂

∂x

(
ρgαgv

2
g + ρℓαℓv

2
ℓ + p

)
= Q, (4)

where for phase k the nomenclature is as follows:

ρk - density,

vk - velocity,

αk - volume fraction,

p - pressure common to both phases,

Q - non-differential momentum sources (due to gravity, friction, etc.).

The volume fractions satisfy

αg + αℓ = 1. (5)

Dynamic energy transfers are neglected; we consider isentropic or isothermal flows. In particular, this

means that the pressure may be obtained as

p = pg(ρg) = pℓ(ρℓ). (6)
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2.1.1 Thermodynamic Submodels

For the numerical simulations presented in this work we assume that both the gas and liquid phases

are compressible, described by the simplified thermodynamic relations

ρℓ = ρℓ,0 +
p − p0

a2
ℓ

(7)

and

ρg =
p

a2
g

(8)

where

p0 = 1 bar = 105 Pa

ρℓ,0 = 1000 kg/m3,

a2
g = 105 (m/s)2

and

aℓ = 103 m/s.

An exception is the numerical example of Section 6.4, where the gas compressibility is altered so that

a previously published solution may be reproduced.

2.1.2 Hydrodynamic Submodels

As the model employs a mixture momentum equation, additional supplementary relations are required

to obtain the information necessary for determining the motion of each phase separately. These con-

stitutive relations, sometimes referred to as the hydrodynamic closure law [1], may be expressed in

the following general form

vg − vℓ = 8(p, αℓ, vg). (9)

The relative velocity vr = vg − vℓ between the phases is often referred to as the slip velocity; for this

reason, the closure law (9) is also commonly known as the slip relation.

Of particular interest is the Zuber-Findlay [36] relation

vg = K (αgvg + αℓvℓ) + S, (10)

where K and S are flow-dependent parameters. This expression is extensively used and is physically

relevant for a large class of mixed flow regimes, see for instance [3, 18, 21].

Remark 1. For industrial cases, 8 is commonly stated as a complex combination of analytic expres-

sions valid for particular flow regimes, experimental correlations, and various switching operators.

For practical purposes, it may be considered as a black box. Hence, it is desirable to obtain numerical

schemes whose formulation are independent of the particular form of 8. This aim will be achieved in

this paper, although for simplicity, the numerical test cases we investigate will mainly be based on the

Zuber-Findlay relation (10).
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3 An Implicit Scheme

In the context of two-phase flows, the implicit schemes currently in use may be divided into two main

classes:

• Pressure-based schemes, based on methods originally developed for single-phase gas dynam-

ics [27]. Examples include the OLGA [4] and PeTra [23] computer codes developed for the

petroleum industry. These schemes typically require the construction of a staggered grid, and

care must be taken to avoid numerical mass leakage.

• Approximate Riemann solvers, for instance the Roe scheme of Toumi [35] or the rough Go-

dunov scheme of Faille and Heintzé [15]. Such schemes are formally conservative and enforce

an upwind resolution of all waves; however, they are computationally expensive.

For a nice overview of different numerical schemes from both classes, applied to two-phase mod-

els, we refer to the recent book [29]. The approach we take in this work represents an attempt to unify

the above two different classes. In particular, we propose in this section a central pressure-based

scheme of the kind investigated in [14]. Here we follow the standard pressure-based approach of

splitting the system into pressure and convection parts, and coupling the pressure calculation to the

convective fluxes.

3.1 The Central Pressure-Based Scheme

We consider a spatial grid of N cells, each of size 1x , indexed by

j ∈ [1, . . . , N ]. (11)

Furthermore, the time variable is discretized in steps 1t , indexed by the letter n as follows:

tn = t0 + n1t. (12)

Now to adapt the schemes of [11, 12] to the drift-flux model, we divide the calculation into two stages:

1. Flux linearization: We formulate linearized evolution equations for the convective mass fluxes,

which are solved implicitly coupled to the pressure pn+1
j+1/2. This is described in Sections 3.1.3–

3.1.6.

2. Conservative update: Then, in Sections 3.1.7–3.1.8, we describe how to use these fluxes to

update the conservative variables while maintaining consistency with the slip relation (9).

3.1.1 Flux Splitting

We write the two-phase flow model (2)–(4) in vector form

∂U

∂t
+

∂F(U)

∂x
= Q(U), (13)

with

U =




ρgαg

ρℓαℓ

ρgαgvg + ρℓαℓvℓ


 , F(U) =




ρgαgvg

ρℓαℓvℓ

ρgαgv
2
g + ρℓαℓv

2
ℓ + p


 , Q(U) =




0

0

Q


 . (14)
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Following [14], we consider a splitting of the flux into convective and pressure parts as follows:

F(U) = G(U) + H(U), (15)

G(U) =




ρgαgvg

ρℓαℓvℓ

ρgαgv
2
g + ρℓαℓv

2
ℓ


 , H(U) =




0

0

p


 . (16)

3.1.2 Pressure Evolution Equation

The following partial differential equation holds for evolution of the pressure variable:

∂p

∂t
+ κρℓ

∂

∂x

(
ρgαgvg

)
+ κρg

∂

∂x
(ρℓαℓvℓ) = 0, (17)

where

κ =
1(

∂ρg/∂p
)
ρℓαg + (∂ρℓ/∂p) ρgαℓ

. (18)

The derivation is based on the mass equations (2)–(3), and is detailed in [10, 11]. In Section 3.1.3–

3.1.5 we mainly deal with the numerical flux associated with the G component, whereas the numerical

flux associated with H is treated in Section 3.1.6.

3.1.3 Convective Flux Linearization

A flux-conservative discretization of the mass equations (2) and (3) reads

(ρkαk)
n+1
j − (ρkαk)

n
j

1t
+

(ρ̃kαkvk) j+1/2 − (ρ̃kαkvk) j−1/2

1x
= 0, (19)

where k ∈ g, ℓ. In [14], we argued that the modified Lax-Friedrichs fluxes

(ρ̃kαkvk) j+1/2 =
1

2

(
(ρkαkvk)

n+1
j + (ρkαkvk)

n+1
j+1

)
+

1

4

1x

1t

(
(ρkαk)

n
j − (ρkαk)

n
j+1

)
, (20)

with an implicit central flux approximation and an explicit numerical viscosity, naturally lead to a

numerically well-behaved pressure-momentum coupling. For the two-fluid model, the momentum

variables are solved separately, so (20) directly gives rise to a linearly implicit scheme as described in

[11, 12].

However, for the drift-flux model, the individual momentum variables are generally connected

through a nonlinear slip relation. Consequently, a scheme based directly on the fluxes (20) may

require an iterative solution procedure. This is undesirable.

Hence we propose to replace the expression (20) with a linearly implicit approximation:

(ρ̃kαkvk) j+1/2 =
1

2

(
(ρ̃kαkvk) j + (ρ̃kαkvk) j+1

)
+

1

4

1x

1t

(
(ρkαk)

n
j − (ρkαk)

n
j+1

)
, (21)

where the linearization

(ρ̃kαkvk) j = (ρkαkvk)
n
j + O(1t) ≈ (ρkαkvk)

n+1
j (22)

will be defined in the following.
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3.1.4 Convection Evolution Equations

We seek a linearization (21) satisfying the following requirements:

R1: The linearization should be independent of the particular choice of slip relation 8;

R2: The linearization should preserve a uniform velocity and pressure field.

These considerations suggest that we should base the linearization on the slip relation 8 = 0, equiv-

alently expressed as v = vg = vℓ. If we linearize around this condition, the following evolution

equations hold for the momentum variables:

∂

∂t

(
ρgαgvg

)
+

∂

∂x

(
ρgαgv

2
g

)
+

mg

ρ

∂p

∂x
=

mg

ρ
Q + O(8) (23)

and
∂

∂t
(ρℓαℓvℓ) +

∂

∂x

(
ρℓαℓv

2
ℓ

)
+

mℓ

ρ

∂p

∂x
=

mℓ

ρ
Q + O(8), (24)

where we have used the shorthands

mk = ρkαk, ρ = ρgαg + ρℓαℓ. (25)

A derivation of these equations may be found in [13]. In the following, we will use precisely (23) and

(24) as the basis to obtain the approximation (22).

3.1.5 Convective Flux Evaluation

We discretize (23) and (24) as

(ρ̃gαgvg) j − (ρgαgvg)
n
j

1t
+

(
ρ̃gαgv2

g

)
j+1/2

−
(
ρ̃gαgv2

g

)
j−1/2

1x
(26)

+
(

mg

ρ

)n

j

pn+1
j+1/2 − pn+1

j−1/2

1x
=

(
m̃g

ρ
Q

)

j

and

(ρ̃ℓαℓvℓ) j − (ρℓαℓvℓ)
n
j

1t
+

(
ρ̃ℓαℓv

2
ℓ

)

j+1/2

−
(

ρ̃ℓαℓv
2
ℓ

)

j−1/2

1x
(27)

+
(

mℓ

ρ

)n

j

pn+1
j+1/2 − pn+1

j−1/2

1x
=

(
m̃ℓ

ρ
Q

)

j

.

That is, the mass flux (ρ̃kαkvk) j+1/2 is defined by (21), (26), and (27). Here we must specify the fluxes

pn+1
j+1/2 and

(
ρ̃kαkv

2
k

)

j+1/2

, and we start with the latter. The pressure flux is specified in Section 3.1.6

since it also directly appears in the H component given in (16). Following [14], we use linearized

modified Lax-Friedrichs fluxes also for momentum convection, consistent with (21), giving

(ρ̃gαgv2
g) j+1/2 =

1

2
(vn

g · ρ̃gαgvg) j +
1

2
(vn

g · ρ̃gαgvg) j+1 +
1

4

1x

1t

(
(ρgαgvg)

n
j − (ρgαgvg)

n
j+1

)
(28)
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and

(ρ̃ℓαℓv
2
ℓ) j+1/2 =

1

2
(vn

ℓ · ρ̃ℓαℓvℓ) j +
1

2
(vn

ℓ · ρ̃ℓαℓvℓ) j+1 +
1

4

1x

1t

(
(ρℓαℓvℓ)

n
j − (ρℓαℓvℓ)

n
j+1

)
. (29)

By this linearization, the numerical flux associated with the full convective flux vector G in (16) is the

following one

G̃ j+1/2 =




(ρ̃gαgvg) j+1/2

(ρ̃ℓαℓvℓ) j+1/2

(ρ̃gαgv2
g) j+1/2 + (ρ̃ℓαℓv

2
ℓ) j+1/2


 . (30)

3.1.6 The Pressure Flux

The pressure flux pn+1
j+1/2 is obtained through the following discretization of the pressure equation (17):

pn+1
j+1/2 − 1

2
(pn

j + pn
j+1)

1t
+ [κρℓ]

(ρ̃gαgvg) j+1 − (ρ̃gαgvg) j

1x

+
[
κρg

] (ρ̃ℓαℓvℓ) j+1 − (ρ̃ℓαℓvℓ) j

1x
= 0. (31)

Note that the equations (26) and (27) (together with (28) and (29)) are solved implicitly coupled with

the discretization (31). These equations constitute a linear system Ax = b, where A is a banded matrix

with two subdiagonals and two superdiagonals. This is fully analogous to the pressure-momentum

coupling used in [11, 12].

Following [10, 12], the coefficient variables [·] = (·)n
j+1/2 are obtained from the following rela-

tions:

αk, j+1/2 =
1

2
(αk, j + αk, j+1), (32)

ρk, j+1/2 =
1

2
(ρk, j + ρk, j+1) (33)

for phase k.

3.1.7 Conservative Update

Having obtained the flux component G̃ j+1/2, as given by (30), as well as

H j+1/2 =




0

0

pn+1
j+1/2


 (34)

through the implicit couplings (26), (27) and (31), we may formulate a conservative scheme as fol-

lows:
Un+1

j − Un
j

1t
+

F j+1/2 − F j−1/2

1x
= Q j , (35)

where

F j+1/2 = G̃ j+1/2 + H j+1/2. (36)

Hence we have formulated a fully conservative, linearly implicit scheme.
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3.1.8 Physical Variables

From the components (U1, U2, U3)
n+1
j of the conservative variables Un+1

j , we may obtain physical

variables (p, αℓ, vg, vℓ)
n+1
j as follows:

• Mass variables. We may write αg + αℓ = 1 as

U1

ρg(p)
+

U2

ρℓ(p)
= 1, (37)

which may be solved for p and consequently αℓ.

• Velocities. The velocities vg and vℓ are obtained from simultaneously solving the equations

U3 = U1vg + U2vℓ (38)

vg − vℓ = 8(p, αℓ, vg). (39)

As noted in [14], our central pressure-based schemes are strongly related to the FORCE scheme

studied by Toro [34], and fall into a class we denoted as X-FORCE (eXtended FORCE) schemes [14].

This motivates the following terminology:

Definition 1. The numerical scheme described in Section 3.1, applied to the drift-flux model described

in Section 2, will for the purposes of this paper be denoted as the p-XF (pressure-based X-FORCE)

scheme.

4 The WIMF Scheme

The p-XF scheme derived above evolves both the convective and pressure fluxes in an implicit manner,

and hence is potentially stable under violation of the CFL criterion (1) for the various wave speeds λi .

On the other hand, the scheme reduces to an implicit modified Lax-Friedrichs scheme for linear

advection. The goal of this section is to hybridize the p-XF scheme with an explicit advection upwind

scheme, such that the hybrid scheme provides:

• An implicit central approximation of pressure waves, allowing for a stable resolution of such

waves under violation of the sonic CFL criterion.

• An explicit upwind approximation of material waves, allowing for more accurate resolution of

such waves.

To this end, we follow the WIMF strategy introduced in [11]. Using this approach, we avoid a

full decomposition of the system into sonic and material waves. Rather, a key idea behind the WIMF

approach is that an approximate wave splitting, based on simple linear solutions inherent in the model,

may be sufficient for practical computations.

In the following, we first discuss how we may go about extending the WIMF scheme of [11, 12]

to more general conservation laws. In Section 5, we then present a particular WIMF scheme adapted

to the general drift-flux model. Here we obtain an approximate wave splitting by analysing linear

phenomena associated with the 8 = 0 model, and apply this splitting to the general case of arbitrary

8.
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4.1 A General Framework

We consider the system of conservation laws

∂U

∂t
+

∂F(U)

∂x
= 0, (40)

where U is an N -vector.

We now assume that the vector of conserved variables can be expressed in terms of reduced

variables µ(U) and ν(U), i.e.

U = U(µ, ν), (41)

where µ and ν are also N -vectors. This may be expressed in differential form as

dU =
(

∂U

∂µ

)

ν

dµ +
(

∂U

∂ν

)

µ

dν. (42)

We are concerned here with identifying certain aspects of the model that we want to resolve in

detail. In the current context, we wish to identify linear phenomena associated with the model. Hence

we assume that the splitting (42) can, and has been, chosen such that (40) supports a linear wave

solution in µ; in particular, we assume that

dν ≡ 0 (43)

implies
∂µ

∂t
+ λ

∂µ

∂x
= 0 (44)

for some constant wave speed λ(ν).

Such a linear solution may potentially be recognized from physical considerations; in Section 5

we consider the linear advection resulting from assuming a uniform pressure and velocity field.

4.1.1 Motivation

For an accurate resolution of these linear waves, we would like our hybrid scheme to reduce to the

explicit upwind scheme for the particular solution (44). In particular, if (43)–(44) hold, the numerical

flux should satisfy

F̃ j+1/2 = F(Un
j ) for λ > 0, (45)

F̃ j+1/2 = F(Un
j+1) for λ < 0.

We now assume that we have at our disposal the following building blocks:

1. Some explicit flux F̃U satisfying (45), but not necessarily stable under CFL violation;

2. Some implicit flux F̃I, stable under CFL violation, but not necessarily satisfying (45).

In the following, we will seek an expression for a hybrid numerical flux based on the components F̃I

and F̃U, combining the desirable features of both, for a model where appropriate variables µ and ν

can be identified.
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4.1.2 The Reduced Evolution Equations

We observe that (40) may be manipulated to yield evolution equations for µ and ν:

∂µ

∂U

(
∂U

∂t
+

∂F(U)

∂x

)
=

∂µ

∂t
+

∂µ

∂U

∂F(U)

∂x
= 0, (46)

∂ν

∂U

(
∂U

∂t
+

∂F(U)

∂x

)
=

∂ν

∂t
+

∂ν

∂U

∂F(U)

∂x
= 0. (47)

A semi-discrete formulation of (46) and (47) reads:

dµ j

dt
+

[
∂µ

∂U

]

j

F
µ

j+1/2 − F
µ

j−1/2

1x
= 0, (48)

dν j

dt
+

[
∂ν

∂U

]

j

Fν

j+1/2 − Fν

j−1/2

1x
= 0. (49)

As stated in the previous section, it is desirable to use an upwind flux to resolve the linear phe-

nomenon associated with µ and an implicit flux for the variables ν that do not take part in the linear

wave. Hence we take:

F
µ

j+1/2 = F̃U
j+1/2, (50)

Fν

j+1/2 = F̃I
j+1/2. (51)

4.1.3 A Non-Conservative Method

By integrating over the cell j and taking the time derivative, we can rewrite the definition (42) as

dU j

dt
=

[(
∂U

∂µ

)

ν

]

j

dµ j

dt
+

[(
∂U

∂ν

)

µ

]

j

dν j

dt
. (52)

By (48)–(51), this can be reformulated as a non-conservative semi-discrete scheme for U directly:

dU j

dt
+

[(
∂U

∂µ

)

ν

∂µ

∂U

]

j

F̃U
j+1/2 − F̃U

j−1/2

1x
+

[(
∂U

∂ν

)

µ

∂ν

∂U

]

j

F̃I
j+1/2 − F̃I

j−1/2

1x
= 0. (53)

This scheme is derived from the motivations stated in Section 4.1.1 and is consequently expected

to combine the benefits of an explicit and implicit flux in a desirable manner. However, a major

drawback is that the scheme (53) is not in conservation form. This has several negative consequences;

the most serious of which being that the scheme will generally not converge to the correct solution in

the presence of discontinuities [22]. Hence we do not propose to use (53) for practical computations.

Rather, we want to use (53) as a guideline for constructing a more appropriate scheme in conservation

form, while retaining the properties that formed the motivation for (53).

4.1.4 The WIMF Flux Hybridization

In this section, we modify the scheme (53) so that it can be written in conservation form:

Un+1
j − Un

j

1t
+

F j+1/2 − F j−1/2

1x
= 0, (54)
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with an appropriately chosen numerical flux function F j+1/2.

Our starting point is the observation that (53) does take such a form for the special case that the

coefficients are constant. More precisely, when
[(

∂U

∂µ

)

ν

∂µ

∂U

]

j

=
[(

∂U

∂µ

)

ν

∂µ

∂U

]

j+1

=
(

∂U

∂µ

)

ν

∂µ

∂U
(55)

and [(
∂U

∂ν

)

µ

∂ν

∂U

]

j

=
[(

∂U

∂ν

)

µ

∂ν

∂U

]

j+1

=
(

∂U

∂ν

)

µ

∂ν

∂U
, (56)

the numerical flux function of (54) can be written as

F j+1/2 =
(

∂U

∂µ

)

ν

∂µ

∂U
F̃U

j+1/2 +
(

∂U

∂ν

)

µ

∂ν

∂U
F̃I

j+1/2. (57)

In light of this, we propose to base the scheme on the following criteria:

C1: The scheme should be in conservation form (54);

C2: The numerical flux F j+1/2 should be a hybridization of F̃U
j+1/2 and F̃I

j+1/2;

C3: The hybridization should reduce to (57) whenever U = U j = U j+1.

It is now straightforward to see that these properties are satisfied by the following generalization of

(57):

F j+1/2 =
[(

∂U

∂µ

)

ν

∂µ

∂U

]

j+1/2

F̃U
j+1/2 +

[(
∂U

∂ν

)

µ

∂ν

∂U

]

j+1/2

F̃I
j+1/2, (58)

where the coefficient variables [·] j+1/2 are evaluated at some average state U j+1/2.

We may now state the following proposition:

Proposition 1. The hybrid fluxes F̃ j+1/2 (58) are consistent provided the basic fluxes F̃U and F̃I are

consistent; i.e.

F̃ j+1/2(U, . . . , U) = F(U) (59)

if

F̃U(U, . . . , U) = F(U) and F̃I(U, . . . , U) = F(U). (60)

Proof. Substitute

dµ =
∂µ

∂U
dU and dν =

∂ν

∂U
dU (61)

in (42), then factor out dU to obtain
(

∂U

∂µ

)

ν

∂µ

∂U
+

(
∂U

∂ν

)

µ

∂ν

∂U
= I, (62)

and in particular [(
∂U

∂µ

)

ν

∂µ

∂U

]

j+1/2

+
[(

∂U

∂ν

)

µ

∂ν

∂U

]

j+1/2

= I, (63)

and the result follows from (58).

Hence (58) is precisely the hybridization of an implicit and explicit flux we propose for construct-

ing a WIMF scheme for a general model equipped with a splitting (42).
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5 Application to the Drift-Flux Model

We now derive the specific implementation of the WIMF scheme for the drift-flux two-phase flow

model. Using the approach above, we need to identify a variable µ associated with some linear wave

solution of the system. As the wave structure of the system depends upon the slip relation 8, we will

follow the approach used in Section 3.1.4 for the p-XF scheme. That is, we will base our analysis on

linearizing the slip relation around 8 = 0, and extend these results to general 8.

For 8 = 0, there exists a simple connection between the drift-flux model and the Euler model, as

noted in [19] and described below.

5.1 Relation to the Euler Model

The drift-flux model (2)–(4) with vg = vℓ = v can be written as:

∂

∂t

(
ρgαg

)
+

∂

∂x

(
ρgαgv

)
= 0 (64)

∂

∂t
(ρℓαℓ) +

∂

∂x
(ρℓαℓv) = 0 (65)

∂

∂t
(v(ρℓαℓ + ρgαg) +

∂

∂x

(
v2(ρℓαℓ + ρgαg) + p

)
= 0. (66)

If we now define the mixture density

ρ = ρgαg + ρℓαℓ (67)

and the gas mass fraction

Y =
ρgαg

ρ
, (68)

the 8 = 0 drift-flux model (64)–(66) can be reformulated as

• Conservation of gas mass
∂

∂t
(ρY ) +

∂

∂x
(ρYv) = 0 (69)

• Conservation of total mass
∂ρ

∂t
+

∂

∂x
(ρv) = 0 (70)

• Conservation of momentum

∂

∂t
(ρv) +

∂

∂x
(ρv2 + p) = 0, (71)

where

p = p(mg, mℓ) = p(ρ, Y ). (72)

We recognize this formulation as structurally identical to the Euler model, if we associate the total

mass ρ with the density and the gas mass fraction Y with the entropy. In particular, this means that

the model (64)–(66) possesses a linear wave moving with the velocity v, transporting the gas mass

fraction Y , analogous to the entropy wave of the Euler model.
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Remark 2. So far, we have shown the existence of a linear wave in the vg = vℓ drift-flux model. This

corresponds to K = 1, S = 0 in the Zuber-Findlay relation (10). However, provided the liquid is

incompressible, a more general result holds:

Proposition 2. The drift-flux model (2)–(4), augmented with the Zuber-Findlay relation (10) where K

and S are constants, supports a linear wave solution moving with the velocity vg, provided the liquid

is incompressible. The pressure is not necessarily constant across a contact discontinuity in this wave.

Proof. The proof of this proposition may be found in [19].

5.2 The Flux Hybridization

In this section, we derive the WIMF hybridization (58) for the special case of the v = vg = vℓ drift-

flux model. Then, from Section 5.3, we describe how this hybridization scheme may be naturally

applied to general slip relations 8.

Based on the equivalence with the Euler system described in Section 5.1, we may conclude that

the splitting (42) with

µ =




Y

0

0


 and ν =




0

p

v


 , (73)

satisfies the linear wave criterion described by (43)–(44).

We obtain

∂µ

∂U
=

1

ρ2




ρℓαℓ −ρgαg 0

0 0 0

0 0 0


 and

∂ν

∂U
=

1

ρ




0 0 0

κρρℓ κρρg 0

−v −v 1


 (74)

as well as
(

∂U

∂µ

)

ν

= ρ2




1/ρℓ 0 0

−1/ρg 0 0

v(1/ρℓ − 1/ρg) 0 0


 (75)

and
(

∂U

∂ν

)

µ

=
1

κ




0 αg/ρℓ 0

0 αℓ/ρg 0

0 v
(
αg/ρℓ + αℓ/ρg

)
κρ


 . (76)

5.2.1 The Matrix Coefficients

By (58), the fluxes of the drift-flux WIMF scheme may now be written as

F j+1/2 = A j+1/2F̃U
j+1/2 + B j+1/2F̃I

j+1/2, (77)

where

A j+1/2 =
[(

∂U

∂µ

)

ν

∂µ

∂U

]

j+1/2

=




αℓ −ρgαg/ρℓ 0

−ρℓαℓ/ρg αg 0

ρℓαℓv(1/ρℓ − 1/ρg) −ρgαgv(1/ρℓ − 1/ρg) 0




n

j+1/2

(78)
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and

B j+1/2 =
[(

∂U

∂ν

)

µ

∂ν

∂U

]

j+1/2

=




αg ρgαg/ρℓ 0

ρℓαℓ/ρg αℓ 0

−ρℓαℓv(1/ρℓ − 1/ρg) ρgαgv(1/ρℓ − 1/ρg) 1




n

j+1/2

. (79)

To evaluate the coefficient matrices A and B at cell interfaces, we follow the approach of [10, 12] and

define

αk, j+1/2 =
1

2

(
αk, j + αk, j+1

)
(80)

ρk, j+1/2 =
1

2

(
ρk, j + ρk, j+1

)

vk, j+1/2 =
1

2

(
vk, j + vk, j+1

)
(81)

for phase k ∈ {g, ℓ}.

5.2.2 Flux Splitting

We now write

F̃U = G̃U + H̃U and F̃I = G̃I + H̃I, (82)

that is, we split the numerical fluxes into convective and pressure parts as we did in Section 3.1.1, so

that (58) can be written as

G̃ j+1/2 =
[(

∂U

∂µ

)

ν

∂µ

∂U

]

j+1/2

G̃U +
[(

∂U

∂ν

)

µ

∂ν

∂U

]

j+1/2

G̃I (83)

and

H̃ j+1/2 =
[(

∂U

∂µ

)

ν

∂µ

∂U

]

j+1/2

H̃U +
[(

∂U

∂ν

)

µ

∂ν

∂U

]

j+1/2

H̃I. (84)

5.2.3 The Hybrid Convective Flux

For the convective upwind fluxes G̃U
j+1/2, we will use the low Mach-number limit of the advection

upstream splitting method, which was investigated as the CVS scheme in [9] for the current drift-flux

model.

Writing G̃U
j+1/2 as

G̃U
j+1/2 =




(ρgαgvg)
U
j+1/2

(ρℓαℓvℓ)
U
j+1/2

(ρgαgv
2
g)

U
j+1/2 + (ρℓαℓv

2
ℓ)

U
j+1/2


 , (85)

we first define the cell interface velocities

vk, j+1/2 =
1

2

(
vn

k, j + vn
k, j+1

)
, (86)
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and then the convective fluxes

(ρkαkvk)
U
j+1/2 =

{
vk, j+1/2(ρkαk)

n
j if vk, j+1/2 > 0,

vk, j+1/2(ρkαk)
n
j+1 otherwise

(87)

(ρkαkv
2
k )

U
j+1/2 =

{
vk, j+1/2(ρkαkvk)

n
j if vk, j+1/2 > 0,

vk, j+1/2(ρkαkvk)
n
j+1 otherwise

(88)

for phase k ∈ {g, ℓ}.
For the convective implicit part G̃I

j+1/2 we use the p-XF formulation of the fluxes (30) described

in Section 3.1.5.

We then obtain hybrid convective fluxes through (83), using (78) and (79). Note that the convective

fluxes G̃I
j+1/2 are now calculated with the coupling (77) to the upwind flux G̃U

j+1/2, as described in

more detail in Section 5.3.1.

5.2.4 The Hybrid Pressure Flux

We write the pressure fluxes as

H̃U =




0

0

p̃U


 and H̃I =




0

0

p̃I


 . (89)

By (78) and (79), we see that the hybrid pressure flux (84) becomes simply

H̃ j+1/2 = H̃I
j+1/2, (90)

where p̃I is given by a fully implicit calculation in the form (31).

Hence no definition of upwind pressure fluxes p̃U is required, the WIMF flux hybridization only

affects the convective fluxes.

5.3 Implementation Details

Before extending the above results to 8 6= 0, it may be instructive to focus in more detail on how this

WIMF scheme is implemented in practice. As for the p-XF scheme, the computation consists of two

steps:

1. Flux linearization: We calculate numerical fluxes through the implicit pressure-momentum

coupling.

2. Conservative update: We use these numerical fluxes to update the conservative variables ac-

cording to (35).

Note that both these steps incorporate the flux hybridizations (83). We will address them in turn.

5.3.1 Implicit Step

As for the p-XF scheme derived in Section 3, the pressure-momentum coupling yields 3 equations for

each computational cell to be implicitly solved over the computational domain. However, an added

complication arises from the implicit calculation also involving the explicit part of the system, as

given by (77). In the following exposition, we will find it convenient to use the symbol

M = Mg + Mℓ (91)
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to denote the total convective momentum flux. Herein

Mg = ρgαgv
2
g, (92)

Mℓ = ρℓαℓv
2
ℓ . (93)

For convenience of notation, we also use the shorthand

[v] = v j+1/2. (94)

Applying (77)–(79) and the splitting (82), where we use G̃U
j+1/2, G̃I

j+1/2, and H̃U
j+1/2, H̃I

j+1/2 as de-

scribed in Section 5.2.3 and 5.2.4, we see that the WIMF mass fluxes (ρkαkvk)
WIMF
j+1/2 can be written in

the form

(ρgαgvg)
WIMF
j+1/2 = [αℓ]n

j+1/2(ρgαgvg)
U
j+1/2 − [αgρg/ρℓ]n

j+1/2(ρℓαℓvℓ)
U
j+1/2 (95)

+[αg]n
j+1/2(ρ̃gαgvg) j+1/2 + [αgρg/ρℓ]n

j+1/2(ρ̃ℓαℓvℓ) j+1/2,

(ρℓαℓvℓ)
WIMF
j+1/2 = −[αℓρℓ/ρg]n

j+1/2(ρgαgvg)
U
j+1/2 + [αg]n

j+1/2(ρℓαℓvℓ)
U
j+1/2 (96)

+[αℓρℓ/ρg]n
j+1/2(ρ̃gαgvg) j+1/2 + [αℓ]n

j+1/2(ρ̃ℓαℓvℓ) j+1/2.

Similarly, we calculate that

M
WIMF
j+1/2 = [αℓv(1 − ρℓ/ρg)]n

j+1/2

(
(ρgαgvg)

U
j+1/2 − (ρ̃gαgvg) j+1/2

)
+ (ρ̃gαgv2

g) j+1/2 (97)

+[αgv(1 − ρg/ρℓ)]n
j+1/2

(
(ρℓαℓvℓ)

U
j+1/2 − (ρ̃ℓαℓvℓ) j+1/2

)
+ (ρ̃ℓαℓv

2
ℓ) j+1/2,

where

(ρgαgv
2
g + ρℓαℓv

2
ℓ + p)WIMF

j+1/2 = M
WIMF
j+1/2 + p̃I

j+1/2.

Comparing the WIMF convective momentum flux (97) to the sum of (95) and (96) we see that MWIMF
j+1/2

now can be written in terms of the WIMF mass fluxes (ρkαkvk)
WIMF
j+1/2 as follows:

M
WIMF
j+1/2 = M̃ j+1/2 + [v]

(
(ρgαgvg)

WIMF
j+1/2 − (ρ̃gαgvg) j+1/2 + (ρℓαℓvℓ)

WIMF
j+1/2 − (ρ̃ℓαℓvℓ) j+1/2

)
, (98)

where

M̃ j+1/2 = (ρ̃gαgv2
g) j+1/2 + (ρ̃ℓαℓv

2
ℓ) j+1/2. (99)

This suggests a natural splitting of MWIMF
j+1/2 into

M
WIMF
j+1/2 = M

WIMF
g, j+1/2 + M

WIMF
ℓ, j+1/2, (100)

where

M
WIMF
g, j+1/2 = M̃g, j+1/2 − [v](ρ̃gαgvg) j+1/2 + [v](ρgαgvg)

WIMF
j+1/2 (101)

M
WIMF
ℓ, j+1/2 = M̃ℓ, j+1/2 − [v](ρ̃ℓαℓvℓ) j+1/2 + [v](ρℓαℓvℓ)

WIMF
j+1/2. (102)

As v is not properly defined when vg 6= vℓ, we propose to use the following natural modification of

(101)–(102) for general slip relations:

M
WIMF
g, j+1/2 = M̃g, j+1/2 − [vg](ρ̃gαgvg) j+1/2 + [vg](ρgαgvg)

WIMF
j+1/2 (103)

M
WIMF
ℓ, j+1/2 = M̃ℓ, j+1/2 − [vℓ](ρ̃ℓαℓvℓ) j+1/2 + [vℓ](ρℓαℓvℓ)

WIMF
j+1/2. (104)

We now want to represent ρ̃gαgv2
g in (26) by (103) and ρ̃ℓαℓv

2
ℓ in (27) by (104). Thus, the implicit

pressure-momentum coupling corresponding to (26), (27), and (31), but now with mixture momentum

fluxes MWIMF
k, j+1/2 , take the following form:
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• Pressure equation:

pn+1
j+1/2 − 1

2
(pn

j + pn
j+1)

1t
+ [κρℓ] j+1/2

(ρ̃gαgvg) j+1 − (ρ̃gαgvg) j

1x
(105)

+
[
κρg

]
j+1/2

(ρ̃ℓαℓvℓ) j+1 − (ρ̃ℓαℓvℓ) j

1x
= 0.

• Gas momentum equation:

(ρ̃gαgvg) j − (ρgαgvg)
n
j

1t
+

(
ρ̃gαgv2

g

)
j+1/2

−
(
ρ̃gαgv2

g

)
j−1/2

1x
(106)

−
[vgαℓ] j+1/2

(
ρ̃gαgvg

)
j+1/2

− [vgαℓ] j−1/2

(
ρ̃gαgvg

)
j−1/2

1x

+
[vgαgρg/ρℓ] j+1/2

(
ρ̃ℓαℓvℓ

)
j+1/2

− [vgαgρg/ρℓ] j−1/2

(
ρ̃ℓαℓvℓ

)
j−1/2

1x

+
[vgαℓ] j+1/2

(
ρgαgvg

)U

j+1/2
− [vgαℓ] j−1/2

(
ρgαgvg

)U

j−1/2

1x

−
[vgαgρg/ρℓ] j+1/2 (ρℓαℓvℓ)

U
j+1/2 − [vgαgρg/ρℓ] j−1/2 (ρℓαℓvℓ)

U
j−1/2

1x

+
(

mg

ρ

)n

j

pn+1
j+1/2 − pn+1

j−1/2

1x
=

(
m̃g

ρ
Q

)

j

.

• Liquid momentum equation:

(ρ̃ℓαℓvℓ) j − (ρℓαℓvℓ)
n
j

1t
+

(
ρ̃ℓαℓv

2
ℓ

)

j+1/2

−
(

ρ̃ℓαℓv
2
ℓ

)

j−1/2

1x
(107)

−
[vℓαg] j+1/2

(
ρ̃ℓαℓvℓ

)
j+1/2

− [vℓαg] j−1/2

(
ρ̃ℓαℓvℓ

)
j−1/2

1x

+
[vℓαℓρℓ/ρg] j+1/2

(
ρ̃gαgvg

)
j+1/2

− [vℓαℓρℓ/ρg] j−1/2

(
ρ̃gαgvg

)
j−1/2

1x

+
[vℓαg] j+1/2 (ρℓαℓvℓ)

U
j+1/2 − [vℓαg] j−1/2 (ρℓαℓvℓ)

U
j−1/2

1x

−
[vℓαℓρℓ/ρg] j+1/2

(
ρgαgvg

)U

j+1/2
− [vℓαℓρℓ/ρg] j−1/2

(
ρgαgvg

)U

j−1/2

1x

+
(

mℓ

ρ

)n

j

pn+1
j+1/2 − pn+1

j−1/2

1x
=

(
m̃ℓ

ρ
Q

)

j

.

Here the linearized fluxes are given (as before) by (21) and (28)–(29) as:

(ρ̃kαkvk) j+1/2 =
1

2

(
(ρ̃kαkvk) j + (ρ̃kαkvk) j+1

)
+

1

4

1x

1t

(
(ρkαk)

n
j − (ρkαk)

n
j+1

)
(108)

and

(ρ̃kαkv
2
k ) j+1/2 =

1

2
(vn

k · ρ̃kαkvk) j +
1

2
(vn

k · ρ̃kαkvk) j+1 +
1

4

1x

1t

(
(ρkαkvk) j − (ρkαkvk) j+1

)n
. (109)
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In conclusion, we solve (105)–(107) to obtain the variables pn+1
j+1/2, (ρ̃gαgvg) j and (ρ̃ℓαℓvℓ) j to be used

in the following. As for the p-XF scheme, this step requires the inversion of a sparse linear system

with a bandwidth of five (pentadiagonal linear system) – where the coefficients become slightly more

complicated due to the hybridization (77).

5.3.2 Conservative Update

By use of

G̃U
j+1/2 =




(ρgαgvg)
U
j+1/2

(ρℓαℓvℓ)
U
j+1/2

(ρgαgv
2
g)

U
j+1/2 + (ρℓαℓv

2
ℓ)

U
j+1/2


 , (110)

and

G̃I
j+1/2 =




(ρ̃gαgvg) j+1/2

(ρ̃ℓαℓvℓ) j+1/2

(ρ̃gαgv2
g) j+1/2 + (ρ̃ℓαℓv

2
ℓ) j+1/2


 , H̃I =




0

0

pn+1
j+1/2


 , (111)

as defined in Section 5.2.3 and 5.2.4 (note that there is no need to specify H̃U as explained in Sec-

tion 5.2.4), where the required quantities are obtained through the equations (105)–(107), the numer-

ical scheme can be written in the conservative form

Un+1
j − Un

j

1t
+

F j+1/2 − F j−1/2

1x
= Q̃ j , (112)

where F j+1/2 is obtained from (77) and (82). Finally, the physical variables are obtained from Un+1
j

by the procedure described in Section 3.1.8.

5.4 Resolution of Contact Wave

We now provide some attractive theoretical results for the special case of 8 = 0. We consider the

linear wave arising from the initial conditions

p j = p ∀ j (113)

Y j = Y ( j) ∀ j

(vg) j = (vℓ) j = v ∀ j.

In particular, ν is constant across the computational domain as stated by (43). The pressure gradient

now vanishes from the model (2)–(4), and the solution to the initial value problem (113) is that the

distribution of Y will propagate with the uniform velocity v. That is, we have

∂µ

∂t
+ v

∂µ

∂x
= 0, (114)

in accordance with (44).

For the corresponding linear wave associated with the two-fluid model, we proved in [11, 12] that

the WIMF scheme possessed the following properties:

(i) WIMF reduces to the explicit upwind flux for the linear wave (113);

(ii) WIMF preserves uniformity of the pressure and velocity field for this linear wave;
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(iii) WIMF captures the wave exactly on uniform meshes if the time step corresponds to a convective

CFL number 1, i.e.
1x

1t
= v. (115)

Here (ii) and (iii) are direct consequences of (i).

An equivalent result holds for the current WIMF scheme for the drift-flux model. In particular,

we have the following proposition:

Proposition 3. The WIMF scheme described in Section 5.3, when applied to the linear wave (113),

has a solution that satisfies

pn+1
j = p ∀ j, n; (116)

vn+1
j = v ∀ j, n; (117)

αn+1
k, j = αn

k, j − v
1t

1x

(
αn

k, j − αn
k, j−1

)
∀ j, n for v ≥ 0; (118)

αn+1
k, j = αn

k, j − v
1t

1x

(
αn

k, j+1 − αn
k, j

)
∀ j, n for v < 0. (119)

Herein

(ρ̃kαkvk) j = ρkα
n+1
k, j v, (120)

where

ρk ≡ ρk(p) = const. (121)

Proof. Substitute (116)–(120) into the equations of Section 5.3. Through a rather lengthy calculation,

this will reduce the discrete equations of the WIMF scheme to trivial identities.

In particular, this means that (i)–(iii) are satisfied also in the current context. In Section 6.1, these

results will be illustrated numerically.

6 Numerical Simulations

In this section, we present some selected numerical examples. We first numerically verify Proposi-

tion 3 by studying a simple contact discontinuity for the 8 = 0 model. We then investigate how this

behaviour carries over to more general cases, by considering a couple of shock tube problems known

from the literature. Reference results will be provided by the explicit Roe scheme described by Flåtten

and Munkejord [17].

Finally, we investigate the performance of the scheme on a case more representative of industrial

problems; a large-scale mass transport problem given a non-linear slip law.

For the simulations, a convective CFL number is defined as follows

C =
1t

1x
max

j,n
|(vg)

n
j |, (122)

as this corresponds to the expected velocity of the mass transport wave associated with the Zuber-

Findlay slip law (see Proposition 2).
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Figure 1: No-slip contact discontinuity, WIMF scheme, 100 cells. Various values of the convective

CFL number.

6.1 No-Slip Contact Discontinuity

For our first test, we consider a linear wave where the slip law is given by

8 = 0. (123)

We assume an isolated contact discontinuity separating the states

WL =




p

αℓ

vg

vℓ


 =




105 Pa

0.75

10 m/s

10 m/s


 (124)

and

WR =




p

αℓ

vg

vℓ


 =




105 Pa

0.25

10 m/s

10 m/s


 . (125)

We assume a 100 m long pipe where the discontinuity is initially located at x = 0. We use a compu-

tational grid of 100 cells and simulate a time of t = 5.0 s. The discontinuity will then have moved to

the centre of the pipe, being located at x = 50 m.

6.1.1 Sensitivity of WIMF to the Convective CFL Number

In Figure 1, the results of WIMF are plotted for various values of the convective CFL number. We

observe that WIMF captures the contact exactly for C = 1, as stated by Proposition 3. The numerical

dissipation increases as C decreases.
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Figure 2: No-slip contact discontinuity, implicit p-XF scheme, 500 cells. Various values of the con-

vective CFL number. Left: Approaching C = 1 from below. Right: Approaching C = 1 from

above.

For C > 1, the scheme becomes unstable.

6.1.2 Sensitivity of p-XF to the Convective CFL Number

In Figure 2, the results of p-XF are plotted for various values of the convective CFL number. The

scheme obtains maximal accuracy for C = 1, and the numerical dissipation increases for both smaller

and larger values of C . The dissipation is always larger than for the WIMF scheme, in particular this

is the case for C = 1. However, the p-XF scheme is observed to be unconditionally stable for this test

case.

For both the WIMF and p-XF schemes, we observe that the pressure and velocities remain constant

to floating point precision, as is dictated by Proposition 3.

6.2 Dispersed Law Contact Discontinuity

In this section, we consider a more general contact discontinuity where the slip law is given as

8 = −δ/αℓ. (126)

This test case is similar to Experiment 4 of Baudin et al. [1].

According to Baudin et al. [1], the slip law (126) describes inclined pipe flows where small gas

bubbles are dispersed in the liquid. We follow in their footsteps and use the following value for δ:

δ = 0.045 m/s. (127)

In the framework of the Zuber-Findlay slip relation (10), the slip relation (126) corresponds to

K = 1, (128)

S = −δ. (129)

The initial states are given by

WL =




p

αℓ

vg

vℓ


 =




(105 + 7.8) Pa

0.9

1 m/s

1.050 m/s


 (130)
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Figure 3: Dispersed law contact discontinuity. Grid refinement for the implicit p-XF and WIMF

schemes. Left: p-XF scheme. Right: WIMF scheme.

and

WR =




p

αℓ

vg

vℓ


 =




105 Pa

0.2

1 m/s

1.224 m/s


 . (131)

This discontinuity will now propagate, without change of shape, with the gas velocity vg = 1 m/s,

as stated by Proposition 2 (The effect of the liquid compressibility is negligible). We assume a pipe

of length 100 m where the contact is initially located at x = 50 m. The simulation runs for 25 s.

6.2.1 Convergence Test for p-XF and WIMF

In Figure 3, we investigate the convergence of the WIMF and p-XF schemes as the grid is refined. For

the p-XF scheme, we used a convective CFL number C = 1, with respect to the gas velocity vg = 1

m/s.

Table 1: Dispersed law contact discontinuity. Convergence rates for the p-XF scheme.

n cells ||E ||n sn

1 50 4.818

2 200 2.405 0.5012

3 2000 0.762 0.4991

4 20000 0.241 0.4999

For the WIMF scheme, where the condition 8 = 0 (under which the flux hybridizations were

derived) no longer applies, instabilities occurred for C > 0.9. In addition, for 0.75 < C < 0.9, a

persistent overshoot was produced in the contact wave. Hence the WIMF results presented here are

produced with a convective CFL number of C = 0.75.

However, with this reduction of the CFL number we observe that the WIMF scheme is in fact able

to provide an accurate resolution of the contact – the desired upwind-type accuracy is retained, while

the sonic CFL criterion is still violated. Convergence rates for the volume fraction variable are given

in Tables 1 and 2, where the error is measured in the 1-norm

||E || =
∑

j

1x |αg, j − αref
g, j |, (132)
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Table 2: Dispersed law contact discontinuity. Convergence rates for the WIMF scheme.

n cells ||E ||n sn

1 50 2.260

2 200 1.094 0.5234

3 2000 0.341 0.5066

4 20000 0.107 0.5014

and the order of convergence s is obtained through

sn =
ln(||E ||n/||E ||n−1)

ln(1xn/1xn−1)
. (133)

Both schemes uniformly approach the expected analytical solution, at similar convergence rates.

6.2.2 Start-up Errors

Due to the particular choice of slip relation, there exists a persistent pressure jump across the contact

- whereas the numerical schemes are obtained from considerations of a contact where the pressure is

constant. As a consequence of this, no result analogous to Proposition 3 holds, and start-up errors in

the form of pressure oscillations occur for the first steps of the simulation. We now define the pressure

variation at each time step as

1 p̃ = max
j

(pn
j ) − min

j
(pn

j ). (134)

With a grid of 20 000 cells and a convective CFL number of C = 0.75, a plot of 1 p̃ against time

is given in Figure 4. The behaviour is rather similar for both the p-XF and WIMF schemes, so these

oscillations are not primarily associated with the flux hybridization.

This seems to be a price to pay for the simplicity achieved by keeping the schemes independent

of the structure of the slip relation 8. However, we note that the pressure oscillations are rather small

and decrease with time, indicating that such start-up errors may be of minor importance for practical

calculations. This will be supported by our further numerical examples.

6.3 Zuber-Findlay Shock 1

Using the Zuber-Findlay slip relation with

K = 1.07 (135)

S = 0.216 m/s, (136)

we consider a shock tube problem also investigated by Evje and Fjelde [8]. The initial states are given

by

WL =




p

αℓ

vg

vℓ


 =




80450 Pa

0.45

12.659 m/s

10.370 m/s


 (137)

and

WR =




p

αℓ

vg

vℓ


 =




24282 Pa

0.45

1.181 m/s

0.561 m/s


 . (138)
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Figure 4: Dispersed law contact discontinuity, start-up errors. Initial pressure oscillations produced

by WIMF and p-XF schemes.

The initial discontinuity is located at x = 50 m in a pipe of length 100 m, and results are reported at

the time t = 1.0 s. Reference solutions are calculated by the flux-limited Roe scheme of [17], using a

grid of 20 000 cells.

6.3.1 Convergence Test for the WIMF Scheme

We use a convective CFL number of C = 1, or more precisely

1x

1t
= 13 m/s ≈ max

j,n
|(vg)

n
j |. (139)

The results of the WIMF scheme are plotted in Figure 5 for various grid sizes.

We observe an overshoot in the volume fraction for the coarsest grids. Apart from this, the WIMF

Table 3: Zuber-Findlay shock 1. Convergence rates for the WIMF scheme.

n cells ||E ||n sn

1 50 2.181

2 100 1.352 0.6897

3 200 0.746 0.8578

4 400 0.338 1.1417

5 800 0.256 0.4041

6 3200 0.0812 0.8269

7 10000 0.0352 0.7325
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Figure 5: Zuber-Findlay shock tube 1. Grid refinement for the WIMF scheme. Top left: Gas volume

fraction. Top right: Pressure. Bottom left: Gas velocity. Bottom right: Liquid velocity.
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Figure 6: Zuber-Findlay shock tube 1. Roe, p-XF and WIMF schemes, 100 cells. Top left: Gas

volume fraction. Top right: Pressure. Bottom left: Gas velocity. Bottom right: Liquid velocity.

scheme convergences smoothly to the reference solution. Convergence rates for the gas volume frac-

tion are given in Table 3.

6.3.2 Comparison between the Various Schemes

In Figure 6, the results of WIMF and p-XF are compared with the first-order Roe scheme, for a grid

of 100 cells. For the WIMF and p-XF schemes we used a convective CFL number of C = 1 as given

by (139). For the Roe scheme, we used

1x

1t
= 32.6 m/s, (140)

corresponding to the CFL criterion for the sonic waves, C = 0.4 with respect to convection.

We observe that the p-XF and WIMF schemes provide a similar resolution of the sonic waves,

whereas they are both inferior to the Roe scheme in this respect. We further observe that WIMF

gives a sharper resolution of the contact wave than Roe, but as previously noted, also introduces an

overshoot.

6.4 Zuber-Findlay Shock 2

We now consider a second shock tube problem using the same Zuber-Findlay slip law (135)–(136) as

in the previous example. This problem was investigated as Example 3 by Baudin et al. [1]. We here

follow in their footsteps and modify the gas pressure law; in the context of (8), we use

ag = 300 m/s (141)
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instead of

ag =
√

105 m/s (142)

which is used for all other numerical examples of this paper. However, as for our other simulations,

the liquid remains compressible as described by (7).

We also follow Baudin et al. [1] in transforming to the variables (see also Section 5.1):

ρ - mixture density,

Y - gas mass fraction,

v - mixture velocity.

Herein, v is expressed as

v =
mgvg + mℓvℓ

ρ
. (143)

In this formulation, the initial states are given by [1]

WL =




ρ

Y

v


 =




453.197 kg/m3

0.00705

24.8074 m/s


 (144)

and

WR =




ρ

Y

v


 =




454.915 kg/m3

0.0108

1.7461 m/s


 . (145)

The initial discontinuity is located at x = 50 m in a pipe of length 100 m, and results are reported at

the time t = 0.5 s. The flux-limited Roe scheme on a grid of 20 000 cells was used to compute the

reference solutions.

6.4.1 Convergence Test for the WIMF Scheme

We use a convective CFL number of 1, or more precisely

1x

1t
= 30 m/s, (146)

corresponding to the maximum gas velocity occurring during the simulation.

The results of the WIMF scheme are plotted in Figure 7 for various grid sizes. Convergence rates,

with respect to the gas mass fraction Y , are given in Table 4. We observe that the WIMF scheme

converges uniformly to the reference solution, and for this case no overshoots are visible.

Table 4: Zuber-Findlay shock 2. Convergence rates for the WIMF scheme.

n cells ||E ||n sn

1 100 7.204 · 10−3

2 200 4.864 · 10−3 0.5669

3 400 3.208 · 10−3 0.6005

4 800 2.220 · 10−3 0.5420

5 3200 9.501 · 10−4 0.6067

6 10000 4.819 · 10−4 0.5958
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Figure 7: Zuber-Findlay shock 2. Grid refinement for the WIMF scheme. Top left: Mixture density.

Top right: Pressure. Bottom left: Gas mass fraction. Bottom right: Density-averaged velocity.
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Figure 8: Zuber-Findlay shock 2. Grid refinement for the implicit p-XF scheme. Top left: Mixture

density. Top right: Pressure. Bottom left: Gas mass fraction. Bottom right: Density-averaged velocity.

6.4.2 Convergence Test for the p-XF Scheme

We now use a time step 4 times larger than for the WIMF scheme, i.e. in the context of (122) we use

C = 4. Hence the CFL condition (1) is violated with respect to all waves of the system.

The results of the p-XF scheme are plotted in Figure 8 for various grid sizes. We observe that

also the p-XF scheme converges to the reference solution in a fully non-oscillatory manner. Due to

the increased time step, there is a significant amount of numerical diffusion, enforcing the use of fine

grids. However, as can be seen by Table 5, the convergence rate – with respect to gas mass fraction –

is comparable to that of WIMF.

Remark 3. This example illustrates that p-XF qualifies as a strongly implicit scheme whereas WIMF

is weakly implicit by the terminology of [12].

Table 5: Zuber-Findlay shock 2. Convergence rates for the p-XF scheme.

n cells ||E ||n sn

1 500 4.783 · 10−3

2 1000 3.343 · 10−3 0.5168

3 2000 2.285 · 10−3 0.5488

4 4000 1.546 · 10−3 0.5637

5 10000 9.068 · 10−4 0.5824

6 20000 5.955 · 10−4 0.6067
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6.5 A More Complex Slip Relation

The purpose of this final test is to investigate the performance of the WIMF scheme for more realistic

slip relations which do not have a simple linear form such as (10). In addition, this case features

transitions between genuine two-phase and pure liquid regions. These are both challenges that are

relevant for industrial applications of the drift-flux model.

6.5.1 The Test Case

This case was introduced as Example 4 by Evje and Fjelde [9], and has been further investigated by

Munkejord et al. [17, 26]. We consider a pipe of total length L = 1000 m which is initially filled with

almost-pure liquid (αg = 10−7). During the first 10 seconds of the simulation, the inlet liquid and gas

mass flowrates are increased from zero to 12.0 kg/s and 0.08 kg/s respectively. The liquid flow rate

is then kept constant for the rest of the simulation. At the time t = 50 s, the inlet gas mass flow rate

is linearly decreased to zero in 20 s, and for the rest of the simulation only liquid flows into the pipe.

Throughout the simulation, the outlet pressure is kept constant at 105 Pa. The results are reported at

t = 175 s.

6.5.2 The Slip Relation

We use the same nonlinear slip law as the previous works [9, 17, 26]. Writing the law on the standard

form (10), we take K to be constant, whereas S is allowed to depend on αℓ in a non-linear way. In

particular, we use the parameters

K = 1.0 S = S(αℓ) = √
αℓ × 0.5 m/s, (147)

which may be viewed as a more complicated form of the dispersed slip law (126).

6.5.3 Friction Terms

For this test case, we follow Evje and Fjelde [9] and include a simple friction model. More precisely,

in the context of (4) we choose

Q = −
32vmixµmix

d2
. (148)

Here d = 0.1 m is the diameter of the pipe. Furthermore, vmix is the mixture velocity

vmix = αgvg + αℓvℓ (149)

and µmix is the mixture viscosity

µmix = αgµg + αℓµℓ. (150)

Here

µg = 5 × 10−6 Pa · s and µℓ = 5 × 10−2 Pa · s. (151)

6.5.4 Discretization of the Friction Terms

For the Roe scheme, we used an explicit forward Euler discretization of the source terms. For the

WIMF scheme, we have discretized (148) as

Q̃ j = −
32

d2
(µmix)

n
j (ṽmix) j , (152)
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where (ṽmix) j is calculated in a linearly implicit manner as

(ṽmix) j =
(ρ̃gαgvg) j

(ρg)
n
j

+
(ρ̃ℓαℓvℓ) j

(ρℓ)
n
j

. (153)

Using this, we discretize the right hand sides of (106) and (107) as

(
m̃k

ρ
Q

)

j

=
(

mk

ρ

)n

j

Q̃ j . (154)

In this manner, the scheme retains its linearity in the implicit terms.

6.5.5 Performance of the Roe and WIMF Schemes

For the WIMF scheme, we used the time step

1x

1t
= 3.8 m/s, (155)

corresponding to a convective CFL number C = 1 as given by (122). For the Roe scheme, we used a

CFL number C = 0.9 with respect to sonic propagation, which for this case is approximately

al = 1000 m/s (156)

due to the single-phase liquid regions.

It is worth emphasizing that implicit methods are particularly useful on cases involving such

single-phase liquid regions, due to the strict CFL requirements imposed by the rapid sonic propa-

gation. Here

1tWIMF/1tRoe ≈ 300, (157)

and the efficiency differences between the Roe and WIMF schemes are significant.

6.5.6 Comparison between the Roe and WIMF Schemes

Results for the first-order Roe and WIMF schemes are given in Figure 9, with a grid of 200 cells. The

reference solution was computed by the flux-limited Roe scheme, using a grid of 10 000 cells and

CFL number C = 0.5.

Note that the highly improved efficiency of the WIMF scheme is accompanied by a similar im-

provement in the resolution of the slow dynamics, as was also seen in Sections 6.1 and 6.3. This

attractive behaviour was also observed in [11, 12] for the two-fluid version of WIMF.

Table 6: Mass transport problem, WIMF scheme. Convergence rates with respect to volume fraction.

n cells ||E ||n sn

1 200 16.442

2 400 9.642 0.7699

3 800 5.982 0.6889

4 4000 1.557 0.8363
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Figure 9: Mass transport problem. WIMF vs Roe scheme, 200 cells. Top left: Gas volume fraction.

Top right: Pressure. Bottom left: Liquid velocity. Bottom right: Gas velocity.
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Figure 10: Mass transport problem. Convergence of the WIMF scheme, convective CFL number

C = 1. Top left: Gas volume fraction. Top right: Pressure. Bottom left: Liquid velocity. Bottom

right: Gas velocity.

6.5.7 Convergence

As seen by Figure 10 and Table 6, the WIMF scheme converges to the same solution as the Roe

scheme as the grid is refined. This is reassuring in light of the large disparity of the time steps, as well

as the inclusion of boundary conditions and source terms.

It should however be noted that for grids of less than 200 cells, the WIMF scheme requires a

somewhat lower CFL number for stability.

7 Conclusion

We have presented an implicit pressure-based central type scheme for a drift-flux two-phase model,

denoted as p-XF. Generalizing a technique introduced in [11], denoted as WIMF, we have incorporated

explicit upwind-type fluxes allowing for an accurate resolution of the mass transport waves of the

system. The WIMF scheme improves on the accuracy of p-XF with little loss of stability, and is the

scheme we propose for practical applications.

A difficulty with the drift-flux model is that its formulation is sensitive to the specification of the

closure law 8, which may vary depending on the flow conditions of the application.

In this paper, the numerical schemes have been derived by basing the implicit approximation of

the fluxes on a linearization around the slip 8 = 0. By this, we ensure certain accuracy and robustness

properties for this particular case.



A WIMF Scheme for the Drift-Flux Model 35

The numerical examples demonstrate that the desirable properties of the schemes essentially carry

over to more general choices of 8. The schemes are conservative in all numerical fluxes and consistent

with a given slip relation, and numerical evidence confirms that convergence to correct solutions are

obtained.

Numerical overshoots and oscillations in some cases occur for the mass transport wave. We

observe that such oscillations may to a large extent be tamed by reducing the CFL number.

The WIMF scheme outperforms the explicit Roe scheme in terms of efficiency and accuracy on

slow dynamics, and results compare well to existing semi-implicit methods presented in the litera-

ture [2, 15]. This demonstrates that the WIMF strategy introduced in [11] has applicability beyond

the two-fluid model originally considered.

With this paper, we have presented a general setting for the construction of WIMF type schemes

and by that hope to pave the way for further application to additional models. In particular, the

WIMF approach seems useful for models where the eigenstructure is too complicated for an efficient

construction of approximate Riemann solvers.
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36 Evje, Flåtten and Munkejord

[11] S. Evje and T. Flåtten, Weakly implicit numerical schemes for a two-fluid model, SIAM J. Sci.

Comput. 26, 1449–1484, 2005.
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