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Abstract

In this work, the Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver
is extended to two-phase flow through ducts with discontinuous cross-sections. Two
main strategies are explored regarding the treatment of the non-conservative term
arising in the governing equations. In the first, labelled HLLC+S, the non-conservative
term is discretized separately. In the second, labelled HLLCS, the non-conservative
term is incorporated in the Riemann solver. The methods are assessed by numeri-
cal tests for single and two-phase flow of CO2, the latter employing a homogeneous
equilibrium model where the thermodynamic properties are calculated using the
Peng–Robinson equation of state. The methods have different strengths, but in gen-
eral, HLLCS is found to work best. In particular, it is demonstrated to be equally
accurate and more robust than existing methods for non-resonant flow. It is also
well-balanced for subsonic flow in the sense that it conserves steady-state flow.

Keywords: Finite-volume method, HLLC solver, compressible flow,
non-conservative system, two-phase flow, variable cross-section, nozzle flow

1. Introduction

The simulation of two-phase flow through ducts with discontinuous cross-sections
is essential in several industrial applications. Such simulations are needed for mod-
elling e.g. two-phase flow in wellbores in the oil and gas industry [1], nuclear reactor
coolant flows [2], emergency venting of hydrocarbon pipelines [3] and cavitation in
refrigeration systems [4]. Systems like those mentioned above can often be modelled
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as quasi one-dimensional with discontinuous changes in cross-sectional area of the
flow. The system of equations modelling such flow contains a non-conservative term,
and this term complicates numerical simulations greatly as it can cause numerical
oscillations[5, 6] and divergence [5].

Several authors have constructed numerical methods for the compressible nozzle
flow equations [1, 5, 7–9], and systems of similar form [10–16], developing “well-
balanced” [17, 18] schemes to capture the flow behaviour at discontinuities. Most
of the early research has focused on the special case of single-phase flow with the
ideal gas equation of state (EOS). Notable schemes include Kröner and Thanh’s
well-balanced numerical scheme based on the Lax-Friedrichs flux [19], which was
extended for resonant cases in [5], Rochette et al.’s VFRoe based scheme [6] and
Cuong et al.’s Godunov scheme based on an exact Riemann solver [8]. Brown et
al. [20] proposed the first methodology for resolving two-phase CO2 flow in pipes
with discontinuous cross-sectional area changes for the homogeneous equilibrium
two-phase flow model (HEM) with the Peng-Robinson (PR) EOS [21] using the
AUSM+-up scheme. Recently, Abbasi et al. [1] developed a Godunov-type scheme
for the two-phase drift-flux model with variable cross-section, though with simple
EOSs for liquid and gas.

A HLLC-type method has yet to be tested on the problem of compressible flow
with discontinuous cross-sections. Note, however, that the HLLC-scheme has been
extended for the Euler equations in ducts of smoothly varying cross sections [22].
HLLC-type schemes apply information about the eigenstructure of the governing
equations in their solution [10, 11, 23], making the schemes less dissipative than
general methods such as AUSM+-up [24]. For the application on two-phase flow,
the HLLC-scheme’s accurate resolution of contact discontinuities [23] is particularly
desirable as this also makes the scheme more accurate in resolving transitions be-
tween gas, liquid, and mixture flows. As the eigenstructure of the one-dimensional
compressible duct flow equations is known, the advantages above motivates the con-
struction of a HLLC solver for this system.

This is further motivated as augmented versions of HLLC have been constructed
for similar systems, where abrupt changes are accounted for [10, 11]. An aug-
mented version of HLLC for the Baer-Nunziato (BN) equations [25] was devel-
oped by Tokareva and Toro [10], giving promising results for many test cases. The
method involves a nonlinear system which was further linearized by Lochon et al.
[26]. Murillo and García-Navarro [11] also developed an augmented version of HLLC
for the shallow-water equations. This method produced promising results as well,
though the authors note difficulties such as the need for a “source-fix” to avoid un-
physical solutions in certain cases.
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The contribution of this work is to develop and investigate two modified HLLC
solvers for compressible duct flow and assess their strengths and weaknesses. In par-
ticular, we will consider two-phase flow of CO2, due to its use as a natural working
fluid in refrigeration engineering, and the importance of safe and efficient CO2 trans-
portation as part of CO2 capture and storage (CCS) as a climate-change mitigation
technology [27]. We show that the present method is both robust and accurate when
solving challenging two-phase Riemann problems.

We will first present the equation system in more detail and briefly discuss the
Riemann problem for the system in Section 2. The HEM and the PR EOS are
outlined in Section 3. The numerical methods are derived in Section 4, the methods
are assessed in Section 5, and finally some concluding remarks and suggestions for
further work are given in Section 6.

2. Governing equations and the Riemann problem

The system of equations describing compressible one-dimensional flow of a single
fluid in a rigid duct of variable cross-sectional area, A, is

U t + F (U)x = S, (1)

where

U =


ρA

ρuA

EA

A

 , F (U) =


ρuA

(ρu2 + p)A

(E + p)uA

0

 , S =


0

p∂A
∂x

0

0

 .

Here, ρ is the density, u the velocity, E = ρ(e+ 1
2
u2) the total energy, e the specific

internal energy, and p the pressure of the fluid. S is a non-conservative term. The
set of equations (1) belongs to the class of non-conservative resonant systems [5, 28]
meaning that the waves which arise in this system can interact and “resonate” with
each other. For smooth solutions, the system (1) can be rewritten in quasi-linear
form,

U t + A(U)Ux = 0, (2)

where A is the Jacobian matrix of the system. Note that the non-conservative term
has now been moved to the left-hand side of the equation. A full derivation of A
for a general EOS can be found in [29, Appendix D], and we have included the full
expression of A in Appendix A.
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It can be shown [19, 28, 29] that the eigenvalues of A are;

λ0 = 0, λ1 = u− c, λ2 = u, λ3 = u+ c.

Note that any of the eigenvalues λ1, λ2, λ3 may coincide with λ0, giving rise to
resonance in the system [28]. The system of equations is hyperbolic away from the
points where λ1 = λ0 or λ3 = λ0 and nonstrictly hyperbolic when λ2 = λ0 [28].

2.1. The Riemann problem
Consider the Riemann problem for compressible duct flow,

U t + F (U)x = S, (3)

U(x, 0) =

{
UL, if x < 0

UR, if x ≥ 0
, (4)

where UL and UR are two different constant states. A thorough analysis on the
characteristic fields, Riemann invariants and the solution to this Riemann problem
is presented by Andrianov and Warnecke in [28].

When there is no change in A, AL = AR, the system (1) reduces to the Euler
equations. We then have the same characteristics and Riemann invariants as for the
Euler equations associated with the eigenvalues λ1, λ2, λ3. The Riemann invariants
are

s, u+
2c

Γ
across

dx1

dt
= u− c (5)

u, p across
dx2

dt
= u (6)

s, u− 2c

Γ
across

dx3

dt
= u+ c, (7)

where s is the specific entropy and Γ is the first Grüneisen parameter,

Γ =
1

ρ

(
∂p

∂e

)
ρ

=
1

ρcv

(
∂p

∂T

)
ρ

. (8)

Here, cv is the specific heat capacity at constant volume. Admissible waves for the
solution to the Riemann problem are then rarefactions and shocks associated with
λ1, λ3 and a contact discontinuity associated with λ2.
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Figure 1: The characteristics of a Riemann problem for 1D compressible duct flow with subsonic
flow where ρL > ρR, pL > pR and AL > AR, giving a rarefaction to the left, a stationary contact
discontinuity (red), then a contact discontinuity and a shock to the right. Created using [31].

At points with discontinuous area change, there is a a stationary contact discon-
tinuity associated with the eigenvalue λ0 = 0 [19], the 0-wave. Across the 0-wave we
have the following Riemann invariants as shown in [28]

Aρu, s, h+
1

2
u2, across

dx0

dt
= λ0 = 0, (9)

where h = e + p
ρ
is the specific enthalpy of the fluid. The invariants describe the

conservation of mass flux, entropy and stagnation enthalpy over the area change. The
addition of this wave in the solution to the Riemann problem causes complications
such as non-uniqueness [28] and resonance [5, 19, 30]. In Figure 1 we provide an
example of the structure of a Riemann problem solution in the case of subsonic flow
i.e. |u| < c from left to right. The example was created using Andrianov’s program
[31] (CONSTRUCT).

3. Thermodynamic models

In this work, we model the fluid as an ideal gas for benchmark tests of numerical
solvers of the equation system (1), defined by the equation of state (EOS)

p = ρ(γ − 1)e, (10)
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where γ is the ratio of specific heats γ = cp
cv
. In addition to benchmark testing, it is

also relevant to study the system (1) for two-phase flow of liquid and gas. To model
this, we apply the homogeneous equilibrium model (HEM) with the Peng-Robinson
(PR) EOS [21]. The PR EOS is given by

p =
RT

vm − b
− αa

v2
m + 2bvm − b2

, (11)

where vm is the specific molar volume of the fluid and R is the gas constant. a, b
and α are defined as

a = 0.45724
R2T 2

c

pc
, (12)

b = 0.07780
RTc
pc

, (13)

and

α =

[
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

)(
1−

√
T

Tc

)]2

, (14)

where Tc, pc and ω are the critical temperature, critical pressure and the acentric
factor of the species. For CO2, these are

pc = 7.3773 MPa, Tc = 304.35 K, and ω = 0.2236. (15)

The PR EOS only gives residual heat capacities, cresp , cresv . In order to compute the
total heat capacities cp = cideal

p + cresp , cv in JK−1kg−1 we use the following estimate,

cideal
p = 479.107 + 1.524318 T − 1.078176 · 10−3 T 2+

+ 3.38976 · 10−7 T 3 + 2.8876 · 10−11 T 4. (16)

In the HEM it is assumed that the two phases are in thermal, chemical and me-
chanical equilibrium, which is valid if the phases are well-mixed. Mixture properties
are then used in the flow equations (1). In this work, SINTEF’s thermodynamic
library [32, 33] has been applied to provide solutions for the HEM with the PR EOS.
Details on the specific methods applied in the library to obtain relevant variables are
presented in [34], though we ignore here the presence of any solid.

4. Numerical methods

The computational domain is discretized in finite volumes Ωj as depicted in Figure
2. We use two different kinds of finite-volume methods (FVMs) to solve Equation
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Figure 2: A one dimensional interval subdivided into grid cells, Ωj , with cell centers at xj and faces
xj−1/2, xj+1/2.

Figure 3: The flux function F+
j−1/2 approximates the flux F+

j−1/2 just to the right of the interface
at xj−1/2. The flux function F−

j+1/2 approximates the flux F−
j+1/2 just to the left of the interface

at xj+1/2.

(1) on this grid. The first FVM is analogous to the spatial discretization that Brown
et al. apply in [20], with an Euler time step giving

Un+1
j = Un

j −
∆t

∆x

(
F j+1/2 −F j−1/2

)
+ ∆tS̃j, (17)

where F = F(UL,UR) is a numerical flux function approximating the average flux
F at the cell interfaces x = xj−1/2, x = xj+1/2, and S̃j approximates the contribution
of the non-conservative term in cell j.

The second FVM is a conservative Godunov scheme which includes the non-
conservative term in the numerical flux functions [11]. The FVM takes the following
form

Un+1
j = Un

j −
∆t

∆x

(
F−
j+1/2 −F

+
j−1/2

)
, (18)

where again an Euler time step is used for the temporal discretization. Here, F± =
F±(UL,UR,S) are numerical flux functions approximating the average flux, F , right
next to the east, F−

j+1/2, and west, F+
j−1/2, cell faces as illustrated in Figure 3.

In the following, we will briefly review the HLLC method and then suggest two
modified HLLC-type methods to approximate the fluxes for the compressible duct
flow.
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4.1. The HLLC approximate Riemann solver
The HLLC method, proposed by Toro, Spruce and Speares [23], approximates

the cell interface Riemann problem by a three-wave solution;

Ũ (x/t) =


UL, if x < vLt,

UHLLC
L , if vLt ≤ x < vCt,

UHLLC
R , if vCt ≤ x < vRt,

UR, if x ≥ vRt,

(19)

where vL and vR are the fastest signal velocities arising from the initial condition of
the Riemann problem, and vC is the speed of the contact wave. The intermediate
states UHLLC

L ,UHLLC
R are approximated to be constant,

UHLLC
L =

1

∆t(vC − vL)

∫ ∆tvC

∆tvL

U(x,∆t) dx (20)

and

UHLLC
R =

1

∆t(vR − vC)

∫ ∆tvR

∆tvC

U(x,∆t) dx, (21)

they are however unknown and must be estimated. HLLC approximates the numer-
ical flux function by

F j+1/2 =


F L, if 0 < vL,

FHLLC
L , if vL ≤ 0 < vC ,

FHLLC
R , if vC ≤ 0 < vR,

FR, if 0 ≥ vR.

(22)

The intermediate state fluxes, FHLLC
L for positive subsonic flow, and FHLLC

R for
negative subsonic flow, are also unknown. In order to determine the fluxes, Rankine-
Hugoniot (RH) relations are used across the waves and the additional set of Riemann
invariants across the contact discontinuity is applied to close the system. The RH
relation states that across a wave

∆F = v∆U , (23)

where v is the speed of the wave. For compressible duct flow, we find through some
manipulation that the intermediate fluxes FHLLC

K , K = L,R can be expressed as

FHLLC
K = FK + vK(UHLLC

K −UK), (24)
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where the intermediate states are approximated by

UHLLC
K = ρKAK

(
vK − uK
vK − vC

)
1
vC

EK
ρK

+ (vC − uK)

(
vC +

pK
ρK(vK − uK)

)
 , K = R,L,

(25)
and

vC =
pR − pL + ρLuL(vL − uL)− ρRuR(vR − uR)

ρL(vL − uL)− ρR(vR − uR)
. (26)

4.2. Wave-speed estimates
The HLLC solver needs estimates for the wave speeds vL and vR. There are several

different approaches to estimate these wave speeds, some of which are outlined in
[35], Section 10.5. In this work, the Roe average wave speed estimate [36] is used.
Both Davis [37] and Einfeldt [38] suggest using the Roe averaged eigenvalues for the
wave speeds;

vL,j+1/2 = min
(
λ1(U j), λ1(Û j+1/2)

)
, vR,j+1/2 = max

(
λ3(U j+1), λ3(Û j+1/2)

)
, (27)

where Û is the Roe average of the conserved variables. The Roe averaged variables
can be found by the Roe averaged matrix Â (UL,UR) [36], which must satisfy certain
conditions.

We follow the approach of Evje and Flåtten [39] and Munkejord [40] for the
two-fluid model, which also involves a non-conservative term, and search for a Roe
averaged matrix Â which satisfies the following conditions:

R1: Â (UL,UR)(UR −UL) = ∆F (UL,UR)

R2: Â (UL,UR) has real eigenvalues and is diagonalizable, and
R3: Â (UL,UR)→ A(U) smoothly as UL,UR → U ,

wherein ∆F (UL,UR) is formulated as

∆F (UL,UR) =


{ρuA}

{(ρu2 + p)A} − p̂{A}
{(E + p)uA}

0

 . (28)

Here,
{x} = xR − xL, (29)
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and p̂ is a particular average of the pressures from the left and right states p̂ =
p̂(UL,UR), similarly to αk(UL,UR) in [39], [40].

Â can be determined by finding a special average of the state vectors UL and
UR, Û(UL,UR), such that Â = A(Û ), p̂ = p̂(Û). A set of averages satisfying
R1–R3 are:

ρ̂A =
ρLAL + ρRAR

2
, (30)

Â =
AL + AR

2
, (31)

û =

√
ρLALuL +

√
ρRARuR√

ρLAL +
√
ρRAR

, (32)

Ĥ =

√
ρLALHL +

√
ρRARHR√

ρLAL +
√
ρRAR

, (33)

where Hk = hk + 1
2
u2
k, k = L,R.

4.3. HLLC with added non-conservative term, HLLC+S
The HLLC scheme assumes a three wave solution, however we can still apply the

scheme to compressible duct flow provided that we also account for the fourth, sta-
tionary wave. We apply the FVM (17) with the HLLC numerical flux function. This
FVM requires a representation of the non-conservative term, S̃j. The discretization
of this term requires special care to ensure numerical stability. We follow the ap-
proach of Brown et al. [20] for their AUSM+-up scheme and apply a discretization
of the non-conservative term which satisfies the non-disturbance relation discussed
by Liou et al. [41]. The relation states that under steady conditions with u = 0 and
p = const.

∂(Ap)

∂x
= p

∂A

∂x
. (34)

The following discretization, which satisfies the non-disturbance relation, is used:

S̃j =
pj
∆x


0

Aj − Aj−1

0
0

 , if uj > 0 and S̃j =
pj
∆x


0

Aj+1 − Aj
0
0

 , if uj ≤ 0. (35)

4.4. HLLCS approximate Riemann solver
We will here derive an augmented version of HLLC, following in part the approach

of Murillo and García-Navarro [11] for the shallow-water equations and the approach
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of Tokareva and Toro [10] for the Baer-Nunziato equations. We follow the naming
convention of Murillo and García-Navarro [11] and call this method “HLLCS”, em-
phasizing that our method is very similar to their discretization of the source term
in the shallow-water equations. The HLLCS approximate Riemann solver assumes a
four-wave solution instead of a three-wave solution, incorporating the 0-wave. Simi-
larly to HLLC, we will assume that the waves separate constant intermediate states.

For systems in the form of Equation (1), Murillo and García-Navarro derived
the following consistency condition which the approximate intermediate states must
satisfy:

1

∆t(vR − vL)

∫ ∆tvR

∆tvL

U(x,∆t) dx =
vRUR − vLUL − (FR − F L) + S

vR − vL
, (36)

where

S =
1

∆t

∫ xR

xL

∫ ∆t

0

S dt dx. (37)

Two different estimates of S are used in this work and they are presented in Section
4.4.4. HLLCS will be developed to ensure the subsonic case satisfies the condition
(36). For supersonic flow, the fluxes are easily found as will be shown below.

4.4.1. Supersonic flow
For positive supersonic flow, the flux just to the left of the interface, x = 0, is

simply F L, giving
F−
j+1/2 = F L. (38)

The flow just to the right of the interface has passed the area change such that

F+
j+1/2 = F L + S. (39)

Similarly for negative supersonic flow, the numerical fluxes at ∆t become:

F−
j+1/2 = FR − S, (40)

F+
j+1/2 = FR. (41)

4.4.2. Subsonic flow
An illustration of a control volume containing the wave structure of a Riemann

problem for positive subsonic flow is shown in Figure 4. In this case there are three
unknown intermediate states separated by the stationary wave at x = 0 and the
contact discontinuity, U−

L , U
+
R and U++

R . We approximate the intermediate states,
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Figure 4: Integration control volume [xL, xR]×[0,∆t] in the x−t plane. The control volume contains
the two fastest signal velocities, vL and vR from the Riemann problem. The solution consists of
three inner states separated by the stationary wave at x = 0 and the contact discontinuity of
positive speed, vC .

U−
L , U

+
R and U++

R by

U−
L =

1

−∆tvL

∫ 0

∆tvL

U(x,∆t) dx

U+
R =

1

∆tvC

∫ ∆tvC

0

U(x,∆t) dx

U++
R =

1

∆t(vR − vC)

∫ ∆tvR

∆tvC

U(x,∆t) dx


. (42)

In order to estimate the intermediate fluxes, the RH condition is applied across
all the waves in the problem. The RH relations are

F−
L − F L = vL(U−

L −UL), (43)

F+
R − F−

L − S = v(U+
R −U−

L) = 0, (44)
F++
R − F+

R = vC(U++
R −U+

R), (45)
FR − F++

R = vR(UR −U++
R ). (46)

It can be shown that the RH relations (43)-(46) are enough to satisfy the consistency
condition (36). To close the system, we impose the Riemann invariants across the
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stationary wave and the contact discontinuity,

u++
R = u+

R = vC

p++
R = p+

R

}
, (47)

(Aρu)−L = (Aρu)+
R

s−L = s+
R

(
u2

2
+ h)−L = (

u2

2
+ h)+

R

 . (48)

The RH condition across the wave associated with the wave speed vL gives

ρ−L = ρL
vL − uL
vL − u−L

, (49)

p−L = pL + ρL(vL − uL)(u−L − uL), (50)

E−
L = ρL

(
vL − uL
vL − u−L

)(
EL
ρL

+ (u−L − uL)

(
u−L +

pL
ρL(vL − uL)

))
, (51)

and the RH condition across the wave associated with the wave speed vR gives

ρ++
R = ρR

vR − uR
vR − u++

R

, (52)

p++
R = pR + ρR(vR − uR)(u++

R − uR), (53)

E++
R = ρR

(
vR − uR
vR − u++

R

)(
ER
ρR

+ (u++
R − uR)

(
u++
R +

pR
ρR(vR − uR)

))
. (54)

Equations (49)-(51)and (52)-(54) with the Riemann invariants constitute a nonlinear
system which can be solved iteratively. Tokareva and Toro [10] obtained a similar,
but larger system of equations which must be solved for the Baer-Nunziato equations.

Both for compressible duct flow and the Baer-Nunziato equations, either the
pressures p−L , p

+
R = p++

R or the velocities u−L , u
+
R = u++

R can be chosen as independent
variables to solve the system. As stated in [10], there is no difference between the
approaches from a theoretical point of view as the two representations of the system
are mathematically equivalent. Following Tokareva et al. [10], we choose p−L , p

+
R as

the independent variables to ensure pressure positivity when searching for solutions
of the system.
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We therefore express u−L and u+
R = u++

R using p−L and p+
R,

u−L(p−L) = uL +
p−L − pL

ρL(vL − uL)
, (55)

u+
R(p+

R) = uR +
p+
R − pR

ρR(vR − uR)
. (56)

We then have thatU−
L = U−

L(p−L), such that s−L = s−L(p−L), and enforcing the Riemann
invariant s−L = s+

R = s, we have that s+
R = s+

R(p−L). The relation for mass flux and
the relation for stagnation enthalpy then give the following:

f =

 ALρ
−
L(p−L)u−L(p−L)− ARρ+

R

(
p+
R, s(p

−
L)
)
u+
R(p+

R)

h+
R

(
p+
R, s(p

−
L)
)

+ 1
2

(
u+
R(p+

R)
)2 −

[
h−L
(
p−L , s(p

−
L)
)

+ 1
2

(
u−L(p−L)

)2
] = 0. (57)

These are two equations for the two independent variables p−L , p
+
R. The system (57)

can be solved iteratively by e.g. Newton-Raphson’s method and it may have zero or
up to three solutions. If the system has multiple solutions, we choose the solution
which satisfies the following criteria:

C1 The solution is self-consistent in the sense that the Riemann problem for the
statesU−

L(p−L),U+
R(p−L , p

+
R) provide wavespeed estimates which suggest subsonic

flow.

C2 The solution has the highest entropy s−L(p−L) = s+
R = s of the self-consistent

solutions.

If there are no solutions, we approximate p−L , p
+
R as the point which minimizes the

absolute value of f .
Once p−L and p+

R are determined, the state U−
L can be calculated using Equations

(55), (49) and (51). With this we can finally find the unknown fluxes F−
L and F+

R

from Equation (43) and Equation (44), giving

F−
L = F L + vL(U−

L −UL), (58)

F+
R = F−

L + S. (59)

The negative subsonic flow case can be seen as simply the mirror image of the
positive flow case. We now have the states U−−

L , U−
L and U+

R as illustrated in Figure
5. An equivalent system to (57) can be found for this case and the same criteria C1
and C2 can be applied to choose a valid solution.
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Figure 5: Integration control volume [xL, xR] × [0,∆t] in the x − t plane. The control volume
contains the two fastest signal velocities vL, vR from the Riemann problem. The solution consists
of three inner states separated by the stationary wave at x = 0 and the contact discontinuity of
negative speed, vC .

4.4.3. Solution for stationary waves
Suppose now that we have the states UL, UR which satisfy the conditions for a

stationary wave across the area change,

(Aρu)L = (Aρu)R, hL +
u2
L

2
= hR +

u2
R

2
, sL = sR. (60)

The exact solution for the Riemann problem (3)–(4) with the two states UL, UR is a
jump from UL to UR at the area change. The solution which satisfies the criteria C1
and C2 is p−L = pL and p+

R = pR. The intermediate states then become U−
L = UL and

U+
R = U++

R = UR. This means that for stationary waves, when the correct solution
is chosen, the intermediate states found in the HLLCS approximate Riemann solver
are exact.

4.4.4. The non-conservative term for HLLCS
In this work, two non-conservative terms are tested to estimate the fluxes based

on the HLLCS approximate Riemann solver. The first approximate non-conservative
term is given by

SRS =


0

p̂ (AR − AL)
0
0

 , (61)
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where p̂ is the Roe-averaged pressure introduced in Section 4.2. We therefore call
this the Roe-average-based term (RS). RS is formulated generally such that it may
be applied on subsonic, sonic and supersonic flow.

For subsonic flow, the nonlinear system of equations determining the approximate
intermediate states and fluxes is solved. The non-conservative term is then given
implicitly by the RH conditions. For positive subsonic flow, we get that the non-
conservative term must be

SFS+ = F++
R − vC(U++

R −U+
R)− F−

L . (62)

Similarly for negative subsonic flow, we get that

SFS- = F+
R − F−−

L + vC(U−
L −U−−

L ). (63)

As the non-conservative term includes the approximate fluxes, we call it the flux-
based term (FS). Note that this estimate only holds if the HLLCS approximate
Riemann solver has a solution. FS is only formulated for subsonic flow and may
therefore only be applied for subsonic flow problems.

4.4.5. The HLLCS-based fluxes
The HLLCS method approximates the flux functions F−

j+1/2 and F+
j+1/2 needed

for the FVM (18) as shown in Algorithm 1.
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Algorithm 1: The HLLCS solver. If subsonic flow is identified, a solver
is called to find a valid solution satisfying C1 and C2 or an optimization
method is used to minimize f . When a solution is found, vC and the inter-
mediate states U−

L , U
+
R and U−−

L or U++
R are returned.

Result: Fluxes for the HLLCS solver, F+
R and F−

L .
if vL > 0 then

F−
L = F L

F+
R = F−

L + S
end
if vL ≤ 0 and vR > 0 then

call solver, returning vC and intermediate states;
if vC ≥ 0 then

F−
L = F L + vL(U−

L −UL)
F+
R = F−

L + S
else

F+
R = FR − vR(UR −U+

R)
F−
L = F+

R − S
end

end
if vR ≤ 0 then

F+
R = FR

F−
L = F+

R − S
end
Set F−

j+1/2 = F−
L and F+

j+1/2 = F+
R.

Remark: Note that for a (subsonic) steady-state wave across the area change,
applying SFS will give that F−

j+1/2 = F−
L = F L and F+

j+1/2 = F+
R = FR. Inserting

this in the FVM (18), we find that

Un+1
j = Un

j ∀ j, (64)

i.e. the HLLCS-based FVM with FS conserves the steady-state solution exactly.
This means that the FVM is well-balanced.

4.5. Summary
In this work, we apply two finite-volume methods HLLC+S and HLLCS. The

numerical scheme for the HLLC+S solver is given by

Un+1
j = Un

j −
∆t

∆x

(
F j+1/2 −F j−1/2

)
+ ∆tS̃j, (65)
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where the flux functions F j+1/2,F j−1/2 are given by the HLLC solver, and S̃j is
given by Equation (35). The discretization of S̃j is such that the stationary state is
conserved.

The HLLCS FVM is given by

Un+1
j = Un

j −
∆t

∆x

(
F−
j+1/2 −F

+
j−1/2

)
, (66)

where the flux functions F−
j+1/2,F

+
j−1/2 are approximated using the HLLCS approx-

imate Riemann solver as described in Algorithm 1.

5. Assessment of the methods

In this section, we assess the performance of the proposed finite-volume methods,
HLLC+S and HLLCS. As the HLLCS FVM is based on a new approximate Riemann
solver, we start by testing the HLLCS approximate Riemann solver on local Riemann
problems in Section 5.1. We then investigate the performance of the HLLC+S and
HLLCS finite-volume methods on benchmark tests for the ideal gas EOS in Section
5.2. The methods are further tested on the HEM with the PR EOS in Section 5.3.
We finally compare our methods to the results of different solvers for a water vapour
test. Note that for tests with the ideal gas EOS, we use dimensionless variables and
denote this by ∗/∗ref, where ∗ is some variable and the subscript ref refers to some
reference value.

5.1. Behaviour of the HLLCS approximate Riemann solver for local Riemann prob-
lems

As shown in Section 4.4.2 we must solve a nonlinear system, f = (f1, f2)T =
0, to obtain a solution with the HLLCS approximate Riemann solver for subsonic
flow. It is therefore of interest to investigate how this nonlinear system behaves
for different local Riemann problems inducing subsonic flow. We investigate this
using two modified versions of the common Sod shock-tube problem, giving positive
subsonic flow, where we include area change. The values of the left and right states
in the Sod shock-tube problem and the left and right areas in the modified tests,
Mod. A and Mod. B are given in Table 1.

In Figure 6 we plot for which values of p−L , p
+
R that f1 = 0 and f2 = 0 for the two

modified Sod shock-tube tests. When the lines f1 = 0, f2 = 0 cross, f = 0 has a
solution. For Mod. A, there are two possible solutions. We find that the solution
to the lower left in Figure 6a is inconsistent as it suggests supersonic flow across
the area change even though the Riemann problem is subsonic. The solution to the
upper right suggests subsonic flow across the area change and is therefore valid.
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Table 1: The left and right states for the Sod shock-tube problem with modified left and right areas
for Mod. A and Mod. B.

p/pref u/uref ρ/ρref Mod. A: A/Aref Mod. B: A/Aref

Left 1.0 0.0 1.0 1.0 1.0
Right 0.1 0.0 0.125 0.9 1.1
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R )2

(b)

Figure 6: The graphs show for which values of p−L , p
+
R that f1 = 0 (blue) and f2 = 0 (red) for Mod.

A (a) and Mod. B (b). For Mod B, an estimate of the point where |f | is minimized is marked with
an x.

For Mod. B there is no solution. Mod. B is a resonant case, where a fifth wave
is induced in the Riemann solution, so the assumption of a four-wave solution in
the HLLCS approximate Riemann solver does not hold here. Strictly speaking, the
approximate Riemann solver is invalid for resonant cases. We choose the intermediate
pressures p−L , p

+
R to estimate the minimum absolute value of f , marked with an x in

Figure 6b. The resulting intermediate states approximate a solution for the HLLCS
Riemann solver. These intermediate states do not satisfy the RH relations (43)–(46),
however, and the error increases when the area discontinuity or pressure is increased.

5.2. Benchmark tests with the ideal gas EOS
In this section, three selected benchmark tests for compressible duct flow with

the ideal gas EOS are used to test the performance of HLLC+S and HLLCS. For all
the tests, the CFL number is set to C = max (λ)∆t

∆x
= 0.9, extrapolation is used at the

boundaries and γ = 1.4.
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Table 2: The left and right states for Test 1.

p/pref u/uref ρ/ρref A/Aref

Left 10.0 5.0 0.35 1.0
Right 13.462929846413655 2.695480449295447 0.432823271625514 1.5

0.0 0.2 0.4 0.6 0.8 1.0
x/xref

0.36

0.38

0.40

0.42

/
re

f
Exact
HLLC+S
HLLCS, RS
HLLCS, FS

Figure 7: Comparison of the exact density solution (black line) and the solutions of HLLC+S (red
circles), HLLCS with RS (blue plus signs) and HLLCS with FS (green crosses) at t/tref = 0.02 for
Test 1.

5.2.1. Test 1: Steady-state
Test 1 is taken from Cuong and Thanh [8], and includes steady flow which satisfies

the conditions for a stationary wave across the area change. The initial condition for
Test 1 is given in Table 2. For this test, the solution is computed along the interval
x/xref ∈ [0, 1], the discontinuity is at x/xref = 0.5 and Ncells = 100. The solutions for
HLLC+S and HLLCS at t/tref = 0.02 are plotted in Figure 7. As expected, HLLCS
with FS conserves the steady state because the scheme is well-balanced, as shown
in Section 4.4.4. Neither HLLC+S nor HLLCS with RS are well-balanced, however,
the solution of HLLCS with RS is not very inaccurate.

We further present a convergence study for HLLC+S and HLLCS with RS for
this test. The grids used for the convergence study have tripling numbers of grid
cells, Ncells, such that cell centres will overlap for all the grids. We calculate the
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Figure 8: Results of the convergence test for HLLC+S (red line with circles) and HLLCS with RS
(blue line with plus signs) for Test 1.

1-norm of error for the density, the density error, by

E1,ρ(∆x) = ∆x

Ncells∑
j=1

|ρexact
j − ρapprox

j |,

where ∆x is the grid spacing, and the convergence rate, l, for tripling Ncells by

l =
1

log(3)
log

(
E1,ρ(∆x)

E1,ρ(
∆x
3

)

)
.

The density error for HLLC+S and HLLCS with RS is shown in Figure 8a and the
convergence rate for their density solution is shown in Figure 8b. Though HLLCS
with RS has a significantly lower error than HLLC+S, both solvers reach a conver-
gence rate of 0. This means that neither of these solvers is consistent.

5.2.2. Test 2: Strong non-conservative term
We now present Test 2, which includes a strong non-conservative term. In Table

3, the initial conditions and intermediate states separating elementary waves of the
exact Riemann solution for Test 2 is given. The interval and discontinuity are the
same as for Test 1.

The numerical solvers give significant numerical smearing near the area change
due to the strong non-conservative term, so a rather fine grid of Ncells = 1000 is
used to resolve the problem to see clearly how the solvers perform. The density
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Table 3: The left and right states for Test 2 including the intermediate states separating elementary
waves of the exact Riemann solution for the test ordered from left to right.

p/pref u/uref ρ/ρref A/Aref

Left 3.0 -0.90532425 2.191799866 0.9
State 1 1.0 0.1 1.0 0.9
State 2 0.89002806 0.4890494 0.92015244 0.2
State 3 0.89002806 0.4890494 0.5 0.2
Right 0.80290021 0.37372087 0.46454221 0.2

0.0 0.2 0.4 0.6 0.8 1.0
x/xref

0.5
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1.5

2.0

/
re

f

Exact
HLLC+S
HLLCS, RS
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Figure 9: Density solution of HLLC+S (red dashed line), HLLCS with RS (blue dotted line) and
HLLCS with FS (green dash-dotted line) compared to the exact solution (black line) for Test 2 at
t/tref = 0.1, with Ncells = 1000.

solution for HLLC+S and HLLCS with both RS and FS are compared to the exact
solution at t/tref = 0.1 in Figure 9. The exact solution for the test is produced using
CONSTRUCT [31].

For this test, HLLC+S produces unsatisfactory results. The behaviour near the
area change does not approximate the exact solution. The density after the area
change becomes much too low as compared to the exact solution. Both HLLCS with
FS and with RS have numerical smearing between the area change and the contact
discontinuity, but appear to approximate the solution well otherwise. HLLCS with
RS does not approximate the location of the right shock perfectly, but performs
similarly to HLLCS with FS otherwise.

We further present a grid refinement study for this test. The density error for
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Figure 10: Results of the convergence test for HLLC+S (red line with circles), HLLCS with RS
(blue line with plus signs) and HLLCS with FS (green line with crosses) for Test 2.

the solvers is shown in Figure 10a and the convergence rate for their density solution
is shown in Figure 10b. It is clear that HLLCS outperforms HLLC+S. HLLC+S’
error settles at approximately 0.02, and its convergence rate goes to 0. HLLCS with
RS’s convergence rate also goes to zero, though at a much lower density error than
HLLC+S. The density error for HLLCS with FS keeps falling for increasing numbers
of grid cells and its convergence rate stays above above 0.5 for very fine grids.

5.2.3. Test 3: Resonance
Test 3, suggested by Thanh and Kröner [5], involves the interaction between a

rarefaction to the left and an expansion causing the flow to become choked exactly
at the area discontinuity. This leads to resonance which induces an “extra” shock
in the wave configuration. In Table 4 the initial condition and the states separating
elementary waves of the exact Riemann solution are given for Test 3. The solution
is computed along the interval x/xref ∈ [0, 2] and the discontinuity is at x/xref = 1.
Following Thanh and Kröner [5], Brown et al. [20], we employ Ncells = 1000.

For Test 3, HLLCS with FS fails to compute a solution. The nonlinear system
in the HLLCS approximate Riemann solver does not have a solution for the local
Riemann problem for this test, similarly to Mod. B in Section 5.1. We compute the
intermediate states closest to a solution for the HLLCS Riemann solver. However,
as they are not a true solution, the states do not satisfy the RH relations (43)–(46).
The FS estimate of the non-conservative term (62) is defined implicitly through these
relations and the estimate is poor when inconsistent intermediate states are used in
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Table 4: The left and right states for Test 3 and the intermediate states separating elementary
waves of the exact Riemann solution ordered from left to right.

p/pref u/uref ρ/ρref A/Aref

Left 8.0 0.5 5.0 1.0
State 1 3.5111 1.3306 2.7766 1.0
State 2 1.7227 1.8438 1.6697 1.2
State 3 2.3427 1.5738 2.0779 1.2
State 4 2.3427 1.5738 1.8047 1.2
Right 1.0 0.8 1.0 1.2
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Figure 11: Comparison of exact solution (black line) and the density solution (a) and velocity
solutions (b) of HLLC+S (red dashed line), and HLLCS with RS (blue dash-dotted line) on Test 3
for velocity at t/tref = 0.2, Ncells = 1000.

its calculation. In this particular case, the error causes HLLCS with FS to obtain
negative internal energies during the simulation and crash. HLLCS with RS is less
affected by this because the RS discretization does not depend on the intermediate
states.

The solutions for density and velocity are given in Figures 11a and 11b respec-
tively for HLLC+S and HLLCS with RS at t/tref = 0.2 together with points of the
exact solution. Both HLLC+S and HLLCS with RS resolve the problem well and
there is no sign of instability as often occurs for solvers applied on resonant cases
[5]. HLLCS RS approximates the solution better than HLLC+S, which is particu-
larly evident for the density between the stationary wave and the additional shock,
for x/xref ∈ [1, 1.1] and between the additional shock and the contact discontinuity,
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Figure 12: Results of the convergence test for HLLC+S (red line with circles) and HLLCS with RS
(blue line with plus signs) for Test 3.

x/xref ∈ [1.1, 1.3]. HLLCS with RS overestimates the velocity of the fluid in the
area between the stationary wave and the additional shock. Thanh and Kröner’s
LxF scheme with the computational corrector does not obtain such an overshoot [5].
Brown et al., however, get a similar overshoot for their AUSM+-up scheme for this
test [20]. We present the results of a grid refinement study in Figures 12a and 12b.
HLLCS with RS obtains a lower density error than HLLC+S. The convergence rates
of both solvers tend to zero, confirming once again that HLLC+S and HLLCS with
RS are not consistent for the system.

One should note two things here. Firstly, HLLCS with both FS and RS is not
generally good at solving resonant problems, but the solver shows promising be-
haviour and might be modified to work well with resonance. Secondly, even though
HLLC+S performed poorly for the stationary state and a strong non-conservative
term, it still obtained a reasonable result here. One should not be fooled by this as
HLLC+S is generally a poor solver for the system (1).

5.3. Two-phase test with the HEM and the PR EOS
We present here two tests with two-phase CO2 flow modelled by the HEM with

the PR EOS. Test 4 is rather similar to “Test 5” presented by Brown et al. for their
AUSM+-up scheme [20]. Our Test 5 includes a stronger non-conservative term than
that of Test 4 for which HLLC+S fails to compute a reasonable solution, whereas
HLLCS performs well. Note that no exact solution is available for these tests. In
order to provide some reference, we compute a solution with our best performing
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Table 5: Initial conditions for Test 4.

p (MPa) u (ms−1) T (K) A (m2) αg (-)

Left 5 0 283.547 1 0.0
Right 4 0 278.565 0.5 0.986

solver, HLLCS FS, with a very fine grid on which the discontinuous area change is
smoothed over a few grid cells.

5.3.1. Test 4: Two-phase test similar to that of Brown et al.
Test 4 is similar to “Test 5” presented by Brown et al. [20] for the HEM with the

PR EOS and a discontinuous cross-sectional area. The initial conditions for Test 4 is
given in Table 5, where αg is the volume fraction of gas. Here, the temperatures and
αg are chosen to match the initial conditions given for “Test 5” in [20], pL = 5 MPa,
pR = 4 MPa , ρL = 829.1 kg m−3 , ρR = 126.8 kg m−3 . For the initial state to the
right, the volume fraction in [20] is set to αR = 0.9, however our calculations with
the PR EOS requires αR = 0.986 to get a density of 126.8 kg m−3 at a saturation
pressure of 4 MPa for CO2. We have therefore modified the volume fraction in our
initial condition. Furthermore, we choose a CFL number of 0.9 rather than 0.3 as
applied by Brown et al. Otherwise, we use the same parameters as Brown et al.:
x ∈ [0, 1]m, the discontinuity is at x = 0.6 m and Ncells = 1000. For the HLLCS FS
reference solution, we apply N = 9000 so the area change occurs over 9 grid cells.

The reference solution and the solutions of HLLC+S, HLLCS RS and HLLCS
FS for pressure, density, velocity, Mach number, entropy and mass fraction of gas
are shown in Figures 13a, 13b, 13c, 13d, 13e and 13f, respectively, for t = 1.2 ms.
Similarly to the result in [20], we obtain a rarefaction to the left, a stationary wave at
the area change, x = 0.6 m, a very slow-moving contact discontinuity just to the right
of the area change at x ≈ 0.61 m and a shock to the right. There is an evaporation
jump following the shock and further evaporation to the left of the area change as
can be seen in the mass fraction of gas in x ∈ [0.52, 0.6]m, see Figure 13f. This
causes a “splitting” of the rarefaction wave as observed in Figure 13a because the
wave travels quickly in the pure liquid and more slowly in the two-phase area due to
different speeds of sound for single and two-phase flow. The entropy increases at the
contact discontinuity. These results are as expected.

We note, however, that HLLC+S’s solution contains a spike in the pressure and
density at the area change, x = 0.6 m. Such a spike is not present for the HLLCS
solvers. There is no physical reason for a spike to be present in the pressure and
density at the area change so this must be caused by the discretization of the non-
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Table 6: Initial conditions for Test 5.

p (MPa) u (ms−1) T (K) A (m2) αg (-)

Left 5 0 283.547 1 0.0
Right 3.5 0 280 0.2 0.986

conservative term in HLLC+S. The AUSM+-up scheme presented in [20] also gets a
spike in its density solution at the area change. Based on our results, it seems likely
that the spike for the AUSM+-up scheme in [20] is also caused by the discretization
of the non-conservative term, and that the HLLCS methods are more accurate than
the AUSM+-up scheme. HLLCS RS approximates the wavespeeds of the rarefaction
and shock less accurately than HLLCS FS and HLLC+S, but seems to perform well
otherwise. HLLCS FS appears to be the most accurate, which is reasonable based
on the results for the ideal gas tests.

We further present the temperature results for a coarse grid with Ncells = 100 and
a fine grid with Ncells = 10000 in Figures 14a and 14b. HLLCS with FS performs
well, even for the coarse grid. HLLCS with RS performs poorly for the coarse grid,
but converges towards HLLCS with FS on the fine grid. HLLC+S converges towards
an incorrect solution.

5.3.2. Test 5: Two-phase test with a large non-conservative term
We have constructed the present case test to provide a challenging test for the

discretization of the non-conservative term. The initial condition is given in Table 6.
We employ the same domain, position of the discontinuity, grids and CFL number
as in Test 4. We compute a HLLCS FS reference solution on a finer grid for which
the area change occurs over 9 grid cells for this test as well.

The reference solution and the solutions of HLLC+S, HLLCS RS and HLLCS FS
for pressure, density, velocity, Mach number, entropy and mass fraction of gas are
shown in Figures 15a, 15b, 15c, 15d, 15e and 15f, respectively, for t = 1.2 ms. It is
evident in the plots of pressure, density, velocity and Mach number that HLLC+S
has failed to compute a reasonable solution and is unstable. In Figure 15a, we have
cut off the pressure peak at the area change, x = 0.6 m which reaches 14 MPa. Based
on the results of this test and further on the result of the steady-state test in Section
5.2.1, we see that imposing the non-disturbance relation [41] for compressible duct
flow on the discretization of the non-conservative term is not enough to ensure the
stability of the solver. As the discretization of the non-conservative term in the
AUSM+-up scheme is only based on this principle, similarly to HLLC+S, the scheme
will likely also fail for this test.
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Figure 13: The solutions of HLLC+S (red, dashed line), HLLCS RS (blue, dash-dotted line) and
HLLCS FS (green line) for pressure (a), density (b), velocity(c), Mach number (d), entropy (e) and
mass fraction of gas (f) for Test 4 at t = 1.2 ms with the initial discontinuity at x = 0.6 m. The
result is compared to a reference HLLCS FS solution on a finer grid (black dotted line).
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Figure 14: Temperature results for Test 4 with 100 grid cells (a) and 10000 grid cells (b).

Table 7: Initial conditions for water vapour shock test (Test 6).

p (MPa) u (ms−1) T (K) A (m2) αg (-)

x ∈ [0, 2] 15 0 644.17 0.4 1.0
x ∈ [2, 3] 10 0 607.96 0.4 1.0
x ∈ [3, 5] 10 0 607.96 0.02 1.0

5.4. Test 6: Single-phase steam shock-tube interaction with an abrupt contraction
We will here apply our best performing method, HLLCS with FS, to a water

vapour test originally proposed by Tiselj et al. [42] to compare its results with
existing methods. In the present work, the IAPWS-95 equation of state is used for
modelling water [43], using the TREND software [44]. We compare our results to
those of WAHA [42], a HLLC-based method proposed by Daude and Galon [45] and
a 2D axisymmetric simulation of the system provided by Daude and Galon [46].
Note that Daude and Galon model the water differently, using steam-water tables
based on the 1984 NBS/NRC formulation [47]. The initial conditions for this test is
presented in Table 7. The test is run with 2000 grid cells and a CFL number of 0.8.
In WAHA, 125 nodes are applied.

The results for pressure and temperature at t = 2.5 ms are plotted in Figures
16a and 16b respectively. The schemes perform similarly, except for the calculated
plateau between the area change at x = 3 m and the transmitted shock wave at
x ≈ 3.45 m. The different thermodynamic modelling of water may contribute to the
difference in the results, however, as the results agree well for all the other waves
in the solution it seems more likely that the difference is related to the numerical
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Figure 15: The solutions of HLLC+S (red, dashed line), HLLCS RS (blue, dash-dotted line) and
HLLCS FS (green line) for pressure (a), density (b), velocity(c), Mach number (d), entropy (e) and
mass fraction of gas (f) for Test 5 at t = 1.2 ms with the initial discontinuity at x = 0.6 m. The
result is compared to a reference HLLCS FS solution on a finer grid (black dotted line).
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Figure 16: Test 6: Results of a water vapour shock-tube interaction with an abrupt contraction at
t = 2.5 ms for HLLCS FS compared with WAHA results from Tiselj et al. [42], the results of Daude
and Galon’s scheme [45] and a 2D axisymmetric simulation from [46] provided by Daude.

schemes. Daude and Galon’s scheme agrees the most with the 2D axisymmetric
simulation. However, we note that the 2D result appears to be smeared in this area
and the simulation might not be fully converged. Note also that Daude and Galon’s
scheme obtains a small peak in the temperature at x = 3.0 m. None of the other
solvers obtain this. HLLCS FS is closer to Daude and Galon’s scheme and the 2D
axisymmetric result than WAHA. The HLLCS FS scheme provides the least smeared
result and has no artefacts such as bumps or peaks in its solution. We therefore find
the result reasonable.

6. Conclusion

We have proposed HLLC-type finite-volume methods to simulate transient two-
phase flow in pipes with discontinuous cross-sectional area. Such simulations are
relevant to describe flow in wellbores, nuclear coolant flows and high-pressure pipeline
flow.

HLLC+S is a relatively simple scheme, incorporating the non-conservative term
in the governing equations much like a source term with a discretization constructed
to conserve the stationary state exactly. This approach is similar to that of Brown
et al. [20] for an AUSM+-up scheme. HLLCS is a new approximate Riemann solver,
assuming a four-wave solution, which includes the non-conservative term in a more
thorough manner. For subsonic flow, HLLCS requires the solution of a nonlinear
system. Notably, both HLLC+S and HLLCS can be applied with a general equation
of state.
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The methods are tested on benchmark tests with the ideal gas EOS, including
a steady-state test, a Riemann problem with a strong non-conservative term and a
resonant case. Though HLLC+S performs well for the resonant case, it performs
poorly otherwise. This solution scheme is not consistent for the system. We have
tested two discretizations of the non-conservative term for the HLLCS-based FVM
which we have called FS and RS. FS is based on the flux-estimates of the HLLCS
approximate Riemann solver across cell faces, and RS is based on the Roe-average
between neighbouring grid cells. It is found that HLLCS does not have a solution for
its nonlinear system for resonant flow, where the assumption of a four-wave solution
is incorrect. Despite this, HLLCS with RS computes a more accurate solution than
HLLC+S for the resonant case. HLLCS with FS does not reach a solution for this
case. Otherwise, HLLCS with FS is superior in accuracy and is found to be well-
balanced in the sense that it conserves the steady state exactly.

We have further applied the methods to two Riemann problems with two-phase
CO2 flow, governed by a homogeneous equilibrium model (HEM) together with the
Peng–Robinson EOS. In the first test we find that HLLC+S has an unphysical be-
haviour at the area discontinuity. This is not present for the HLLCS solvers. We
show with the second test that it is possible to design a case in which HLLC+S
diverges whereas HLLCS does not. Finally, we have tested our best performing
method, HLLCS with FS, on a test with water vapour and compared our results to
other available solvers for the compressible duct flow equations. The result appears
reasonable.

Based on these results, HLLCS with FS holds promise as an accurate and robust
method to simulate various challenging transient two-phase flow problems. However,
HLLCS cannot be applied in cases of flow towards an expansion where the flow
becomes choked at the area discontinuity because such cases are resonant. This is
a limitation of HLLCS which should be improved upon if the solver is to be used
in general industrial applications. Future work includes the extension of HLLCS to
resonant flow, possibly by including a fifth wave in its solution, and the derivation
of higher-order HLLCS-based methods.
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Appendix A. Jacobian matrix of compressible duct flow

For smooth solutions, the compressible duct flow equations can be expressed as

U t + A(U)Ux = 0, (A.1)
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where A is the Jacobian matrix of the system. If the pressure is given by some
general equation of state (EOS), p = p(e, ρ) a small change in pressure, dp, can be
expressed as

dp =

(
∂p

∂ρ

)
e

dρ+

(
∂p

∂e

)
ρ

de = (c2 − Γ
p

ρ
) dρ+ Γρ de, (A.2)

where c is the speed of sound and Γ is the first Grüneisen parameter. Then A(U) is
given by Equation (A.3).

A =


0 1 0 0
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− 1

2
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(A.3)
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