
10th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries
SINTEF, Trondheim, NORWAY
17-19th June 2014

CFD 2014

EXTENDING A SERIAL 3D TWO-PHASE CFD CODE TO PARALLEL EXECUTION OVER MPI
BY USING THE PETSC LIBRARY FOR DOMAIN DECOMPOSITION

Åsmund ERVIK1∗, Svend Tollak MUNKEJORD2†, Bernhard MÜLLER1‡

1NTNU Department of Energy and Process Engineering, NO-7491 Trondheim, NORWAY
2SINTEF Energy Research, P.O. Box 4761 Sluppen, NO-7465 Trondheim, NORWAY

∗ E-mail: asmund.ervik@ntnu.no
† E-mail: svend.t.munkejord@sintef.no
‡ E-mail: bernhard.muller@ntnu.no

ABSTRACT

To leverage the last two decades’ transition in High-
Performance Computing (HPC) towards clusters of compute
nodes bound together with fast interconnects, a modern
scalable CFD code must be able to efficiently distribute work
amongst several nodes using the Message Passing Interface
(MPI). MPI can enable very large simulations running on very
large clusters, but it is necessary that the bulk of the CFD code
be written with MPI in mind, an obstacle to parallelizing an
existing serial code.

In this work we present the results of extending an existing
two-phase 3D Navier-Stokes solver, which was completely
serial, to a parallel execution model using MPI. The 3D Navier-
Stokes equations for two immiscible incompressible fluids
are solved by the continuum surface force method, while the
location of the interface is determined by the level-set method.

We employ the Portable Extensible Toolkit for Scientific
Computing (PETSc) for domain decomposition (DD) in a
framework where only a fraction of the code needs to be
altered. We study the strong and weak scaling of the resulting
code. Cases are studied that are relevant to the fundamental
understanding of oil/water separation in electrocoalescers.

Keywords: Parallelization, Oil/water separation, Surfact-
ants and interfaces, Bubble and droplet dynamics .

NOMENCLATURE

µ Dynamic viscosity of a fluid. Pa·s
ν Kinematic viscosity of a fluid. m2/s
ρ Density of a fluid. kg/m3

f External acceleration. m/s2

u(x) Velocity field of a fluid. m/s
p(x) Pressure of a fluid. Pa
κ Curvature of the interface. 1/m
σ Coefficient of surface tension. N/m
n Time step index.
Re Reynolds number.

INTRODUCTION

In 1965GordonMoore famously predicted that transistor
density (and hence computing power for a given chip)
would double each year in the foreseeable future (Moore,
1965). Dubbed Moore’s law, this trend continued to

hold for roughly 40 years and meant that life was easy
for people needing greater and greater computational
power. While serious High-Performance Computing
(HPC) was dominated in most of this period by
vector machines like the seminal Cray 1, by the mid-
1990s clusters of many interconnected scalar CPUs had
become a cheaper solution, leading to the industry-wide
adoption of distributed memory architectures.

Around 2005 Moore’s law finally started hitting a
barrier when the high heat production of chips and,
somewhat later, the diffraction limits for photolitography
began forcing chip makers to alter their ways. Two
complementary solutions were introduced, namely
shared-memory architectures (multi-core CPUs) and
vector instruction sets (SSE, AVX, FMA)1. Both solutions
were adopted in HPC, leading to hybrid shared-
memory/distributed-memory systems. In the last five
years accelerator technologies (GPGPU, MIC)2 have
furthered the return to vector processing, so HPC has
in a sense come full circle. All in all this gives a very
heterogeneous environment for HPC where the onus is
on the application programmer to ensure that his/her
code can make the most of the available resources.

In contemporary numerical codes, omitting here
the use of accelerators, the two main programming
paradigms for leveraging parallelism are OpenMP and
MPI. OpenMP takes advantage of shared-memory
architectures, while MPI can use distributed-memory
architectures. On current systems, OpenMP can scale
from 1 to 32 cores, while MPI can scale to thousands
and even millions of cores. This means that MPI is the
paradigm of choice for HPC, possibly in combination
with OpenMP used by each MPI process.

We will use the following nomenclature when
discussing parallelism: a “process” is one MPI rank
which is executing code. A CPU has several “cores”,
each of which may execute a process. The CPUs are
located on “nodes”, e.g. a desktop computer or a blade
in a cluster. Typical cluster nodes have 2 (or more) CPUs,
each having a separate “socket” connecting the CPU to

1SSE: Streaming SIMD Extensions. AVX: Advanced Vector
Extensions. FMA: Fused Multiply-Add.

2GPGPU: General-Purpose Graphics Processing Unit. MIC: Many
Integrated Core.

1

Å. Ervik, S. T. Munkejord, B. Müller

thememory (RAM). Each socket has one communication
channel to memory shared by all cores on this socket.
Many nodes can communicate over the “interconnect”,
which should preferrably be very fast and have very low
latency.

This paper will focus on the use of MPI to port an ex-
isting serial implementation of a 2D/3D incompressible
Navier-Stokes solver. This code can simulate two-phase
flows relevant e.g. for the fundamental understanding
of oil/water separation, but for 3D cases the runtime
is very long (weeks and months). The majority of this
runtime is due to the solution of a Poisson equation
for the pressure, and state of the art algorithms for
this problem are bound by the memory bandwidth
rather than CPU speed. This makes OpenMP a poor
solution in this case and leaves MPI as the necessary
paradigm for parallelism. We will employ the PETSc
library, specifically the DMDA component, to do domain
decomposition. The solution of the Poisson equation
is also done using PETSc routines. We establish a
framework in Fortran where it is possible to reuse the
existing serial code.

The rest of this paper is organized as follows: in the
next section, the basic equations are established, after
which the numerical methods are presented. Then we
describe the framework and the specific changes that
were needed to port the serial code. Computations
performed with the resulting code are discussed and
we study the strong and weak scaling on several
architectures. Finally some closing remarks are given.

MODEL DESCRIPTION

The equations that govern the two-phase flow system
under consideration are the incompressible Navier-
Stokes equations:

∇ · u = 0 (1)
∂u

∂t
+ (u ·∇)u = −∇p

ρ
+
µ

ρ
∇2u + f (2)

These equations are valid for single-phase flow. To
extend this formulation to two-phase flowwe keep these
equations in each of the two phases, where the densities
and viscosities are constant in each phase. We will
restrict ourselves to laminar flow, as we are interested in
situations with Reynolds numbers Re ∼ O(1).

Across the interface between the fluids, a jump in
the normal component of the traction vector will arise
due to the surface tension σ, and this jump together
with effects of the jump in density and viscosity must be
added to our equations. We introduce these effects using
the continuum surface force method (CSF) (Brackbill
et al., 1992). The location of the interface is captured
using the level-set method (LSM) (Osher and Sethian,
1988; Osher and Fedkiw, 2001), see Ervik et al. (2014) for
a detailed description, we provide only a short outline
here.

The level-set method is a method for capturing the
location of an interface. It is widely used not just
for multi-phase fluid flow but also in other contexts
where an interface separates two regions. The interface
is represented by a level-set function φ(x) which is

equal to the signed distance to the interface. In other
words, the interface is given by the zero level set
{x |φ(x) = 0}, hence the name. Rather than advecting
the interface location, one advects the function φ(x)
directly according to the transport equation

∂φ

∂t
= −u ·∇φ (3)

giving an implicit formulation that automatically
handles changes in interface topology.

The level-set method can be visualized as in Fig. 1
for a 2D fluid flow with a drop next to a film, seen on
the right-hand side in this figure as gray shapes. The
distance is shown as isocontour lines superimposed on
these shapes. On the left-hand side the level-set function
is shown visualized in 3D as surfaces where the height
above water corresponds to the signed distance. The
analogy to a map describing an island rising out of the
water is quite striking, except that the roles of “reality”
and “tool for description” have been reversed.

Figure 1: Illustration of the level-set method. Right: in
2D, a fluid drop (dark gray) seen next to a fluid film
(dark gray), both immersed in a different fluid (white).
Left: the signed-distance function representing these
two fluid bodies, the drop and the film.

When the location of the interface is known, the
curvature κ can be calculated from φ, and together with
σ this gives the surface tension force. In the CSF method
this force is incorporated as a volume-force term which
is non-zero only in a thin band around the interface. This
thin band is producedby smearing out the delta function,
making the force term continuous For such a smeared-
out delta function, we can compute the volume-force
term at a point x close to the interface as

fs(x, t) =

∫
Γ

fsfd(s, t)δ(x− xI(s))ds, (4)

where fsfd is a surface-force density and xI(s) is a
parametrization of the interface. The surface-force
density is such that the integral of fs(x, t) across
the (smeared-out) interface approximates the surface
tension force, see Brackbill et al. (1992) for details.
Note that in the level-set context it is not necessary to
parametrize the interface since φ(x) stores the distance
to the interface, so we have x − xI(s) = φ(x) as long
as φ(x) is a signed distance function. There are several
ways to smear out the delta function, we follow Osher

2

Extending a serial 3D two-phase CFD code to parallel execution over MPI by using the PETSc library for domain decomposition/ CFD 2014

and Fedkiw (2003, Eq. 1.23),

δ(x) =

{
0 if |φ| > ε
1
2ε

(
1 + cos

(
πφ
ε

))
else

(5)

where ε = 1.5∆x is employed. This one-dimensional
delta function is composed into the three-dimensional
version by taking δ(x) = δ(x)δ(y)δ(z).

This formulation leads to a source term which
incorporates the effects of surface tension. It is
also necessary to smear out the viscosity and density
differences across the interface in order to be consistent
with the above formulation. A smeared-out Heaviside
functionH(x) is used to accomplish this, given by Osher
and Fedkiw (2003, Eq. 1.22) as

H(x) =

0 if φ < −ε
1
2

(
1 + φ

ε + 1
π sin

(
πφ
ε

))
if − ε < φ < ε

1 if φ > ε

(6)

NUMERICAL METHODS

To discretize the Navier-Stokes equations and the
equations for the level-set method we employ finite
difference methods, specifically WENO (Liu et al., 1994)
for the convective terms and central differences for the
viscous terms in Eq. (2), and WENO also for Eq. (3). The
time integration is done with an explicit second-order
Runge-Kutta method (SSPRK (2,2) in the terminology of
Gottlieb et al. (2009)) for both Eq. (2) and Eq. (3).

The grid is a structured rectangular uniform
staggered grid. A staggered grid is employed to
avoid checkerboarding of the pressure field; this
means that the pressure and other scalars “live” at cell
centers, while the velocities “live” at the cell faces. To
be more precise, if we have a pressure at one point
pi,j,k, the velocities (u, v, w) around this point are
ui±1/2,j,k, vi,j±1/2,k, wi,j,k±1/2 located at the 6 cell faces.
In the actual code we store the velocity values for
ui+1/2,j,k, vi,j+1/2,k, wi,j,k+1/2 at the index (i,j,k)
even though these values are not physically colocated.

The major problem when solving Eqs. (1) and (2)
is that this is not a set of PDEs, it is a differential-
algebraic equation (DAE) with a Hessenberg index of
two. In otherwords, even thoughwe have four equations
(Eq. (2) is three equations) and fourunknowns (u, v, w, p),
Eq. (1) cannot be used directly to find p. The first
solution to this conundrum was presented by Chorin
(1968). This method can be understood as calculating
an approximate velocity field u∗ which does not satisfy
Eq. (1), and subsequently projecting this velocity field
onto the manifold of vector fields satisfying Eq. (1).
For this reason, the method is often called Chorin’s
projection method or simply the projection method. It
consists of these three steps, where we calculate three

quantities successively, namely u∗, pn+1,un+1:

u∗ − un
∆t

= − (un ·∇)un + ν∇2un (7)

∇2pn+1 =
ρ

∆t
∇ · u∗ (8)

un+1 = u∗ − ∆t

ρ
∇pn+1 (9)

The pressure Poisson equation (8) that arises here is
elliptic, so the numerical solution is very time consuming
and a vast amount of research has gone into developing
fast solvers. For two-phase flows with high density
differences, the condition number of the matrix that
results when Eq. (8) is discretized will make matters
even worse than for the single-phase problem (Duffy
et al., 2002). This matrix is very large even in sparse
storage formats, for a 2563 grid it has 117 million non-
zero elements. The current state-of-the-art consists
in combining a (geometric or algebraic) multigrid
preconditioner with a conjugate gradient method (often
BiCGStab) for solving the resulting sparse linear system.
Our experience with 2D axisymmetric simulations
suggests that the Bi-Conjugate Gradient Stabilized
method (van der Vorst, 1992) with the BoomerAMG
preconditioner (Henson and Yang, 2000) is an optimal
choice. For the simulations performed here, however,
the straigth-forward successive over-relaxation (SOR)
preconditioner turned out to be faster than BoomerAMG.
This has not been investigated in greater detail. We
employ the PETSc andHypre libraries for thesemethods
(Balay et al., 2014; hypre , 2014).

We note also that the boundary conditions for Eq. (8)
are of pure Neumann type (unless e.g. an outlet
pressure is specified), which results in a singular matrix.
These boundary conditions arise from the projection
methodandare notphysical. The common “engineering”
approach of fixing the singularity, simply fixing the
pressure at some point in the domain, is not a very
good approach as it may pollute the spectrum of the
preconditioner. Instead, projecting the discretized
singular equation into the orthogonal complement of
the null space of the singular matrix seems to be a
good solution (Zhuang and Sun, 2001). In other words,
for Ax = b, we construct the Krylov operator K =
(I−N)P−1A such that b,Kb,K2b, ... is orthogonal to the
null space N. Here I is the identity matrix, so (I−N)P−1

is the desired projection. In the PETSc library that we
employ here (Balay et al., 2014), this is achieved using
the KSPSetNullSpace() routine.

PARALLELIZATION

The starting point for the parallelization was an in-house
code consisting of a 2D/3D Navier-Stokes solver and a
multi-physics framework that enables the simulation
of two-phase flows with the possibility of applying
electric fields, and/or adding surface-active agents to
the interface. The interface between the two phases is
captured using a level-set method, so interfaces with
changing topology such as two merging drops can be
simulated. The code has been successfully applied to
the study of both liquid-liquid (Teigen and Munkejord,

3

Å. Ervik, S. T. Munkejord, B. Müller

2010) and liquid-gas systems (Ervik et al., 2014), but the
long runtime has restricted its use to 2D axisymmetric
cases so far.

The PETSc DMDA framework for domain decom-
position was chosen as the main methodology for
parallelizing the code. Domain decomposition consists
in splitting the whole domain into subdomains which
are each distributed to one MPI node. Each node then
has a computational domain with some internal cells
where the flow is computed, and some ghost cells which
represent either boundary conditions or values that
belong to neighbouring domains. This means that
regular communication between the nodes is necessary
such that all ghost cells have correct values. Such a
splitting is shown in Fig. 2 below. Neglecting for a
moment the pressure Poisson equation, this approach
can scale well tomillions of CPU cores, see e.g. Rossinelli
et al. (2013) for an example in compressible flow.

By using the PETSc DMDA framework we can avoid
the gritty details of domain decomposition and MPI
programming. At the initialization of the code, some
routines are called to set up three DMDAs which are
objects that manage the decomposition. Using these
objects we input how large our computational domain
should be in terms of grid points, and the library decides
an optimal decomposition at runtime depending on the
number of MPI processes the code is run with. We also
specify the physical dimensions of our uniform grid,
and the library returns the physical dimensions for each
subdomain.

This framework is very convenient, but one enhance-
ment wasmade to further facilitate the reuse of the serial
code. In the standard PETSc framework, the local work
arrays that represent the solution on a given subdomain
and the values in the ghost cells are indexed using
the global indices. The existing code naturally expects
indices that go from 1 to the maximum value imax. In
Fortran, the bounds of an array may be re-mappedwhen
the array is passed to a subroutine, and this feature was
used to ensure that each local work array had bounds
as expected by the serial code. Thus we will use imax as
the final i index on each subdomain in the following.

With this enhancement, the only thing that had to
be re-written in the original code was the handling of
the staggered grid for the velocity. In the formulation
used here, we have one less point for e.g. u in the x
direction, since these values are located at the cell faces.
In the serial code this is handled by not solving for u
at the point imax. In the parallel version, u at the point
imax should however be solved for on those processes
that are not at the actual boundary but where there is a
neighbouring process in the positive x-direction.

Furthermore, this means that a communication step
is also necessary in the projection method. After the
pressure has been calculated from the Poisson equation,
we calculate e.g. the x-component of ∇p at the cell
face corresponding to u at imax. Numerically this
is (p(imax+1) - p(imax))/dx, so the ghost value at
imax+1must be updated before this calculation for those
subdomains where p(imax+1) represents a pressure
value on another subdomain and not a boundary
condition.

Returning to the pressure Poisson equation Eq. (8),
the elliptic nature of this equation means that, in some
sense, all nodes must communicate during the solution.
A further reduction in speedup potential is due to the
fact that the solvers for this equation aremostly bound by
memory bandwidth, which is shared amongst all cores
on amodernCPU. These limits imply thatwemust lower
our expectations somewhat in comparison with the
impressive results mentioned earlier for compressible
flows.

In the DMDA framework, the Poisson equation is
set up such that each process computes its own portion
of the matrix and right-hand side vector. This is the
only scalable way of solving it, even when sparse storage
formats are used.

RESULTS

Manufactured solution case

After the code had been parallelized it was tested using
a manufactured solution (Roache, 2002) inspired by that
used in John et al. (2006). The debugging tool Valgrind
(Nethercote and Seward, 2007; Nethercote et al., 2014)
was used in the memory checking mode to ensure that
the code does not e.g. make use of uninitialized values, a
common programming error. When all such errors were
fixed, the codewas used to solve the single-phaseNavier-
Stokes equations with the following exact solution used
as an initial – boundary value problem on a (1.0 m)3
domain, where the origin is in the lower left front corner
(cf. Fig. 2).

u = t3yz

v = t2xz

w = txy

p = x+ y + z − 1.5

(10)

Figure 2: The computed solution after 0.031 s (100 time
steps) on a 1283 grid run on 8 processors. The blocks
show the decomposition of the domain, the pressure
field is shown superimposed on these blocks, and the
streamlines illustrate the flow.

4

Extending a serial 3D two-phase CFD code to parallel execution over MPI by using the PETSc library for domain decomposition/ CFD 2014

Insertion into Eq. (1) confirms that this solution is
divergence free, and the resulting body force can be
computed by inserting Eq. (10) in Eq. (2). In order
to minimize the risk of human error, this was done
symbolically using Maple, the resulting expression was
copied into the Fortran code and regular expressions
were used to convert Maple syntax into Fortran. A
plot of the computed solution is shown in Fig. 2. Here
the velocity streamlines are shown together with the
pressure field which has been superimposed on blocks
representing the parallel decomposition.

Convergence

Using the manufactured solution in Eq. (10), the
convergence under grid- and time step refinement, as
well as the strong and weak scaling, was tested on the
Kongull cluster at NTNU. This cluster has dual-socket
nodes with Intel Xeon E5-2670 8-core CPUs and a 1
Gb/s Ethernet interconnect. The STREAM benchmark
(McCalpin, 2014, 1995) was run on one core and gave an
effective memory bandwidth of 9800 MB/s for the Triad
test3.

To test the grid- and time step refinement, a base case
was selected with a 2563 grid, giving a grid spacing dx
of 3.91 · 10−3 m, the CFL condition following Kang et al.
(2000) with a CFL number of 0.5 then giving a time step
of 1.28·10−4 s. This case was solved for 100 time steps, as
were solutions on coarser grids 1283 and 643 computed
with the same time step. All simulations were run on 32
processes (8 nodes with 4 processes each). Subsequently,
the same cases were run but with 1/2, 1/4 and 1/8 the
time step using 200, 400 and 800 time steps, respectively.
The results are shown in Fig. 3.

It is seen that the convergence behaviour is as
expected. First of all, the temporal order is 1 (not 2) due to
an irreducible splitting error from the projectionmethod.
This can be overcome e.g. by using the incremental
pressure form (see Guermond et al. (2006) for a review of
projection methods), but has not been considered in this
work. Second, the grid refinement does not influence
the error. This is due to the fact that the velocity field is
linear in space, so the error is completely dominated by
the temporal order.

Strong scaling

To test the strong scaling of our code, i.e. how simulating
a given case speeds up when more processes are used, a
1283 grid was used giving a grid spacing dx of 7.81 ·10−3

m, the CFL condition giving a time step of 3.10 · 10−4 s.
The solution was computed for 100 time steps. Since the
Poisson solver performance should be bound bymemory
bandwidth, the test was made using 2 processes per
node (one per socket) and several nodes. The resulting
speedup relative to one process is shown in Fig. 4. In this
figure, the black points indicate the speedup compared
to running on one process. The scaling seen is quite
good, but as expected lower than the theoretical linear
scaling. It is seen that the peak memory usage (orange)
increases slightly with more processes.

3The Triad test consists of repeated computations of the operation
a(i)=b(i)+q*c(i) where q is constant and i is incremented.

10−6

10−5

10−4

10−3

10−2

104 105

||u
n
−
u
|| ∞

∆t−1

O(∆t)

10−6

10−5

10−4

10−3

10−2

104 105

||v
n
−
v
|| ∞

∆t−1

O(∆t)

10−6

10−5

10−4

10−3

10−2

104 105

||w
n
−

w
|| ∞

∆t−1

O(∆t)

643
1283
2563

643
1283
2563

643
1283
2563

Figure 3: Time step and grid refinement on 32 processes.
Top to bottom: u, v andw velocities. Themaximum error
of the solution, e.g. ||un − u||∞ is plotted against the
inverse of the time step. Here un denotes the numerical
solution at time step nwhile u denotes the exact solution
at this time.

0
2
4
6
8

10
12
14

12 4 8 16 32

-20 �

0 �

20 �

40 �
0 2 4 6 8 10121416182022242628303234

Sp
ee

du
p

R
el

at
iv

e
in

cr
ea

se

processes

Peak RAM usage
Measured speedup

Speedup, 1 node

Figure 4: Strong scaling: with the left-hand-side y-axis,
measured (black and magenta) and the optimal (dotted
gray) speedup plotted against the number of processes.
With the right-hand-side y-axis, increase in memory use.

5

Å. Ervik, S. T. Munkejord, B. Müller

To investigate the hypothesis that using only 2
processes per node and several nodes is better than using
many processes on one node, we also tried running
with 8 and 16 processes on one node. These results are
plotted in magenta in Fig. 4 and confirm the hypothesis.
We can conclude that even on this particular cluster
with a slow (by HPC standards) interconnect, the added
memory bandwidth afforded by using more nodes
(thus more sockets) outweighs the penalty of increased
communication between nodes. This also indicates that
the results for 2 processes per node are bound by the
interconnect speed, such that the speedup would be
closer to the optimal (linear) scaling when run on a more
tightly-coupled cluster.

Weak scaling

The weak scaling of the code was also studied. The base
case was the same manufactured solution on a (0.5 m)3
domain resolved with a 643 grid, run on one process.
Then a (0.5m)2×(1.0m) domainwith a 642×128 gridwas
solved with two processes, a (0.5 m)×(1.0 m)2 domain
with a 64×1282 grid was solved on 4 processes, etc. In
this way, the number of grid points and the number
of processes are both increased proportionally. The
equations were solved for 50 time steps, and the results
are shown in Fig. 5.

0

200

400

600

800

1000

1200

1 2 4 8

W
al

lt
im

e
(s

)

CPUs (-)

Measured

Figure 5: The weak scaling of the code as the number
of processes and the number of grid points are both
increased proportionally.

As is seen in this figure, there is obviously a
performance hit initially; the perfect behaviour would
be a flat line. This is as expected. When going from 1 to
2 processes, we go from no communication to overhead
from communication. Furthermore, when going from 2
to 4 processes, there is the added overhead of intra-node
communication, as opposed to the case with 2 processes
where the communication is not over the network but
over the CPU bus. The weak scaling seen here is quite
decent. One should also be aware that it is more difficult
to ensure that cases are “equivalently hard” for weak
scaling than for strong scaling (Aagaard et al., 2013).

Two-phase results

As an initial test of the two-phase capabilities of the
parallelized code, the CSF method was employed to
simulate a 2 cm diameter drop with properties ρ1 =

2 kg/m3, µ1 = 0.01 Pa s falling through a bulk fluid
with properties ρ2 = 1 kg/m3, µ2 = 0.05 Pa s. The
interfacial tension was set to σ = 0.01 N/m. The domain
was (10 cm)3 resolved by a (128)3 grid, the simulation
was run on 8 processes for 33900 time steps up to t =
0.01 s. The drop has not yet achieved a substantial falling
velocity, so the spurious currents are quite visible. The
result is shown in Fig. 6, where the drop is shown with
the pressure superimposed on the surface, streamlines
indicating the flow. A plane is shown intersecting the
centre of the drop, on this plane the pressure field,
velocity field and level-set function contour lines are
shown. A reference vector is shown on the right.

Figure 6: The falling drop after a short time (0.01 s). The
pressure field is shown superimposed on the surface,
and on the plane behind the drop. On this plane
the velocity field and the level-set isocontours are also
shown. Streamlines indicate the velocity field.

Spurious currents is a well-known challenge with
the CSF method, and experience with the 2D serial code
has led us to prefer the ghost-fluidmethod (GFM) (Kang
et al., 2000), which is somewhat more complicated to
implement. This was not done within the scope of this
paper. Nevertheless, this demonstrates that the parallel
code is capable of two-phase fluid simulations with both
density- and viscosity-jumps.

CONCLUSIONS

In this paper we have discussed the parallelization
of an existing serial 3D incompressible Navier-Stokes
solver for two-phase flow. The PETSc DMDA domain
decomposition framework has been leveraged to apply
MPI parallelism, enabling the code to make use of
modern HPC facilites. We have discussed the alterations
that were necessary for the serial code and established a
framework where these were as few as possible.

Based on this code, we have reported the strong and
weak scalings for a manufactured-solution case on a
cluster with dual-socket nodes and 1 Gb/s Ethernet
interconnect. It is seen that the code scales rather

6

Extending a serial 3D two-phase CFD code to parallel execution over MPI by using the PETSc library for domain decomposition/ CFD 2014

well, but that one should take care to maximize the
number of sockets used, since the Poisson solver is
bound by memory bandwidth. If this code is run on a
cluster simultaneously with CPU-bound parallell codes
(e.g. using Monte Carlo methods), sensible resource
allocation would benefit from taking the available
memory bandwidth into account. Then it would not
be optimal to allocate all cores on N nodes to this code,
but rather e.g. 50% of the cores on 2N nodes, while a
CPU-bound code could effectively utilize the remaining
50% of the cores.

The speedup seen in the strong scaling test (13x
faster on 32 processes) is sub-linear but does not level-
off. Together with the possibility of running on more
tightly-coupled clusters where the behaviour should be
closer to linear, and using more than 32 cores, this will
give a substantial speedup and reduce the runtimes of
weeks andmonths for the serial code to something more
managable, i.e. a few days or less.

Initial tests demonstrate that the code is able simulate
two-phase flow, but the ghost-fluid method (GFM)
should be used instead of the CSF method currently
employed, in order to minimize the spurious currents.

This effort has left uswith a code that scales quitewell
and a framework where the remaining multi-physics
components can easily be introduced. In the end this
will enable future simulations of full 3D cases relevant for
the fundamental understanding of electrocoalescence.

ACKNOWLEDGEMENT

We would like to thank Matthew Knepley, Barry Smith
and JedBrown of the PETSc project foruseful discussions
around the framework employed here.

This work was funded by the project Fundamental
understanding of electrocoalescence in heavy crude oils
coordinated by SINTEF Energy Research. The au-
thors acknowledge the support from the Petromaks
programme of the Research Council of Norway (206976),
Petrobras, Statoil and Wärtsilä Oil & Gas Systems.

REFERENCES

AAGAARD, B.T. et al. (2013). “A domain
decomposition approach to implementing fault slip
in finite-element models of quasi-static and dynamic
crustal deformation”. J. Geophys. Res.: Solid Earth, 118(6),
3059–3079.
BALAY, S. et al. (2014). “PETSc Web page”. http:

//www.mcs.anl.gov/petsc.
BRACKBILL, J. et al. (1992). “A continuum method

for modeling surface tension”. J. Comput. Phys., 100(2),
335–354.
CHORIN, A.J. (1968). “Numerical solution of the

Navier-Stokes equations”. Math. Comput., 22(104), 745–
762.

DUFFY, A. et al. (2002). “An improved variable density
pressure projection solver for adaptive meshes”. Un-
published. See http://www.math.fsu.edu/~sussman/
MGAMR.pdf.
ERVIK, Å. et al. (2014). “A robust method for

calculating interface curvature and normal vectors using
an extracted local level set”. J. Comput. Phys., 257, 259–
277.

GOTTLIEB, S. et al. (2009). “High order strong
stability preserving time discretizations”. J. Sci. Comput.,
38(3), 251–289.
GUERMOND, J. et al. (2006). “An overview of

projection methods for incompressible flows”. Comp.
Meth. Appl. Mech. Eng., 195(44), 6011–6045.
HENSON, V.E. and YANG, U.M. (2000).

“BoomerAMG: a parallel algebraic multigrid solver and
preconditioner”. Appl. Numer. Math., 41, 155–177.

hypre (2014). High Performance Preconditioners.
Lawrence Livermore National Laboratory. http://www.
llnl.gov/CASC/hypre/.
JOHN, V. et al. (2006). “A comparison of

time-discretization/linearization approaches for the
incompressible Navier–Stokes equations”. Comput.
Meth. Appl. Mech. Eng., 195(44), 5995–6010.
KANG, M. et al. (2000). “A boundary condition

capturing method for multiphase incompressible flow”.
J. Sci. Comput., 15(3), 323–360.
LIU, X.D. et al. (1994). “Weighted essentially non-

oscillatory schemes”. J. Comput. Phys., 115(1), 200–212.
MCCALPIN, J.D. (1995). “Memory bandwidth

and machine balance in current high performance
computers”. IEEE Computer Society Technical Committee
on Computer Architecture (TCCA) Newsletter, 19–25.

MCCALPIN, J.D. (2014). “STREAM web site”. http:
//www.cs.virginia.edu/stream/.

MOORE, G. (1965). “Cramming more components
onto integrated circuits”. Electronics, 38(8).
NETHERCOTE, N. and SEWARD, J. (2007).

“Valgrind: a framework for heavyweight dynamic binary
instrumentation”. ACM Sigplan Notices, vol. 42, 89–100.

NETHERCOTE, N. et al. (2014). “ValgrindWeb page”.
http://valgrind.org/.
OSHER, S. and FEDKIW, R.P. (2001). “Level set

methods: An overview and some recent results”. J.
Comput. Phys., 169(2), 463 – 502.

OSHER, S. andFEDKIW, R.P. (2003). Level Set Methods
and Dynamic Implicit Surfaces. Springer, Berlin.
OSHER, S. and SETHIAN, J.A. (1988). “Fronts

propagating with curvature-dependent speed: Al-
gorithms based on Hamilton-Jacobi formulations”. J.
Comput. Phys., 79(1), 12 – 49.
ROACHE, P.J. (2002). “Code verification™ by the

method of manufactured solutions”. ASME J. Fluids
Eng., 124(1), 4–10.
ROSSINELLI, D. et al. (2013). “11 PFLOP/s

simulations of cloud cavitation collapse”. SC, 3.
TEIGEN, K.E. and MUNKEJORD, S.T. (2010).

“Influence of surfactant on drop deformation in an
electric field”. Phys. Fluids, 22(11). Article 112104.

VANDER VORST, H. (1992). “Bi-CGSTAB: A fast and
smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems”. SIAM J. Sci. Comput.,
13(2), 631–644.

ZHUANG, Y. and SUN, X.H. (2001). “A high-order
fast direct solver for singular Poisson equations”. J.
Comput. Phys., 171(1), 79 – 94.

7

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.math.fsu.edu/~sussman/MGAMR.pdf
http://www.math.fsu.edu/~sussman/MGAMR.pdf
http://www.llnl.gov/CASC/hypre/
http://www.llnl.gov/CASC/hypre/
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://valgrind.org/

	Introduction
	Model Description
	Numerical methods
	Parallelization
	Results
	Manufactured solution case
	Convergence
	Strong scaling
	Weak scaling
	Two-phase results

	Conclusions
	Acknowledgement

