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Abstract
One challenge in CCS is related to the prevention of running-ductile fracture in CO2-carrying pipelines. Commonly
used tools for ensuring crack arrest in pipelines hinge mainly on semi-empirical models, which may not be appropriate
for CO2 transport since they have been developed and fitted for natural gas and older pipeline materials, and due to an
assumed decoupling of the fluid decompression and fracture propagation phenomena. In this paper, we apply a coupled
fluid-structure model to a case with pure dense liquid CO2 in a modern high-toughness steel pipeline, and compare the
results one would obtain from directly applying the uncoupled models to the same case without any re-fitting to test
data. For this case, the coupled model indicates that a significantly thicker pipeline wall may be required to prevent
running-ductile fracture than what is predicted by the uncoupled models. Therefore, using the uncoupled models for
such cases might not be conservative.
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1. Introduction

CO2 capture and storage (CCS) is considered to be an important and necessary means of reducing the
world’s emission of greenhouse gases. In the International Energy Agency’s two-degree scenario (2DS),
CCS will account for a CO2-emission reduction of about 7 Gt per year in 2050 [1]. For the construction
of future CCS pipelines, thorough considerations will be needed regarding health, safety and environment
(HSE), including pipeline integrity. Furthermore, for economic reasons, it is desirable to reduce oversizing
and the use of expensive material qualities. A running-ductile fracture in a high-pressure transport pipeline
could be initiated by e.g. corrosion or third-party damage. If this happens, an important question is whether
and after how long time the fracture will arrest by itself (self-arrest), or if the fracture will keep running
indefinitely.

To answer the question whether a fracture will propagate or not, requires solving a coupled fluid-
structure problem [2]. The initial depressurization due to the leak or fracture will cause fluid flow out
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of the pipe, as well as two depressurization waves propagating in opposite directions from the tips of the
opening fracture. The pressure waves move relative to the pipeline at a speed equal to the difference between
the local speed of sound and the local fluid speed. This couples to the fracture propagation speed, as this
speed is mainly controlled by pressure distribution on the opening pipe. Thus, the crack-arrest question
boils down to deciding which one of the two propagates the fastest. If the decompression wave is faster than
the propagating fracture, the pressure at the fracture will decrease, and the fracture will eventually arrest. If
the running fracture is faster than the decompression speed, the pressure distribution at the fracture will be
sufficiently high to drive the fracture, and the fracture will not self-arrest.

The most commonly used models for this crack-arrest problem are semi-empirical uncoupled models,
such as in the Battelle method [3] and the HLP approach [4]. These models are based on theoretical analysis
and full-scale crack-arrest experiments. In the standard codes for gas transmission pipelines (see [5]) the
requirements for crack arrest are estimated by the use of these models. They all rely on the fundamental
assumption that the decompression wave speed may be uncoupled from the fracture velocity. The com-
monly employed uncoupled models were developed for pipeline material qualities used 30–40 years ago for
transport of natural gas, and worked well in those cases. Due the economical benefits of transporting gas at
higher pressures and volumes, the trend seen today is to use pipelines with higher strength and toughness,
as well as lower pipe-wall thicknesses. The high toughness of these steels yields a different relationship
between the fracture toughness and the fracture velocity, and hence an under-estimate of the fracture velo-
city as measured in full scale burst tests [6]. There are strong indications that the empirical basis developed
earlier (Battelle and HLP) does not apply to these new conditions in the case of CO2 transport [6].

As mentioned in the review by Aursand et al. [7], there are several research challenges when it comes to
the fluid- and thermodynamical modelling of transient flow of CO-rich mixtures in pipelines. Of particular
relevance for the present study is the fact that even small quantities of some impurities can significantly alter
the thermophysical properties of the fluid, including the phase envelopes. The presence of impurities will
also affect the wave-propagation velocities of the model [8]. Further, for two-phase and multiphase flow,
the speed of sound is not only a thermodynamic state function, but it is also a function of the flow topology.
These quantities will affect the depressurization of the pipe and hence the crack-propagation behaviour.

In [9, 10], we presented a fully coupled fluid-structure model for the assessment of running-ductile frac-
ture. Herein, the fluid flow was modelled as one-dimensional inside the pipe and through the crack opening.
The ideal-gas equation of state (EOS) was employed for the fluid. The pipe was modelled using the finite-
element method with shell elements and a local ductile fracture criterion. The model was validated using
data from full-scale tests with steel pipes pressurized with hydrogen and with methane. Good agreement
was found between model predictions and experiments, both regarding the pressure and the crack position
as a function of time. In [11], the model was augmented with the Span–Wagner reference EOS [12], and
the formation of solid CO2 was accounted for. Experimental data were not available for comparison, but the
calculations indicated that a pipeline may be more susceptible to running-ductile fracture when filled with
CO2 than when filled with natural gas.

In this work, the goal is to examine the differences between the predictions of the fully coupled model
and the traditional uncoupled models. This is done by defining a single case with parameters in a realistic
range, and using the pipeline wall thickness as the design variable which must be chosen such as to pre-
vent running-ductile fracture. The models are compared in terms of arrestability, which is defined here
as the fracture propagation length for a given pipeline thickness. This is similar to the arrestability cri-
terion proposed in [13], only with pipeline thickness as the design variable instead of steel toughness. The
most crucial number found is the arrest threshold thickness, which is the thickness at the threshold between
fracture arrest (finite fracture length), and running fracture (infinite fracture length).

The uncoupled and coupled models will be presented in Sec. 2 and 3, respectively. The selected test
case for the comparison is then defined in Sec. 4, before the results are presented and discussed in Sec. 5.
Finally, conclusions are drawn in Sec. 6.
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Table 1: Quantities in (1) and (2) which depend on the model used.

Battelle HLP (original) HLP (Sumitomo)

α C α0 α0
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D0t0

) 1
4
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)3
]−1

R f CVP/A Dp/Ap Dp/Ap

2. Uncoupled two-curve models

Methods such as that of Battelle [3] and HLP [4] rely on the fundamental assumption that the decom-
pression wave speed may be uncoupled from the fracture velocity. This means that the decompression wave
speed is calculated for an ideal decompression event (full-bore opening in pipe) without the presence of a
running fracture. The fracture speed is calculated as a simple function of the pressure at the fracture tip,
the pipe geometry and properties of the pipe material used. No interaction between the pipe material and
the fluid is taken into account. The above considerations are often turned into decompression speed versus
pressure curves (hence two-curve methods), where it is said that the fracture will self-arrest if the fracture
speed is lower than the decompression speed for all pressures.

2.1. Fracture-velocity models

In the 1970s, the Battelle Memorial Institute proposed such an uncoupled model [3, 14], based on the
Charpy test as a toughness measure. This model was elaborated by the High Strength Line Pipe (HLP)
Committee [4, 15], and again extended with more parameters in the form of the Sumitomo version [13].
These models appear in a variety of forms in the literature, due to differing systems of units and various
merging of variables and constants. Though it might not appear so at first sight, all the above uncoupled
models may in fact be unified to the same form, where the fracture velocity is given by

v f (p) = α
σ̄√
R f

(
p
pa
− 1

)β
, (1)

with the arrest pressure given by

pa = γ ·
2tσ̄

3.33πR
arccos

[
exp

(
−

πR f E

24σ̄2
√

Rt

)]
. (2)

Here σ̄ (Pa) is the material flow stress, R f (J/m2) is the fracture toughness per fracture area, t (m) is the
pipeline wall thickness, R (m) is the outer pipeline radius and E (Pa) is the material elastic modulus. The
quantities α (m2 /kg0.5), β (−), γ (−) and R f (J/m2) are quantities which depend on the specific model, as
indicated in Tab. 1.

As seen, there are two different measures of material toughness used: CVP/A (J/m2) is the full-size
upper-shelf Charpy V-notch energy per fracture area, and Dp/Ap (J/m2) is the pre-cracked thickness Drop
Weight Tear Test (DWTT) energy per area. The constant β0 is always equal to 0.393, while the quantities
C and α0 supposedly only depend on the amount of backfill (none, soil, water) above the pipeline. Even in
the case of no backfill, it is implied that the pipeline is below ground level in a ditch. To our knowledge,
no parameters have been fitted to experiments with pipelines on flat ground. Here, tests are performed
assuming no backfill, in which case C = 0.379 × 10−3 m2 kg−0.5 [14]. To our knowledge, no reference to
α0 for no backfill has been found in the literature. From [3] we have that C is 38% higher in conditions
without backfill than when backfill (0.76 m) is present. We choose to apply the same scaling when going
to conditions without backfill for α0, and get α0 = 0.925 × 10−3 m2 kg−0.5. The reference geometry for the
fitting of α and β is D0 = 1219.2 mm and t0 = 18.3 mm, with D = 2R being the outer pipeline diameter.
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Note that the forms of Eqs. (1) and (2), as well as the numerical value of constants, occur in several
versions in the literature. These differences stem from corrections for using inconsistent units, as well
as from lumping quantities such as the toughness test specimen area, A, and the elastic modulus, E, into
constants. The versions here are adapted for use with standard SI units, while revealing as many variables
as possible.

2.2. Gas decompression model

The model for gas decompression speed in both uncoupled approaches is derived by considering a
pipeline with a stationary fluid at a given initial pressure, and which is suddenly opened at one end. The
opening is completely stationary, as opposed to being a running fracture. By assuming one-dimensional and
isentropic flow, one may analyse the characteristics of the Euler equations to show that along a rarefaction
wave, the fluid velocity depends on the pressure as

d|u|
dp

= −
1
ρa
, (3)

where ρ is the local density, and a is the local speed of sound. This is called the real fluid isentropic
decompression model, and shows that the absolute value of the fluid velocity is larger the further down one
is on the pressure curve, i.e. the closer one is to the opening. Note that this is valid for any fluid, and the
behaviour of a specific real fluid is introduced by how the equation of state specifies the pressure dependence
of ρ and a, given the isentropic assumption. Since a pressure wave moves at the local speed of sound relative
to the fluid, and the initial fluid velocity is zero, the speed of a pressure level relative to the pipeline is given
by

v(p) = a(p) − |u(p)|

= a(p) −
∫ pi

p

1
ρ(p′)a(p′)

dp′. (4)

With an equation of state to find ρ and a, (4) may be used to draw the decompression-speed curve in two-
curve methods. It should be noted that the above approach, when used for multiphase flow, assumes no slip
between the phases.

2.3. Arrest length

If one has an equation for the fracture velocity given a fluid pressure at the fracture tip, v f (p), and an
equation for finding which fluid pressure level has a given decompression speed, pdecomp(v), one may derive
an ordinary differential equation (ODE) for the fracture tip position, L. The function v f (p) is given by
fracture-velocity models such as (1). The function pdecomp(v) is found from the decompression model in
Eq. (3), by interpolating an obtained v(p) curve.

The derivative of L with respect to the time, τ, is equal to the fracture velocity, v f (p), by definition. To
evaluate the latter at a given time, τ, one needs the fluid pressure at the fracture tip position, L, at that time.
Under the assumptions that the decompression process is unaffected by the presence of the running fracture,
and that the decompression starts at the point L = 0 at the time τ = 0, this pressure is simply given by the
fluid pressure level which moves at a velocity L/τ in the decompression model. The ODE resulting from
these assumptions is

dL
dτ

= v f = v f (ptip(L, τ)) = v f (pdecomp(L/τ)), (5)

which may be integrated numerically until arrest is reached, giving a final arrest length, La. To obtain a
solution, initial conditions are also needed. The approach used with the HLP model [15, 13], which will
also be used here, is to set L0 equal to the pipeline diameter, and set τ0 = L0/vi, where vi is the decompression
speed of the initial pressure level.
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3. The coupled model

3.1. Structure model

The pipeline structure has been modelled using the finite-element (FE) code LS-DYNA [16]. With
an explicit time-integration scheme, the deformation and fracture of the pipe has been calculated using
shell elements and an elasto-plastic constitutive equation [10] with a local ductile fracture criterion [17].
Although pipeline materials often show a certain degree of plastic anisotropy and strain-rate sensitivity, we
have for simplicity assumed an isotropic yield criterion (von Mises), with a strain-rate independent non-
linear isotropic work-hardening rule.

3.1.1. The isotropic elasto-plastic constitutive equations
The yield function, f , which defines the elastic domain in stress space, is expressed in the form

f (σ, εe) = σe(σ) − (σ0 + R(εe)) (6)

where σ is the stress tensor, σe is the von Mises equivalent stress, εe is the corresponding equivalent plastic
strain, and σ0 is the yield stress in the reference equation. The isotropic strain-rate-independent work-
hardening rule is defined as

R = σ0 + Q1(1 − exp(−C1εe)) + Q2(1 − exp(−C2εe)) (7)

where Qi and Ci are the quasi-static work-hardening parameters. After the onset of necking in an uni-axial
tension test, an imposed hydrostatic tension will form in the neck, and the uni-axial stress state must be
corrected. This correction is done using an FE analysis, where Ci and Qi are adjusted such that the exper-
imental and simulated engineering stress-strain curves match. The work-hardening parameters in (7) were
calibrated from tensile tests on smooth axisymmetric specimens oriented in the circumferential direction
(reference direction) of the pipe. Quasi-static tests were done in room temperature and at an average strain-
rate of 10−3 s−1. The force and minimum cross-section area of the specimen were continuously measured
until fracture. The parameters identified for the quasi-static work-hardening rule are given in Tab. 3.

3.1.2. The fracture model
From the perspective of material modelling, the greatest obstacle to simulate a running-ductile frac-

ture is the lack of a complete understanding of the physical mechanisms governing the phenomenon (see
e.g. [18]). The fracture typically has velocity in the pipe axial direction of about 100 to 300 m·s−1, and typic-
ally propagates as a slant fracture. However, in the literature, there are indications that the exact mechanisms
leading to the slant fracture are not necessary to capture in order to achieve a good engineering representa-
tion and prediction of the fracture resistance [19]. In this paper, a simplified approach to describe fracture is
used. The fracture model assumes that damage evolution (e.g. void growth) does not influence the material
behaviour. That is, there is no material softening of the material prior to fracture. Fracture propagation is
described by element erosion when the Cockcroft-Latham (CL) ductile fracture criterion [17] is fulfilled in
one integration point. The CL fracture criterion states that fracture occurs when the tensile principal stress
integrated over the strain path reaches a critical value

W =

∫ εe

0
〈σI〉dεe ≤ Wc, 〈σI〉 = max(σI , 0) (8)

Here σI is the major principal stress and Wc is a material constant that should be determined from a suitable
experiment. In this work, Wc has been calibrated from uniaxial tests (described earlier) at quasi-static
loading conditions, where the value of Wc was found by integrating the true stress-plastic strain curve up to
point of failure. Results show Wc = 1095 MPa (see Tab. 3).
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3.2. Fluid model
The one-dimensional compressible flow of pure CO2 is modelled using the homogeneous equilibrium

model and the Span–Wagner [12] reference equation of state (EOS). The flow model, with source terms
accounting for the effects of leakage through the fracture, are

∂ρ

∂τ
+
∂ (ρu)
∂x

= −ζ

∂ (ρu)
∂τ

+
∂
(
ρu2

)
∂x

= −uζ

∂E
∂τ

+
∂
([

E + p
]
u
)

∂x
= −

(
Ee + pe

ρe

)
ζ,

(9)

where x is the axial position, τ is the time, p is the pressure, ρ is the density, and u is the velocity in the
x-direction. Subscripts e indicate the corresponding quantities at the point of escape/outflow. The quantity
E is the total energy per volume, given by

E = ρ

(
e +

1
2

u2
)
, (10)

where e is the fluid internal energy per mass.
For each set of local (ρ, E) obtained from the flow equations (9), a density–energy flash routine [20]

using the Span–Wagner EOS is used to find the corresponding local equilibrium state. All three possible
phases are covered, as the Span–Wagner EOS of state was extended to the solid state (dry ice) using an
empirical polynomial for ρs(T ) [21]. For single-phase flow, the above formulation (9) amounts to the Euler
equations. The formulation is also applicable to multiphase flow if one assumes that there is no velocity
difference (slip) between the phases. For such flows, the model is often referred to as the homogeneous
equilibrium model. The relationships between the variables of the homogeneous equilibrium model (9) and
the properties of the individual phases are

u = ug = ul = us

ρ = αgρg + αlρl + αsρs

E = αgρg

(
eg + u2/2

)
+ αlρl

(
el + u2/2

)
+ αsρs

(
es + u2/2

)
.

(11)

The quantity ζ in (9) should represent the rate of mass loss through the fracture, per volume of pipe. In
view of the fluid model, the fracture is characterized by a function re(x), indicating half of the fracture width
at the given point (see Fig. 1a). If one considers a cell of length dx, the mass flux through the fracture at this
point is ρeue, giving a total mass-loss rate of ρeue2redx. Since the volume of this cell is Adx, where A is the
cross-sectional area of the pipe, the rate of mass loss per volume of pipe at any point is given by

ζ = ρeue
2re

A
. (12)

The modelling of the source terms are described in [11]. The governing equations (9) are solved numeric-
ally with the finite-volume method, using a single-stage two-cell MUSTA [22, 23] scheme for the spatial
derivatives, and forward Euler for time integration. The time-step is limited by a Courant–Friedrichs–Lewy
(CFL) condition for compressible flow, with a CFL-number of 0.5.

3.3. Coupling
The coupled model performs the following scheme (see Fig. 1b) at each time step:

1. The structure model communicates the current fracture profile re(x) to the fluid model.
2. The fluid model uses this fracture profile to integrate the fluid state to the current time.
3. The pressure profile for the current time is communicated back to the structure model.
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Structure model

4© re(x, τi)→ re(x, τi+1)

Fluid model

2© p(x, τi−1)→ p(x, τi)

1© re(x, τi)

3© p(x, τi)

(b)

Figure 1: a) Illustration of the pipeline as seen by the fluid model, defining the quantities A and re(x) in (12). b) Flow-chart illustrating
the coupling between the structural model and the fluid model.

Table 2: The initial conditions of the pipeline, where D is the pipeline diameter, Pi is the initial fluid pressure, Ti is the initial fluid
temperature, ui is the initial fluid velocity, and Li is the initial fracture length (from the centre).

D (m) Pi (Pa) Ti (K) ui (m·s−1) Li (m) re,i (m)

0.559 1.0 × 107 300 0 0.559 5 × 10−3

4. The structure model uses the pressure profile at the current time to apply a load to its structural
elements, and integrates the pipe-material state one time step ahead.

In the cases run here the time-step length required by the structure model is smaller than the one required
by the fluid model. This means that stage 2 in the above scheme only involves a single time-step in the fluid
model, smaller than what is required by the CFL criterion. Specifically for the present cases, the structure
model requires a time-step length of about 10−6 s, while the fluid model requires about 10−5 s.

4. Test case

4.1. Pipeline initial conditions

The initial conditions of the pipeline and its contents are shown in Tab. 2. In both coupled and uncoupled
models, the initial crack is L0 = D long from the centre. In the coupled model, the initial crack also has
a width, given by re,i. In the uncoupled models, the initial crack length is only relevant when tracking the
crack-tip position in time (Sec. 2.3), and not when doing simple two-curve considerations. The fluid is
initialized as stationary (ui = 0), at pressure Pi and temperature Ti.

4.2. Material parameters

Specimens for the material calibration was taken from an API 5L-X65 TMR steel pipeline, with outer
diameter 559 mm and wall thickness 13.5 mm. The pipeline had previously been exposed to a full-scale
crack-arrest experiment with hydrogen gas [24]. The parameters used to represent this material in the models
are shown in Tab. 3. The parameters σ0,FEM, Ci and Qi have been adjusted to fit the finite-element model
to an experimental stress-plastic strain curve. This is the reason why σ0,FEM is different from σ0,(0.2%offset),
which is used when calculating σ̄ in the uncoupled models. The average plastic flow stress of the material,
σ̄, must be interpreted as an average flow stress acting in the plastic zone ahead of a crack tip, and cannot
be precisely defined [25]. Different definitions are used in the uncoupled approaches. For Battelle, σ̄ =

σ0,(0.2%offset) + 68.95 MPa = 574.95 MPa, and for HLP σ̄ = 0.5(σ0,(0.2%offset) + σTS) = 544.5 MPa, with
σ0,(0.2%offset) = 506 MPa and σTS = 583.0 MPa.
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Table 3: Pipeline steel parameters for the uncoupled models (top), and the finite-element model used in the coupled approach (bottom).

σ̄ (Pa) CVP
A (J/m2) Dp

Ap
(J/m2) E (Pa)

Battelle 5.750 × 108 5.84 × 106 – 2.06 × 1011

HLP 5.445 × 108 – 5.68 × 106 2.06 × 1011

σ0,FEM (Pa) Q1 (Pa) Q2 (Pa) C1 (−) C2 (−) Wc (Pa)

FEM 4.540 × 108 3.986 × 108 1.766 × 108 0.9745 19.765 10.95 × 108

4.3. Coupled model domain and boundary conditions

Due to the symmetry of the case, the simulation was performed in a domain starting from the centre
of the initial fracture (x = 0), until x = 10 m. Symmetry boundary conditions were set at x = 0, while
at the opposite end, a transparent boundary condition was used for the fluid in order to prevent pressure
wave reflection. A convergence test on the fluid model showed that 100 cells per metre gave reasonable
accuracy, and this cell density in the axial direction was used in both the fluid model and the structure
model, giving 1000 cells or shell elements in axial direction in total. The structural model had 70 elements
in the circumferential direction. Regarding the grid employed for the structural model, it was chosen based
on experience. However, no convergence test was performed, since numerical simulations of fracture is well
known to be inherently dependent on the grid resolution used.

The coupled model will simulate a pipeline on flat ground, since the inclusion of the dynamic effects of
a surrounding ditch of gravel and soil requires further work.

5. Results and discussion

Arrestability was evaluated with the case described in Sec. 4 using the pipeline thickness t as the variable.
With the three variants of the uncoupled model described in Sec. 2, the arrest threshold thickness was first
found by the two-curve method, i.e. by decreasing t gradually until reaching the point of first contact between
the fracture-velocity curve and the decompression curve. The fracture-velocity curves were generated as
described in Sec. 2.1, while the decompression curve was generated from (4) using the Span–Wagner EOS
for CO2. Two-curve plots for all three models, at the arrest threshold, can be seen in Fig. 3. The arrest
threshold thicknesses are summarized in Tab. 4. In order to examine the transition, the method described in
Sec. 2.3 was used to plot the arrest length La as a function of pipeline thickness in Fig. 2. The arrest length
is the final fracture length from the centre of the fracture, including the initial length.

The coupled model described in Sec. 3 was run with the same case, while varying the pipeline thickness
until the arrest threshold was found. The threshold is displayed in Tab. 4, while the arrest length is plotted as
a function of pipeline thickness in Fig. 4. When comparing the coupled model with the uncoupled models
in this way, two differences become apparent: First, while the uncoupled models generally agree on the
arrest threshold thickness within ≈ 1 mm, the coupled model indicates that more than double the thickness
is required to prevent a running-ductile fracture. Second, the transition from immediate arrest to running
fracture happens over a range of approximately 0.5 mm in the coupled model, as compared to 0.15 mm or
less with the uncoupled models.

The most important of these differences is clearly the first, which shows a large difference in the required
pipeline thickness. We see three main reasons for the large difference in arrest threshold thickness. First,
the coupled model describes the actual process in a more physically complete way. Second, the uncoupled
models have not been adapted to CO2 pipelines. Third, some of the assumptions in the coupled model may
be on the conservative side. An example of the latter is the fact that the internal pipeline pressure from the
fluid code at an axial position is used to apply a load on all structural elements at that position, while in
reality the pressure is expected to decrease as one moves closer to the opening. This approximation is likely
to overestimate the force on the opening flanks. Nevertheless, good agreement with both the experimentally
obainted final crack-propagation lengths and pressure time histories at the crack position (12 o’clock) was
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Figure 2: The arrest length as a function of pipeline thickness calculated using the uncoupled models a) Battelle, b) HLP (original) and
c) HLP (Sumitomo). The horizontal dashed line indicates the initial fracture length, and the vertical one indicates the arrest threshold.

Table 4: Arrest threshold thickness found with the various methods

Battelle HLP (original) HLP (Sumitomo) Coupled

9.29 mm 9.80 mm 10.47 mm ≈ 24.7 mm

obtained in [10]. Additionally, the coupled model simulates a pipeline on flat ground, while the uncoupled
models are fitted to experiments with pipelines in a ditch. Using no ditch is a conservative approximation,
as ditches are likely to damp the outward speed of the flanks which helps drive the fracture. Finally, the
use of shell elements with a thickness larger than the in-plane dimensions, which is the case at the arrest
threshold thickness found here, will tend to underestimate the fracture resistance. However, upon their
time of fracture, the fractured elements had a thickness smaller than the in-plane dimensions, so that this
thickness effect might not be of great significance.
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Figure 3: Two-curve plots of the three uncoupled models,
each at the corresponding arrest threshold thickness. Solid
lines are fracture-velocity curves, while the dashed line is
the decompression curve.
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Figure 4: The arrest length as a function of pipeline thick-
ness calculated using the coupled model. The horizontal
dashed line indicates the initial fracture length, and the ver-
tical dashed line indicates the arrest threshold thickness.

6. Conclusion

In this work, three semi-empirical uncoupled models (Battelle, HLP and the Sumitomo version of HLP)
for running-ductile fracture assessment have been compared to a fully coupled fluid-structure model for the
case of a pipeline filled with CO2. For a given pipeline material and geometry, the minimum pipeline wall
thickness was found at which a running-ductile fracture would arrest. This threshold thickness predicted by
the fully coupled model was more than twice as large as that given by the uncoupled models. This is an
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indication that the threshold thickness given by the uncoupled models is underpredicted. However, some of
the assumptions in the coupled model are conservative. The differing results of the present study underline
the need for high-quality experiments to allow for further model development and validation.
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