Python Krus

Advanced Python

By Peder Bergebakken Sundt

Programvareverstedet
www.pvv.ntnu.no

s.ntnu.no/apy20

This idiot

e Peder Bergebakken Sundt

e 24 years old

e In my fourth for a Master of Science in
Computer Science

e Worked with Python for ~12 years

e Hangs out on Programvareverkstedet on
Stripa in my spare time

This course

e This meetup will briefly touch upon many cool concepts in higher level
Python programming.

e Theideais to be introduced to new concepts, not necessarily learn
everything.

e We will mainly use vanilla Python 3 on these slides

e Many of these tricks and methods can be used in Python 2 as well

e Python 3 introduces the new print method, advanced unpacking, parameter
annotations and the yield from statement among many other things.

e You're going to see the character “_" a lot.

e Please don't be afraid to ask if you have any questions or didn't quite catch
something.

The Interactive Interpreter

>>> i return a value()

e The interactive interpreter runs Python 5
code one line at a time. >>> 5

e Any returned value is printed out, 5
formatted using the repr () method >>> None

e The code on the left of this slide is how i'll >>> i_return None() # None is the default return value
display most of the examples >>> 2 + 2

4

>>> "foobar"# return values are printed using repr()
'foobar'

>>> print("foobar") # print() formats using str()

foobar

Python is a parsed language

Python allows dynamic behaviour making the language difficult to compile:

>>> print("length:", len("test"))

length: 4

>>> import builtins

>>> setattr(builtins, "len", lambda x: x. len () + 5)
>>> print("length:", len("test"))

length: 9

e We solve this by running it in an interpreter
This is the major reason why many believe Python is slow
This is not always the case, but many use it as a general rule of thumb

The Python parser and interpreter

The execution of Python code is divided into two steps:

1. Parse the source code and compile it into Python bytecode (usually stored
in *.pyc files or the __pycache__/ directory)

2. Execute the simplified bytecode in an interpreter (kinda like the Java VM
but not really)

This allows for some changes, optimizations and oddities to occur in both
stages

Oddities in the Python parser

e Python allows for expressions like

if 5 < myFunction() <= 10:
doSomething ()
e Inasimplerlanguage, 5 < 6 < 7 would part-way be resolved into

something like True < 7, which is not what we want.

e Python notices a pattern here while parsing the code, and changes the
code froms < 6 < 7iNt05 < 6 and 6 < 7

e We can have some fun with this

Example: Some fun with the parser

>>> print(5 < 7 < 10)# 5 < 7 and 7 < 10

True

>>> print(2 < 5 > 2)# 2 < 5 and 5 > 2

True

>>> print("a" in "aa" in "aaa")# "a"” in "aa" and "aa" in "aaa"

True

>>> print(not 7 == True is not False)# not 7 == True and True is not False

True

Variable function arguments

A Python method can take in a unknown amount of arguments
These come in the form of lists and dictionaries

* denotes a list of positional arguments

** denotes a list of keyword arguments

>>> def myfunc(*args, **kwargs):
print (args)
print (kwargs)
>>> myfunc(l, 2, 3, 4, foo="bar", five=5)
(1, 2, 3, 4)
{'foo': 'bar', 'five': 5}

Advanced (iterator) unpacking

e Python 2 had iterator unpacking:
>>> a, b, ¢ = range(3)
>>> (a, c)
(0, 2)
e Python 3 introduces advanced unpacking using similar syntax to *args:
>>> a, *rest, b = range(10)
>>> (a, rest, b)
(0, 1, 2, 3, 4, 5, 6, 7, 8], 9)

Polymorphism in Python

e FEvervthing in Python IS an ObjeCt (or at least a psuedo object, which is the case for al the primitive types)

o Functions and classes are objects
o Even True and False are objects
o Even the code itself is an object!

e Python 1 introduced function names like __init__() and __str__() to give the
different types a common interface:
5==6 is interpreted and executed as
(5).__eq_ (6) by the python parser winout the needed name lookups for native types)
e Python uses these methods behind the scenes when running code
e We can overload/replace these!

How to view the contents of an object

>>> dir(5) # Lets look at the attributes the object 5 contains

['_abs ', ' add ', ' _and ', ' bool ', ' ceil ', ' class_ ', ' delattr ‘',

' dir ', ' divmod ', ' doc_ ', ' eq ', ' float ', ' floor ', ' floordiv_ ',

' format ', ' ge ', ' getattribute ', ' getnewargs ', ' gt ', ' hash ',

' _index ', ' init ', ' init subclass ', ' int ', ' invert ', ' le ',

' 1shift ', ' 1t ', ' mod ', ' mul ', ' ne ', ' neg ', ' mnew_ ', ' or ',

' pos_ ', ' pow_ ', ' radd ', ' rand ', ' rdivmod ', ' reduce_ ', ' reduce ex ',
' repr ', ' rfloordiv_ ', ' rlshift ', ' rmod ', ' rmul ', ' ror ', ' round ',
' _rpow ', ' rrshift ', ' rshift ', ' rsub ', ' rtruediv__ ', ' rxor ',

' setattr ', ' sizeof ', ' str ', ' sub ', ' subclasshook_ ', ' truediv_ ',

' _trunc__ ', ' _xor ', 'bit length', 'conjugate', 'denominator', 'from bytes',6 'imag',

'numerator', 'real', 'to bytes']

Type and attribute methods

e Python 1 defined a common interface myobject.__int () == int (myobject)
for builtin objects to implement. This has since myobject._str () == str (myobject)
been built and extended upon since. EIEE. Samy () = s e el

e This convention is what allows us to make myobject. bool () == bool(myobject)
our objects able to cooperate as well as myobject. len_ () == len (myobject)
they do today! myobject._ list () == list(myobject)

myobject. iter () == iter (myobject)

® if [1, 2]: print("The list has members")
is interpreted as
if [1, 2]._bool_ (): print("The list has members")

E.G: ow the object implement . _boo1__ () defines the
“truthiness” of the object.

Comparison operators

e When you compare two objects, Python myobject. 1t (self, other) # Less than
needs to know how to compare them. myobject. le (self, other) # Less than or equal
e Aleast one of the two objects must myobject. eq (self, other) # Equals
implement a comparison method for this myeeet. e (EelkE, eBaem) | Sl S
to work. This is a method which usually EERE (IS (IONE, GRCE) 6 @R Gk
myobject. ge (self, other) # Greater than or equal

returns either True or False
. ["a" , "b"] > None

is interpreted as

[nan , "bn] ._gt_ (None)

it is up to the objects to define the

operator behaviour

Arithmetic operators

e Behaves the same way as comparison
operators, except they’re not expected
to return a boolean

e Right hand side counterparts exists as
well

e Operator precedence is handled by the
parser and can not be overridden

(as far as i know)

object.
object.

object.

object
object
object

object.

object
object

object

object.
object.
object.

.__matmul
.__truediv__

.__floordiv___

mod

.__pow___
.__1shift
.__rshift

and

(self,
(self,
(self,
(self,
(self,
(self,
(self,
(self,
(self,
(self,
(self,
(self,
(self,

other)
other)
other)
other)
other)
other)
other)
other)
other)
other)
other)
other)
other)

self
self
self
self
self
self
self
self
self
self
self
self
self

//

* %

<<

>>

other
other
other
other
other
other
other
other
other
other
other
other

other

Container methods

e Lists, dictionaries, sets, tuples, deques and e Slicing was hacked in as an afterthought:
strings all use the same container

interface methods: >>> class MyClass:

def getitem (self, value):
® a = myobject[5] .. print (value)
>>> myobject = MyClass()

myobject["foo"] = "bar"

>>> myobject[3]
del myobject[5] 3
is interpreted as >>> myobject[3:4]

slice(3, 4, None)
a = myobject. getitem_ (5)

myobject. setitem ("foo", "bar")

myobject._ delitem (5)

Attribute handlers

e All objects must have an implementation >>> class AttributeDict(dict):
of __getattr__, __setattr__ and __delattr__ .o __getattr = dict. getitem
e Luckily you inherit a very good e __setattr = dict. setitem
implementation by default! e —delattr = dict. delitem
e Used whenever you access a member >>> mydict = AttributeDict()

. - >>> ict["foo"] =
attribute of an object: mydict["foot] = 3
>>> print (mydict. foo)

5

print (myobject. foo)
is executed as
print (myobject. getattr_ ("foo"))

e Similar interface to containers, but must
be implemented on all objects

New style classes and objects

The concept of a descriptor was
introduced late in Python 2.

In general, a descriptor is an object
attribute whose access has been
overridden by methods.

A descriptor is an object with _get (),
__set_ (), and _ delete () methods.

You can easily make these using
property ()

In Python 2 you had to inherit “object” to
get the descriptor logic, while this
behaviour default in Python 3.

Object adds the __getattribute ,

__setattribute and __delattribute__

member functions which handle

descriptor logic before calling __getattr_
__setattr and __delattr _

respectively.

Properties - a use of descriptors

>>> class MyClass:

def

foo

foo():
doc = "The foo property."
def fget(self):
return "The value of foo"
def fset(self, wvalue):
print("foo was set to", value)
def fdel (self):
pass
return locals()

= property (**foo())

>>>
>>>
foo
>>>
The
>>>
The

myobject = MyClass ()

myobject.foo = 5

was set to 5

print (myobject. foo)

value of foo
print (MyClass.foo.
foo property.

doc

)

Properties simplified

>>> class MyClass: >>> myobject = MyClass|()
@property >>> print (myobject. foo)
def foo(self): What is foo? Hello
return input ("What is foo? ") Hello
@foo.setter >>> print (myobject. foo)
def foo(self, wvalue): What is foo? World
print ("Foo was set to", value) World

>>> myobject.foo = 5

Foo was set to 5

Callables

e Anobjectis a “callable” object if it implements the __call_ method

myobject (1, 2)
is executed as
myobject. call (1, 2)

e def does this for you:

>>> def myfunc(): pass
>>> myfunc. call
<method-wrapper ' _call ' of function object at 0x000000E4B2703E18>

Callable example

>>> class Funky:
def call (self):
print("Look at me, I'm acting like a function!")
>>> £ = Funky() # creating an instance of this class
>>> £() # Then we try to call this object

Look at me, I'm acting like a function!

Lambda functions

Callables are simply objects
Because of this we can pass a
callable in as an argument to a
function

The lambda statement
simplifies this, allowing you to
define callables inline:

(inline/anonymous functions)

>>> def double (value):

.. return value + value

>>> def call (func):

“e print('func("test") returns:', func("test"))
>>> call (double)

func("test") returns: testtest

>>> call(lambda x: x + x + X)

func("test") returns: testtesttest

>>> call (lambda x: 5)

func("test") returns: 5

Class descriptions

e When you define a class in Python, you're in reality storing a callable object,
which produces instances of the class you described:

® MyClass. call (*args, **kwargs)

is a method which does: (somewhat simplified)

instance = MyClass. new__ (MyClass, *args, **kwargs)# The instance is constructed by __ new _

instance._ init_ (*args, **kwargs)# The newly constructed instance is initialized by __ init _

return instance

Default __new__ constructor simplified

class MyClass:
def new_ (cls, *args, **kwargs):

self = object() # start an empty object (Th/S implementation of __new__
Gove S(awETEID PE o @Rn (e ¢ doesn’t account for everything, but

attribute value = getattr(cls, attribute) the understandlng here IS key)

if type (attribute_value) is function:
def instance_method(*args, **kwargs):
return attribute_value(self, *args, **kwargs)
setattr(self, instance method) # this is where ‘self’ is provided in methods
else:
setattr(self, attribute_value)

return self

Annotations

e A new feature introduced in Python 3.0, which has not been backported
e Used to annotate what types a function uses and returns

>>> def myfunc(a: int, b: str) -> list:
assert type(a) is int
assert type(b) is str
#do something
>>> myfunc._ _annotations___
{'a': <class 'int'>, 'b': <class 'str'>, 'return': <class 'list'>}

e Python does not enforce these in any way, mainly used for documentation
and better assistance from IDEs and linters

Decorators

Functions are just callable objects

We can make changes to these callable objects

This we call “decorating” a function

A “decorator” is simply a function that takes in a callable object as a
parameter and returns the decorated version of that callable object:

myfunc = mydecorator (myfunc)

Decorator syntax

e Python added syntactical sugar to make this more practical:

def myfunc(): pass

myfunc = mydecorator (myfunc)
can be written as

@mydecorator

def myfunc(): pass

e You can stack multiple decorators on a single function

Decorator example: HTML tag

>>> def with b tag(func):# a decorator
def new_func(*args, **kwargs):
return "" + func(*args, **kwargs) + ""

return new_func

>>> @with b tag
def hello world():

return "Hello, World!"

>>> print (hello_world())
Hello, World'

Decorator example: memoizer

>>> def memoize (func):# a decorator
memory = {}
def new_func(argument) :
if argument in memory:
return memory[argument]
else:
value = func(argument)
memory[argument] = value
return value

return new_func

>>> @memoize

. def fibonacci(n):

if 0 <= n <= 1:
return n

return fibonacci(n-1) + fibonacci (n-2)

>>> print (fibonacci (200))
280571172992510140037611932413038677189525

This saves a lot of runtime

Decorator example: logging

>>> def log(func):# a decorator >>> @log
def new_ func(*args): ... def bar(valuel, value2):
print (func._name + str(args)) ... return foo(valuel) [::-1] + foo(value2)

ret = func(*args)

print (func._ name_ , "returned:", ret) >>> print("final result:", bar("Hello", "World"))
return ret bar('Hello', 'World')
return new_func foo('Hello',)

foo returned: HELLOhello

>>> @log foo ('World',)
def foo(value): foo returned: WORLDworld
return value.upper() + value.lower () bar returned: o0llehOLLEHWORLDworld

final result: o0llehOLLEHWORLDworld

Decorators with parameters

Decorators alone might seem a bit limiting
Making a decorator for every single edge case is a lot of work
We can solve this by “cheating” a little

We can make a function which returns the decorator we want
o Inthis course we'll call them “decorator builders”, but they’re often just called decorators

e This function will be able to take in other parameters as well!

Decorator builder example:

Generic HTML tag

>>> def with tag(tag):# a decorator builder
def decorator (func):# a decorator
def new_func(*args, **kwargs):
return "<" + tag + ">" + func(*args, **kwargs) + "</" + tag + ">"
return new_func

return decorator

>>> @with_tag("b")
@with_tag("i"
. def welcome (name) :

return "Hello, " + name.split() [0] + "!"

>>> print (welcome (input ("Enter your name: ")))
Enter your name: Peder B. Sundt

<i>Hello, Peder!</i>

Decorator example: Register

>>> functions = {}

>>> def register (func):
functions [func. name] = func
return func

>>> (dregister
def foo(a, b):
return a + b

>>> foo (1, 2)

>>> functions ["foo"] (1, 2)

Decorator builder example: with_resource

def with resource(filename) :# a decorator builder
with open(filename, "r") as f:

file = f.read()

def decorator(func) :# a decorator
def new_func(*args, **kwargs):
return func(*args, file, **kwargs)
return new_func

return decorator

from flask import Flask# a popular library for web development
import time

app = Flask("My server name')

@app.route("/index.html")
@with resource ("resources/frontpage template.html")
def frontpage get(request, template):

date = time.strftime("%B %d, %Y")

return template.format({"date": date})

Context Managers

>>> with open("my file.txt", "r") as f:
data = f.read()
>>> print(data)

I'm awesome!'!

e The witn statement uses what we call a context manager

e Context managers are simply an object which implements the __enter
and _exit methods.

® _ enter iscalled at the start of the with block, optionally storing the
returned value as &.

e exit Iis called when exiting the witn block

® open() USesits _exit method to close the file.

Context Manager example: HTML Tag

>>> class Tag:
def init (self, tag):
self.tag = tag
def _ enter_ (self):
print ("<" + self.tag + ">")
def exit (self, type, value, traceback):

print("</" + self.tag + ">")

>>> with Tag("b"):
print ("This text is bold!")

This text is bold!

ConteXt Manager example SW|tCh Case (don't actually do this in production)

>>> class switch(): >>> for key in (4, 5, 6):
def init (self, key): e print("key is", key)
self.key = key Ce with switch(key) as case:# the switch
def _ enter (self): ... Qcase (4)
return self.case e def unimportant_ name() :
def exit (self, *args): e print("foo")
pass e Qcase (5)
def case(self, key): ... @case (6)
def decorator (func): e def unimportant_ name () :
if self.key == key: Ce print ("bar")
func ()
return func key is 4
return decorator foo
key is 5
bar
key is 6

bar

Metaclasses

Metaclasses can be a controversial topic

Some believe it overcomplicates the object model

Whether you want to use them or not is up to you

They present lots of interesting opportunities for reducing boilerplate and
make nicer APIs

What is a Metaclass?

>>> class MyClass: pass e A metaclass is the parent of a class object
>>> type (MyClass) e All classes inherit the metaclass type by
<class 'type'> default

>>> myobject = MyClass () e We can therefore make classes using

>>> type (myobject) type instead of using the class

<class ' _main__.MyClass'> statement:

>>> isinstance (myobject, MyClass) >>> MyClass = type('MyClass', (), {})
True >>> MyClass

>>> isinstance (MyClass, type) <class ' _main__.MyClass'>

True

Using type instead of the class statement

e These two code snippets are @mosy identical:

>>> class Foo:
x =25
>>> class Bar (Foo) :
def get _x(self):
return self.x
>>> mybar = Bar()
>>> mybar.get x()
5

>>> Foo =

>>> Bar =

>>> mybar

>>> mybar

5

type('Foo', (), dict(x=5))

type('Bar', (Foo,), dict(get x = lambda self: self.x))

= Bar ()

.get _x()

Metaclasses are callable

e We can use type as a function to make new classes
e The ci1ass statement does the same thing
e This means the c1ass statement should accept any callable as its metaclass

>>> class MyClass (metaclass = print):

pass
MyClass () {'_module ': ' main_ ', ' qualname_ ': 'MyClass'}
>>> print (MyClass)

None

Making your own metaclasses

e Making your own metaclass is as simple as inheriting type:
e Usingitis as simple as setting metaciass = MyMetaclass in the parent list
>>> class MyMeta (type) :
pass
>>> class MyClassl (metaclass = MyMeta) :
pass
>>> type (MyClassl)
<class ' _main_.MyMeta'>
>>> MyMeta ("MyClass2", (), {})

<class ' main_ .MyClass2'>

Example metaclass usage: SQLAlchemy (peewee does the same)

from sqglalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String
import conf

engine = create_engine(conf.db_url)
Base = declarative_base()
Session = sessionmaker(bind=engine)

class User(Base): ¢

__tablename__ ="'users'

name = Column(String(10), primary_key=True)
card = Column(String(20))

rfid = Column(String(20))

credit = Column(Integer)

name_re = r'[a-z]+"
card_re = r"(([Nn][Tt][Nn][Uu])?[0-9]+)?"
rfid_re = r"[0-9a-fA-F]*"

session=Session()
Let's find all users with a negative credit
slabbedasker=session.query(User).filter(User.credit<0).all()
for slubbert in slabbedasker:

print(slubbert.name, "-", slubbert.credit)

Iterables

e Aniterable object is in Python defined as “An object capable of returning
its members one at a time.”

e Most of Python considers an object to be iterable if it implements __iter

e Lists, sets, dictionaries, deques, strings and bytearrays among many other
implements this interface.

e iter isamethod that returns an lterator-like object
e The builtin function iter (myobject) Simply returns myobject. iter ()

Iterators

>>> myiter = iter([1, 2, 3]) e when we call myiter.next () the last time,

>>> myiter StopIteration iS raised instead.
<listiterator object at 0x7£855c944400>

>>> myiter.next ()
1

e This is how an iterator signals their end

>>> myiter.next()
2

e This means iterators can have an unknown length

>>> myiter.next()

3

>>> myiter.next ()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Iterators

e for loops will exhaust iterators for you:

>>> for i in iter([1, 2, 3]): print(i, end=" ")
123

e for loops also call itexr () for you

>>> class MyClass:

def iter (self): pass

>>> for i in MyClass(): print(i)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: iter() returned non-iterator of type 'NoneType'

Generators

e A Generator is a kind of an iterator which e Python 3 changed the range method from
generates its values on-the-fly as you need producing a 1ist to producing a generator type:
them

e Python 2:

e This is achieved by making >>> range (5)
iter (mygenerator()) .next () compute (o, 1, 2, 3, 4]
the next value when it is being called e Python3:

>>> range (5)
e This can save a lot of memory and result range (0, 5)

i i - >>> 1i
in some nifty speedups across the line 0 1ls§(r§ng‘:](5))

The yield statement

e yield allows you to make generators
>>> def mygenerator():

with ease
yield 1
e Theyield statement resembles return e print("Hello, World!")
in many ways ce yield 2
return 3

e Whenyieldis called, the value is
outputted and the function is halted until

] >>> for i in mygenerator(): print(i)
next value is requested.

: — 1
® return in a generator will raise a

: '
StopIteration exception Oy LOECs

2

The yield from statement

e Theyield from was introduced >>> def foo():
in Python 3.4 ... yield 1
yield 2

® yield from is used when you want to
pass along the result from an another
generator through your own generator

return 3
>>> def bar():

ret = yield from foo()

e yield from Will return any value stored in print("foo returned:", ret)
StopIteration >>> for i in bar(): print(i)
1
2

foo returned: 3

Generator example: execution order

>>> def foo():
for _ in range(3):
yield input("Write something:

return "I was returned by foo ()"

>>> def bar():
ret = yield from foo()
yield ret.upper|()

")

>>> for i in bar():

Write

I got:

Write

I got:

Write

I got:
I got:

print ("I got:", 1)
something: Alice
Alice
something: Bob

Bob
something: Foobar
Foobar

I WAS RETURNED BY FOO ()

Inline generators

>>> [i * 2 for 1 in range(4) if i '= 2]
[0, 2, 6]
>>> (1 * 2 for i in range(4) if i != 2)

<generator object <genexpr> at 0x7£373cb3f6c0>
>>> list(i * 2 for i in range(4) if i '= 2)

[0, 2, 6]

These are seriously amazing to work with.

lterables - sequences

e An alternative way of defining iterables is by implementing the Sequence

methods.
o ._len ()
o) .__getitem_ ()

e iter() Will be able to convert it into an iterator for you

AsynclO

e AsynclO is a module in the standard
library, introduced in Python 3.4

e The syntax was extended in Python 3.5 to
make it more intuitive

e |t enables you to handle many different
input/output streams simultaneously
without resorting to threading

To achieve this, AsynclO runs a event loop
which schedules coroutines to run at
different times

A coroutine is a glorified generator, which
yields control back to the event loop while
idle

Coroutines

Coroutines are a language construct
designed for concurrent operation.

They use the halting mechanic of
generators to allow for other code to runin
the meantime

Coroutines in Python 3.4:
@asyncio.coroutine
def hello world():

yield from asyncio.sleep(1l)

Python 3.5 added async and await to
simplify this:
async def hello world():

await asyncio.sleep(1)

AsynclO example:

scheduling and concurrency

>>> import asyncio
>>> async def coro_1():
while True:
await asyncio.sleep (1)

print("coro_1")

>>> async def coro_2():
await asyncio.sleep(0.5)
while True:
await asyncio.sleep(1)

print("coro_2")

>>> event_loop = asyncio.get_event loop ()
>>> asyncio.ensure_future(coro 1())
>>> asyncio.ensure_future(coro_2())
>>> event_loop.run_forever()

coro 1

coro_2

coro_1

coro_2

coro_1

coro 2

coro_1

coro_2

AsynclO example: return values

>>> import asyncio >>> event loop = asyncio.get_event loop ()

>>> async def coro_sub(): >>> event_loop.run_until complete (coro _main())
await asyncio.sleep(1) coro_sub returned 5
return 5 10

>>> async def coro main():
ret = await coro_sub()
print("coro_sub returned", ret)

return 10

AsynclO example: web development

® A real code snippet I've written recently. Using sanic as the webserver, airspeed as the

templating engine and aiopg to interact with the database.
@app.route (" /home")
Goutputs html
@with template ("frontpage.vm")
async def GET_ frontpage (request, template):
session = await get session(request)
user = await database.get user (session)

return template.merge (locals())

Example: Asyncio compared to synchronous code

Synchronous code: Asynchronous code:

import asyncio

def sync1(): async def coro1():
result = sync2() result = await coro2()
return result * 2 return result * 2
def sync2(): async def coro2():
result = io_operation("something") result = await io_operation("something")
return result return result
sync1() asyncio.run_until_complete(coro1())

Almost the same, right?

Example: Asyncio compared to synchronous code, sequence diagrams

Synchronous code: Asynchronous code:
main eventloop
RN - cese) corof
run
%J‘ create coro2
await coro2
un A
Vi
await io
perform io Z
resume with result A
‘,-----------[e.“."l" ____________ gk
resume with result
A L4
main oorm k
www.websequencediagrams.com

eventloop

www.websequencediagrams.com

Control often returns to the eventloop, allowing us to perform other tasks while awaiting 10

Why use asyncio?

e |It's new, hip and cool.
e it’'s builtin! unlike curio :(

e Itis way easier to develop and debug than some of the other
concurrent/asynchronous frameworks i'm looking at you, TwistedMatrix!

e It utilizes the available resources more efficiently than threading when
dealing with 10

e Thereis an ever growing library of asyncio modules,
capable of cooperating thanks to the common framework

Programvareverkstedet

e It's at the second floor on Stripa at NTNU Glgshaugen, close by
Adgangskontrollen.

e Need help learning or figuring out something programming related?
We'd love to help you out!

e We have a neat server room, computer terminals, a fun community
representing a great amount of computer knowledge!

e Open for anyone to just drop by whenever, without any obligations nor duties!

s.ntnu.no/apy20

