
Abstract

Capture efficiencies of particles impacting on a circular cylinder in cross flow are pre-
sented. To understand the effect of turbulence on particle deposition, simulations of
particle-laden flows at Rec = 420 were performed. A high order direct numerical simu-
lation (DNS) code, The Pencil Code, has been used. A Lagrangian tracker solved the
particle motions using the drag force. The cylinder boundary was resolved using the
immersed boundary method. Capture efficiencies for the cylinder was found for different
particle Stokes numbers (sizes), comparing laminar and turbulent inflows. Turbulence
was created by isotropic forcing in two presimulations, with forcing at two different
scales; large scale and medium scale. Turbulent inflow was simulated by imposing the
velocity field of the presimulations on top of a mean flow velocity at the inlet. Turbu-
lent inflows increased the front side capture efficiency, ηfront, for particles in the range
0.15 < St < 0.40. It has been showed that particles with an increased streamwise veloc-
ity have a higher probability of penetrating the boundary layer. The turbulent effects
on ηfront were strongest in the region where the sensitivity of ηfront to a change in Stokes
number is largest.
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Chapter 1

Introduction and background

1.1 Background

The main motivation for studying particle deposition is the fact that it has many engi-
neering applications. Often a small amount of matter in solid state is carried along with
a fluid flow. A typical example is the presence of dust in indoor air. The dust can be
deposited on solid surfaces. This phenomenon is easily seen inside fan cooled electronics,
e.g. on the inside of a computer cabinet, where a layer of dust will form.

An industrial segment where particle deposition is of great significance, is boiler
and combustion facilities. In biomass combustion facilities, for example, biomass is
combusted and the heat from this process is utilized through heat exchangers. The heat
exchangers transfer heat energy from a hot gas flow to a working fluid, see figure 1.1 for a
schematic drawing. The hot gas will typically contain ash particles from the combustion
process. The design of the heat exchangers may vary, but in a typical setup, the working
fluid is sent through cylinders across the flow. Obviously, in a facility like this, one wants
to maximize the thermal energy transfer. From experience, a layer of particles around
a heat exchanging cylinder will have an insulating effect and lower the heat exchange
rate. This causes problems in terms of loss of efficiency and maintenance costs. Thus,
in this type of facility, it is desired to minimize particle deposition.

Several deposition mechanisms can be studied. Vapors can condensate to or chem-
ically react with a solid surface. For small particles (sub micrometer scale), Brownian
diffusion and thermophoresis (particle motion due to a local temperature gradient) can
play a role. Gravity will affect the particles, and increase deposition especially on hori-
zontal surfaces. This work will, however, only focus on the effect of inertial impaction.
When a particle actually touches the solid surface, it is assumed to be deposited. This
is probably a good assumption for sticky ash particles in a hot gas flow, but definitely
not for all cases. Sand particles carried in a water flow, for example, have little to no
probability of deposition to a solid object. However, the results will have a general ap-
peal, since they will show how many particles will touch the cylinder surface. For cases
where there is no probability of deposition, the touching particles may lead to erosion
of the cylinder. See e.g. Fan et al. [20] for a study of erosion due to particle impaction.
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10 Chapter 1. Introduction and background

Figure 1.1: Schematic drawing of biomass combustion. Heat from a gas flow containing particles,
is exchanged to a working fluid (typically water) in a heat exchanger. The heated working fluid
can be used for district heating of buildings or to produce electricity. Particle deposition on the
heat exchanger will cause problems in terms of loss of efficiency and maintenance costs.

The main objective of this project is to study the effect of turbulence on the particle
deposition. Capture efficiencies for turbulent flows are compared with results from lam-
inar flows. Results have been produced by numerical simulations. Chapter 2 describes
the equations that need to be solved for the fluid and the particles. Chapter 3 explains
the methods and approaches used in this work, chapter 4 discusses choice of different
parameters used, while chapter 5 presents and discusses the results.

1.2 Turbulent flow

Turbulent flows can easily be observed in our daily life. The smoke coming out of a
chimney and the water in a rocky river have characteristics we call turbulent. Turbulence
is irregular and seemingly random and chaotic. Mathematically, we can say that the
velocity field of a turbulent flow, u(x, t), varies significantly in both position and time. A
large span of length and time scales is present. This can be seen in figure 1.2. Turbulence
is three dimensional by nature. Even if turbulence is produced by two dimensional
geometry, turbulent eddies will evolve in all three dimensions. Turbulent flows are also
dissipative, meaning that kinetic energy is lost to other energy forms such as heat and
sound. This means that turbulence needs a source of energy to be maintained.

When describing turbulence, one often looks at statistical averages instead of instan-
taneous values. Furthermore, it is useful to look at fluctuating quantities, where the
mean values have been subtracted from the instantaneous values. This work follows the
notation

u = U + u′,

10



1.2. Turbulent flow 11

Figure 1.2: A photo of water flow in the Niagara River. We can see that the largest turbulent
eddies span about half the image. But we can also see smaller eddies. All the way down to the
pixel size of the image we can distinguish turbulent structures. It is apparent that in this flow,
a large span of length scales is present. (Photo and copyright by Mark Visosky)

where u is the instantaneous velocity, U is the mean flow velocity and u′ is the fluctuating
velocity. It is important to emphasize that these are velocity values for each point in
space. We are, however, sometimes only interested in the overall mean flow in the whole
domain. This is referred to as U, given by

U =
1

V

∫

V
Udx,

where V is the volume of the domain. Similarly, we can express the fluctuating velocities
in terms of their root mean square value for the whole domain, giving an indication of the
overall turbulent intensity. The root mean square velocity of the fluctuations is defined
as

urms =

√

1

V

∫

V
u′2dx.

In laminar flows, which are highly ordered and the mean flow equals the instantaneous
flow, one often describes the flow with the velocity field, u(x, t). This can be done with
turbulent flows too, but since turbulence consists of rotational structures, one can also
describe turbulent flows with the vorticity field, ω(x, t). For visualization purposes, the
vorticity is a useful quantity to plot. The vorticity field is the curl of the velocity field

ω = ∇× u.

11



12 Chapter 1. Introduction and background

(a) ωz (b) ωx

Figure 1.3: Snapshots of vorticity at Reynolds number Rec = 420. Fig. (a) shows vorticity in
the spanwise (z) direction, ωz, while fig. (b) shows vorticity in the streamwise (x) direction, ωx.
At this Reynolds number, the vortex street has a three dimensional nature.

1.3 Cylinder in cross flow

Flow dynamics in the flow around a circular cylinder has been subject to extensive
research for several decades. Its importance in engineering applications is clearly a
driving factor. But also the simplicity of the setup may be tempting for laboratory
and computational experiments. The flow around a cylinder can be divided into three
components: a boundary layer, a separating free shear layer and a wake. Vortices,
rotational structures in the flow, are produced in the cylinder wake, but, as pointed out
by Williamson (1996, [13]), the behaviour of these vortices is strongly dependent on the
Reynolds number. The Reynolds number for a flow around a cylinder is given by

Rec =
dcU0

ν
, (1.1)

where dc is cylinder diameter, U0 is the mean flow velocity and ν is the kinematic viscosity
of the fluid. In the wake of the cylinder, vortices of opposite direction of rotation are
formed. For sufficiently large Reynolds numbers, these will be shed from the cylinder
and form what is called a vortex street downstream from the cylinder. See figure 1.3
for snapshots of the vortex street. Williamson (1996, [13]) defines the following vortex
shedding regimes:

• Laminar steady regime (Rec < 49)
In this regime, a steady recirculation region of two symmetrically placed vortices
is formed.

• Laminar vortex shedding regime (Rec ∼ 49 to 190)
Vortices will no longer form a steady recirculation region, but will develop instabil-
ities. A vortex street will be formed, which is purely periodic and two-dimensional.

• 3D wake transition regime (Rec ∼ 190 to 260)
A transition regime with a gradually increasing influence from 3D effects. Sudden
discontinuities in vortex behaviour exist in this regime.

12



1.4. Existing literature 13

• 3D regimes (Rec > 260)
In the lower end of this region, with Rec less than about 1000, a very similar state
to the laminar vortex shedding regime exists, with the exception of the presence of
fine-scale streamwise vortex structures. Williamson (1996, [13]) further describes
flow behaviour for Rec > 1000, but this is not relevant in this work.

1.4 Existing literature

Particle deposition in boiler type power plants has always been an issue. Traditionally,
fossil fuels like coal or natural gas have been used. But biomass fuels are gaining pop-
ularity, and, as Zhou et. al. [10] show, they severely increase deposit problems. The
nature behind and mechanisms of the biomass deposits have thus been subject to recent
research. Zhou et. al. [10] and Srikanth et. al. [22] are examples of this. They show that
it is the large quantities of alkali in many types of biomass that will easily deposit on
solid surfaces. They also show that for relatively large particles, with diameters larger
than 10 µm, inertial impaction is the most important deposition mechanism.

Rosner & Tandon [6] and Wang [3] are examples of studies that focus on particle
deposition on a cylinder. Their focus is, however, on the sticking probability of the par-
ticles. Wang presents a theoretical study on sticking efficiency, and Rosner & Tandon
explain how sticking depends on velocity magnitude and direction, and how the deposit
layer will grow. The results they present are important for understanding particle depo-
sition on a cylinder, but are not directly relevant for this work. A perfect (100%) sticking
efficiency is assumed in this project. In more applied, single case studies sticking proba-
bility would be important to take into account. Haugen & Kragset [15] presents a recent
article discussing particle deposition on a cylinder in laminar flow. The conclusions they
make, will be discussed in relation to turbulent flow in this report.

Douglas & Ilias [14] have experimentally found capture efficiencies for a cylinder in
turbulent cross flow. The results they present will be compared with results found from
simulations in this work. The range of Reynold’s numbers in the article are, however,
larger than in this work. Besides Douglas & Ilias, no literature have been found on
cylinder deposition in turbulent cross flow.
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Chapter 2

Governing equation

Five fundamental equations are solved in this project, three for the fluid and two for the
particles.

2.1 The fluid equations

The essential equations that need to be solved are the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

and the Navier-Stokes equation

∂u

∂t
+ u ·∇u = −

1

ρ
∇P +

1

ρ
∇ · τ +

F

ρ
, (2.2)

where ρ is the fluid density, u is the velocity, P is the pressure, τ = 2ρνS is the stress
tensor, S = 1

2

(

∇u + (∇u)T
)

− 1
3I3∇ ·u is the traceless rate of strain tensor, I3 is the

three by three identity matrix and ν is the kinematic viscosity. F is the sum of all body
forces acting on the fluid, e.g. gravity. When inserting particles in the flow, the particles
can have an influence on the fluid through a force Fp−f . This force is, however, neglected,
because relatively few particles are inserted, and their sizes are small compared to the
dominant flow structures. The set of equation (2.1) and (2.2) are often referred to as
the Navier-Stokes equations.

Compressible flow is considered. Thus an isothermal equation of state is used to
obtain closure of the PDEs, i.e.

P = ρc2, (2.3)

where c is the speed of sound. Now, the five unknown variables (P , ρ and three velocity
components ui) can be found from the five equations ((2.1), (2.3) and three components
of (2.2)).

14



2.2. The particle equations 15

2.2 The particle equations

While the fluid equations are solved in an Eulerian formalism, the particle equations are
solved in the Lagrangian formalism. This means that the fluid equations are solved at
fixed grid points in our domain, while the particles are tracked individually from time
step to time step. The particle equations consist of the equation for particle position, x,

dx

dt
= v, (2.4)

and the equation for particle velocity, v,

dv

dt
=

1

mp

∑

Fi, (2.5)

where mp is particle mass and
∑

Fi is the sum of all the forces acting on the particle.
Relevant particle forces include the drag force FD, the gravity force Fg, the lift force FL,
the inter particle force Fp−p, the thermophoretic force FT , the force due to Brownian
motions FB and the particle wall force FW . To make a completely realistic simulation,
all these forces would have to be accounted for. Particles touching the wall are assumed
to be deposited and are removed from the simulation, thus the particle wall force, FW ,
is not relevant to include. The particles inserted are small enough that the gravity force,
Fg , can safely be disregarded. The particle drag force, FD, will be discussed in the next
section. Implementation of the other relevant forces is beyond the scope of this project.

2.2.1 The particle drag force

Particles are assumed to have spherical shape. According to Crowe et. al. (Chapter 4,
[2]), the drag force is given by

FD =
1

2
ρCDA |u − v| (u − v) /Cc, (2.6)

where ρ is the density of the fluid, and A = πr2
p is the cross sectional area of the particle,

rp is particle radius, u is the velocity of the fluid, v is the velocity of the particle,

Cc = 1 +
λ

rp

(

1.257 + 0.4e(−1.1rp/λ)
)

(2.7)

is the Stokes-Cunningham factor, and λ is the mean free path for a typical molecule in
the gas. The Stokes-Cunningham factor takes into account that for very small particles
the surrounding medium is no longer a continuous fluid, but rather distinct molecules.
The constants in Cc have been found empirically1, and varies slightly in magnitude. The
constants used in (2.7) are those found by Davies (1945, [4]).

1An expression for the correction of the drag factor was first found by Millikan (1923) as a part of
his oil drop experiment

15



16 Chapter 2. Governing equation

Assuming air at room temperature, λ = 67 nm is a commonly used value. All parti-
cles studied in this work will be in the micrometer range, i.e. λ/rp ≪ 1. The quantity
Kn = λ/rp, is referred to as the Knudsen number. Kn ≪ 1 is valid in the continuum
regime, and in this regime the Stokes-Cunningham factor can be neglected [27]. Thus
the results presented here will be general for particles in the continuum regime, but will
not be correct when Kn approaches unity.

The drag coefficient is given by

CD =

{

0.44 for Rep > 1000
24

Rep

(

1 + 0.15Re0.687
p

)

for Rep < 1000
, (2.8)

where Rep is the Reynolds number based on the particle diameter, dp and the relative
slip velocity between the particle and the fluid:

Rep =
dp |v − u|

ν
. (2.9)

With particle diameters in the micrometer range, kinematic viscosity around ν ≃ 10−4 m2/s
and particle velocities similar to the fluid velocity, we can see that Rep is lower than 1,
and thus it is the second case of the drag coefficient, CD, that is the relevant one. Fur-
thermore, we see that the second term is negligible, i.e. 0.15Re0.687

p << 1 for Rep < 1.
Equation (2.8) can then be simplified to

CD =
24

Rep
=

24ν

dp |v − u|
. (2.10)

The drag force, (2.6), then simplifies to

FD = mp (u − v) ·
12ρνπ

(

1
2dp

)2

mpdpCc
=

mp

τp
(u − v) , (2.11)

where we have introduced the particle response time, τp,

τp =
mpdpCc

12ρνπ
(

1
2dp

)2 =
ρpd

2
p

18ρν
. (2.12)

A common way of describing particles in fluid flow, is by introducing the Stokes
number. The Stokes number is defined as the particle response time, τp, divided by
some characteristic time for the fluid, τf , i.e.

St =
τp

τf
. (2.13)

The Stokes number tells us to what degree the particle motion is controlled by the
particle’s own inertia. Or, vice versa, to what degree the particle will follow the flow.
For St ≫ 1 the particles will move in straight lines and collide with solid bodies in the
flow, whereas for St ≪ 1 the particles will follow the streamlines. For a cylinder in a

16



2.2. The particle equations 17

cross flow, a characteristic time is τf = rc/U0, where rc is the radius of the cylinder, and
U0 is the mean flow velocity. Using (2.12), the Stokes number is expressed as

St =
ρpd

2
pU0

18ρνrc
. (2.14)

Using equations (2.5) and (2.11), we can simplify the equation for the particle velocity
to

dv

dt
=

U0

St · rc
(u − v) . (2.15)

We see that the acceleration of the particles has an inverse proportionality with the
Stokes number. Large Stokes numbers will have lower acceleration, as expected.

17



Chapter 3

Method of solution

3.1 Numerical methods

Analytical solutions to turbulent flows do not exist, therefore a numerical method must
be used to solve the equations. Different numerical approaches can be used. Regardless
of the approach, a computational grid must be chosen. At each grid point, also called
mesh point, the relevant equations are solved for the fluid. This process is repeated
at every given time interval, referred to as the time step. The grid needs to be three
dimensional, because of the three dimensional nature of turbulence.

Direct Numerical Simulations (DNS) solve the Navier-Stokes equations directly. The
clear advantage of using DNS is that no simplifications or approximations are used when
solving Navier-Stokes. For this reason, DNS is considered as reliable as real laboratory
experiments, with the advantage of no instrumental and measurement errors. See e.g.
Kim et. al. [11] for a comparison of DNS and lab results. But, DNS has one major
drawback - it requires a huge amount of CPU time. Because of this, DNS studies are
mostly done with super-computers. Due to the rapid development of computer hardware,
the DNS possibilities improve year by year. But still, DNS is restricted to relatively low
Reynolds numbers to keep mesh spacing and time steps acceptably large.

Reynolds-averaged Navier-Stokes (RANS) is another method used for studying tur-
bulent flows. In RANS the Navier-Stokes equation is time-averaged, and modelling is
included to achieve simplification and closure of the equations. Unlike DNS, where the
instantaneous flow field is solved, RANS tries to find the statistical (mean) evolution of
the flow. Many different RANS models exist, some of them are specialized for certain
types of flow. Computational fluid dynamics (CFD) tools for industrial purposes are
typically using RANS. RANS computations requires considerably less CPU time than
DNS, but the result is always dependent on the correctness of the modelling used.

A third way of simulating turbulence is using Large Eddy Simulations (LES). LES is
essentially the same as DNS, except that the grid is not fine enough to resolve all scales.
Therefore, a sub grid scale model is used to model the turbulent structures smaller than
the grid separation. The small scales have, to some extent, a universal character. They
are isotropic and not affected by the flow geometry. Therefore, relatively simple models

18



3.2. The Pencil Code 19

can be used to represent the smaller scales [1]. The large scales, which are affected by
flow geometry and are not universal, are computed explicitly. In terms of computational
cost, LES lies between RANS and DNS.

In this work, DNS is used. The effect of turbulence on particle deposition on cylinders
is not a well investigated subject. Usually, RANS results are verified by comparison with
lab and/or DNS results. For mean flow characteristics around a cylinder, a LES would
probably be sufficient, but since particle deposition is studied, the behaviour of the small
scale turbulence close to the cylinder surface might be very important. By using DNS in
this work, hopefully some general conclusions can be made. At later stages, with more
specialized applications of the simulations, RANS and LES can be considered.

3.2 The Pencil Code

The simulations in this project was run with The Pencil Code [23]. The Pencil Code is a
high-order MPI (Message Passing Interface) code, primarily designed to deal with weakly
compressible turbulent flows. Initially, it was created for solving Magnetohydrodynamics
(MHD) problems. MHD is the field which studies the dynamics of electrically conducting
fluids (e.g. plasmas). But because of its modular nature, The Pencil Code can easily be
modified for other applications. In this project, magnetic and electric forces are disabled,
but modules for particle tracking and solid bodies (i.e. cylinder) are included.

As pointed out by Moin & Mahesh [19], spectral methods (solving the equations
in Fourier space) are superior to spatial derivative schemes in terms of differentiation
error. For this reason, spectral methods have weaker requirements to mesh spacing, and
are commonly used in turbulence studies. The Pencil Code does, however, use a sixth
order spatial derivative. This is mainly due to two reasons. Firstly, easier parallelization
of spatial derivatives is of great importance. Secondly, spatial derivative schemes have
more flexibility in boundary conditions, whereas the spectral methods are difficult to
implement with non-periodic boundaries. In addition, finite difference schemes typically
have lower levels of aliasing error than spectral methods. For time stepping, a third-order
Runge-Kutta scheme is used. This choice is based on error minimization and memory
usage arguments [23].

The Pencil Code is typically used with many CPUs working in parallel. The compu-
tational grid is split up evenly and one sub-domain is distributed to each CPU. In order
to be CPU cache efficient, the equations are solved along one-dimensional arrays, “pen-
cils”, hence the name Pencil Code. Since sixth order derivation is used, the code needs
three grid points in each direction to do a derivative. Consequently, at each sub-domain
boundary, data from three additional grid points must be aquired from the neighbouring
CPU. A three grid point thick “ghost zone” layer along the domain boundary of each
processor is therefore communicated between CPUs using MPI.

19



20 Chapter 3. Method of solution

3.3 Length and time scales

In a DNS it is of vital importance that all scales are resolved. The smallest length
and time scales are dictated by the physics, and we need to be sure that the grid point
spacing and time steps are small enough to include these.

In turbulent flows a wide range of length scales are present. Length scales can
typically be represented by the diameter of eddies. The largest scales are limited by the
boundaries and solid objects in the flow. There is a cascade from big to smaller eddies,
until at some minimum length scale the flow structures are destroyed by viscous forces.
The Kolmogorov length scale

η =

(

ν3

ǫ

)1/4

, (3.1)

where ǫ is the energy dissipation rate, is typically quoted as the smallest length scale
that needs to be resolved. ǫ can be expressed as

ǫ = 2νS2, (3.2)

where S is recognized from equation 2.2 as the traceless rate of strain tensor. S2 =
∑

S2
ij

is a scalar quantity.

This means that the mesh spacing in the grid can not be larger than η in order
to resolve the smallest scales. However, as explained by Moin & Mahesh [19], this
requirement is probably too strict. It has been shown that as long as the mesh spacing
is O(η), the resolution is fine enough. As will be shown in section 3.4, this requirement
has been fulfilled.

In the same manner, time scales are typically represented by the rotational period of
eddies. Then it is obvious that also a wide range of time scales are present in turbulent
flows. As shown by Moin & Mahesh [19], the Courant-Friedrichs-Lewy (CFL) number
must be sufficiently low to minimize computational error. In the Pencil Code [23], the
CFL number is implemented as

cCFL =
umax∆t

∆h
, (3.3)

where ∆t is the time step, ∆h is the minimum mesh spacing and umax = max(|u|+ c) is
the maximum velocity, and c is the sonic speed. The CFL number controls that a fluid
element at maximum velocity, including movements in shock waves, cannot go past more
than one mesh point within one time step. With cCFL > 1 this would be possible, and
obviously the code would be numerically unstable. By advice from previous experiences
with The Pencil Code, the CFL number used is cCFL = 0.4. This means that the time
step is given by

∆t = 0.4 ·
∆h

umax
. (3.4)

Because umax is computed at each time step, ∆t is not a constant. For statistically
steady flows, however, the variations are small.
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Mean flow
No mean flow

Figure 3.1: Overview of computational domains. In the cubic box (with side lengths Lxyz) to the
left turbulence is created by forcing at large scale, creating homogeneous, isotropic turbulence.
Then this is used as inflow in the main computational domain on the right.

3.4 Initial and boundary conditions

Figure 3.1 gives an overview of the computational domains and the axis directions. First,
turbulence is created by forcing in a cubic domain, then this turbulence is used as inflow
in the second domain with the cylinder.

When describing side lengths, Li, repeated indices indicate that the side lengths are
equal in size in these dimensions, i.e. Lij indicate that Li = Lj .

3.4.1 Creating turbulence by forcing

In a cubic domain with periodic boundary conditions in all directions and no mean flow,
turbulence is created by forced input of energy. The turbulence will, after developing
to a statistically steady state, be isotropic and homogeneous. In most applications, for
example in a channel or duct flow, the turbulence will have some degree of anisotropy
and inhomogeneity. In this study, however, the implementation of the turbulence is
desired to be as general as possible.

The forced input of energy is implemented as a body force acting on the fluid, and
included in the Navier Stokes equation (2.2). It is the same implementation as used by
Pearson et. al. [21], given by

f(x, t) =
F (x, t)

ρ
= f0e cos [ik(t) · x + iφ(t)] , (3.5)

where k(t) is a wavenumber with direction and magnitude chosen randomly at each
time step, but the magnitude is always close to the average (design) wavenumber kn,f ,
i.e. kn,f − 0.5 < |k(t)|/k0 < kn,f + 0.5. kn,f is given in units of kn, which is non-
dimensionalized by kn = k/k0. k0 = 2π/Lxyz is the wavenumber corresponding to a
wavelength equal to the side lengths of the domain, Lxyz. φ(t) is a phase between
−π and π, and is also chosen randomly at each time step. e is a random unit vector
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22 Chapter 3. Method of solution

Figure 3.2: Energy spectrum (Fourier decomposition of energy) in a log-log plot. k is normalized
by k0 = 2π

Lxyz

, where Lxyz is the length of the computational domain in all three directions.

Energy is forced in to the fluid at kn ≃ 1.5 (solid line) and at kn ≃ 5 (dotted line).

perpendicular to k, with direction determined by φ(t). f0 is the forcing amplitude.
Because of the random choices at each time step, the forcing is δ correlated in time.
With this implementation of forcing, two parameters determine the behaviour of the
turbulence; f0 and kn,f .

Two different scales of forcing are investigated, namely kn,f = 1.5 and kn,f = 5. The
forcing amplitude, f0, is chosen to achieve a maximum velocity, umax, of around 60−80%
of the mean flow velocity, U0, in the cylinder simulation.

In figure 3.2 the energy spectra at the two different kn,f ’s are plotted. We can see that
the energy spectra have their maxima at the wavenumbers of the forcing, i.e. at kn ≃ 1.5
and kn ≃ 5. The cascade of energy from small k to large k is as expected for realistic
turbulence. From Pope (Turbulent Flows, ch. 6 [1]) we know that isotopic energy spectra
should exhibit the power-law behaviour E(k) ∝ k−5/3, in the inertial range. The inertial
range is characterized by length scales l given by η ≪ l ≪ l0, where l0 is the length of
the largest length scales present. This behaviour, also called Kolmogorov scaling, is well
established through many experimental and DNS results (see Saddoughi & Veeravalli
1994, figure 9 [9] for a good comparison). However, the exact scaling exponent,−5/3,
has been subject to discussion however. Kaneda et. al. [26], for example, found the
scaling to be E(k) ∝ k−5/3−0.1. Also, as described by Dobler et. al. [24], a bottleneck
effect exists near the dissipation wavenumber. The bottleneck effect can be seen as a
positive variation from the power-law behaviour in the lower end of the inertial range.
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Figure 3.3: Relative Stokes number, StE/St, as a function of wavenumber.

However, in this case, the scale separation is not big enough to have a sufficiently large
inertial range. Thus, the power-law behaviour and bottleneck effect are not observed.

As mentioned in the previous section, in order to resolve all turbulent scales, the
mesh spacing, ∆h, cannot be larger than O(η). In this project, sufficiently resolving the
boundary layer around the cylinder sets the strictest requirement on the mesh spacing.
And, since the grid resolution of the cylinder flow and turbulent forcing simulations are
matched, the mesh spacing of the turbulent forcing is actually smaller than neccessary. In
the kn,f = 1.5 simulation, for example, the ratio of the grid spacing and the Kolmogorov
length scale was ∆h/η = 0.26. Together with the expected decay of the power spectra
seen in figure 3.2, this shows that all turbulent scales are well resolved.

Similar to the regular Stokes number defined for cylinder flow, we can define an eddy
Stokes number which express the ratio of the particle response time to the characteristic
eddy turnover time, i.e.

Steddy =
τp

τeddy
, (3.6)

which tells us how large or heavy a particle is compared to a turbulent eddy. The
characteristic eddy turnover time is defined as

τeddy =
leddy

ueddy
,

where leddy = Lxyz/kn and ueddy =
√

2E(k) both varies with eddy wavenumber. It is
expected that particles with Steddy ≫ 1 will not be affected by the turbulent eddies at
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24 Chapter 3. Method of solution

all, while particles with Steddy ≪ 1 will follow the eddy streamlines perfectly. From a
rather handwaiving argument, particles with Steddy around the order of 1, however, are
believed to be subject to different eddy interactions, e.g. centrifuging out of the eddy,
that can be relevant to particle deposition. In figure 3.3 the relative Stokes number,
Steddy/St, is plotted against wavenumber for the two cases of turbulent forcing. Clearly,
Steddy will be smaller than 1 for all particles with St < 10. The exception is particles
with St = 10, that will have Steddy ≃ 1 for kn = 5 eddies from the kn,f = 5 turbulence.
Particles with St = 10 will, however, easily deposit on the cylinder, and the turbulence
is not believed to have a large effect on the capture efficiency for them. In general, we
conclude that the turbulence studied in this project is not powerful enough to observe
eddy stokes numbers larger than or equal to 1. Since the eddy stokes numbers are always
small, we expect particle trajectories to be heavily influenced by the turbulence.

3.4.2 Flow around cylinder

The cylinder flow is simulated in a separate domain, with y and z side lengths equal to
the forcing domain, but with twice the x side lenth, i.e. 2Lyz = Lx, see figure 3.1. In this
domain a mean flow, U = U0x̂, is imposed. In y and z directions, boundary conditions
are periodic. In the x direction, however, this would not be practical, since we do not
want the vortex street of the cylinder to appear at the inlet. The boundary conditions
implemented for the x direction are the Navier-Stokes characteristic boundary conditions

(NSCBC), as described by Poinsot & Lele [12] and by Lodato et. al. [8]. NSCBC lets
us remove the fluid at the outlet, and we can specify a velocity field at the inlet. With
the current implementation in The Pencil Code, we need to make sure that we have no
negative velocities at the NSCBC boundaries, which limits the maximum intensity of
the turbulence we can insert.

The solid geometry of the cylinder is implemented using the immersed boundary
method. Using this method, we account for the solid by adding a virtual force term to the
Navier-Stokes equation, equation 2.2. To ensure a sharp wall separating the fluid and the
solid, ghost points (grid points) within the cylinder are assigned properties corresponding
to their respective mirror points in the fluid. The mirror point is the symmetrically
mirrored point, with respect to the boundary surface. This implementation ensures
that “passive” gridpoints inside the solid geometry is actively used by increasing the
resolution close to the boundary surface. For further information on the solid geometry
implementation, see Haugen & Kragset [15].

The pre-produced turbulence from the cubic domain is used as inflow condition in
the main domain, looping over the grid planes normal to the flow. The turbulent velocity
field is imposed on top of the mean flow, i.e. uinlet = U0x̂ + uturbslice, where uturbslice is
the velocity field of a yz slice of the cubic domain and uinlet is the velocity field of the
inflow boundary in the main domain. At the first timestep, the turbulent slice with the
largest x value is chosen, x1 = xmax. At the subsequent timesteps, the turbulent slices
are chosen according to the distance traveled by the fluid at mean flow for each timestep,
i.e. U0∆t. The position of the slice to be extracted at timestep i, xi, is chosen according
to xi = xi−1 − U0∆t. When the slice position, xi, does not correspond exactly with a
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Figure 3.4: Snapshots of the z-component of vorticity, ωz, in the xy-plane of the main computa-
tional domain. This shows how the turbulent inflow interacts with cylinder flow. The turbulent
inflow is from a presimulation with forcing at kn ≃ 5.

grid plane (most of the time), uturbslice is chosen by a linear interpolation between the
preceding and succeding grid planes. When the entire x range of the cubic domain has
been covered, the x position jumps back to the start (the periodic boundary ensures that
there is no discontinuity). An important note is that this turbulence implementation
would not work for a channel or duct flow, where there is a mean flow profile rather than
a universally constant mean flow.

Figure 3.4 shows how a change from laminar to turbulent inflow evolves through
the main computational domain. We can see that the turbulence has a decaying trend.
This is due to the energy dissipation of the turbulence, and the fact that there is no
energy input. It is assumed that using a superposition of a one dimensional mean flow,
U = U0x̂, and a turbulent flow field, u′, is a realistic and correct way of implementing
turbulence.

3.4.3 The particles

When the turbulent flow around the cylinder has reached a statistically steady state
(lower right snapshot of figure 3.4), particles are released. Particle velocities at release,
are set equal to the mean flow velocity U0. The boundary conditions for the particles
are equal to those of the fluid; the y and z boundaries are periodic, while the particles
are removed at the outflow boundary.
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dc
lp

Figure 3.5: Sketch showing the quantities in the capture efficiency formula. lp is the width of the
particle insertion box and dc is the diameter of the cylinder. When lp is varying a normalization
of the capture efficiency is needed, thus we include fA = lp/dc which says which fraction of
particles starts in front of the cylinder. (Figure dimensions are not to scale with actual values).

3.5 Capture efficiency

Particles colliding with the cylinder surface are removed and assumed to be deposited.
The capture efficiency, ηc, is expressed as

ηc =
NC

Ninit
=

Nc

N
· fA, (3.7)

where Nc is the number of collisions with cylinder and Ninit = N/fA is the number of
particles initially in front of the cylinder cross sectional area. N is the total number
of particles inserted, fA = lp/dc is the fraction of cylinder diameters, dc, spanned by
the width of particle insertion box, lp. See figure 3.5 for explanation. lp is chosen
to be sufficiently large, and varies between different turbulent inflows. To make the
results comparable, fA is included to normalize ηc and make the results comparable. A
discussion of what is a reasonable value of lp is included in chapter 4.

3.6 Two dimensional turbulence

Simulating turbulence in three dimensions is very costly in terms of CPU hours. Sim-
ulating in only two dimensions would be preferable if the results can be trusted. For
this reason, the 3D results produced in this work are compared with results from 2D
simulations. As mentioned earlier, turbulence is a three dimensional phenomenon. 2D
turbulence can, however, have a physical meaning where one dimension is heavily sup-
pressed by boundaries compared to the other two dimensions. A typical example of
this is weather phenomena in planetary atmospheres. The major difference between 2D
and 3D turbulence is the energy cascade. In the 2D case larger turbulent scales are
generated from smaller scales, which is called an inverse energy cascade [17]. This is in
strong contrast to 3D turbulence where the generation of smaller scales eventually leads
to energy dissipation.

As shown by Chertkov et. al. [16], a constant forcing in 2D turbulence leads to a
growing condensation of energy at the size of the system. For this reason, we cannot
pre-produce 2D turbulence by forcing in a 2D simulation, and get comparable results
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with the general 3D case. Thus, the turbulent inlet chosen, is just a 2D slice of the
turbulent forcing simulation used for the 3D inlet.
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Chapter 4

Parameter determination

4.1 Sound speed

As seen from equation 3.4, the sound speed chosen will have an impact on the length
of each time step. Choosing a very high speed of sound (e.g. c = 340 m/s for a gas
similar to air at room temperature) will of course be an intuitive choice, but at a huge
computational cost. The Mach number is defined as

M =
max(|u|)

c
, (4.1)

where u is the velocity field and c is the speed of sound. It is desired to minimize the
magnitude of the sound speed, while the Mach number is still low enough. An adjustment
in Mach number means, in essence, an adjustment in the compressibility of the fluid,
where an increase in Mach number corresponds to an increase in compressibility. We
want to maximize the Mach number in order to save computational expenses, but still
have results general for weakly compressible flows.

In order to investigate the impactions of the Mach number on the turbulence, and in
particular how the inlet boundary condition was able to handle Mach number differences,
power spectra from simulations with different sound speeds were compared. For this
purpose, two cubic domains with grid resolution 128 × 128 × 128 were used. In the
first domain, forcing was included to create turbulence, and all boundary conditions
were periodic. In the second domain, this turbulence was used at the inlet, in the
same way as turbulence is introduced when simulating with particles. One dimensional
power spectra is inspected (Fourier transform in one dimension at a time), because the
boundary conditions for the x direction in the second domain are not periodic and thus
the power spectra for the x direction are affected by this. Fourier transform only works
well for infinite dimension lengths, i.e. periodic boundary conditions, thus the x direction
power spectra will be dramatically different than the other two dimensions. The one
dimensional power spectra found, are defined as the sum of all single grid line spectra
in the given direction.

In figure 4.1, the first simulation with forcing was ran with a sound speed of c =
20 m/s, and a forcing amplitude giving umax ≃ 2.9 m/s resulting in a Mach number of
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M = 0.145. This flow field was then used as inflow in simulations with different sound
speeds, ranging from c = 10 m/s to 160 m/s. In these simulations the turbulent flow
field was put on top of a predefined mean flow velocity of U0 = U0x̂ = 5 m/s. Some
damping in the NSCBC parameters of the inlet resulted in a maximum velocity of around
umax ≃ 7.5 m/s in the second domain. Inspecting the y and z directions in the figure,
we can see a converging trend of the power spectra with decreasing Mach numbers. The
entire range of turbulent scales is better represented with a smaller Mach number, and
more similar to the first simulation with forcing.

In figure 4.2, two different cases are considered. The first simulation with forcing was
ran with two different sound speeds, c = 20 m/s and c = 80 m/s. Both these simulations
are used as input in the second domain with c = 80 m/s and compared. The reason for
this test was to see if a sudden jump in Mach number from one domain to another would
have an effect on the power spectra. As can be seen from the figure, the curves show
the same behaviour, which justifies choosing a smaller sound speed in the first domain
than in the second domain.

From the results presented here, the choice was made to use c = 20 m/s for the first
domain with forcing, and c = 40 m/s for the second domain. The difference in sound
speed may appear non-physical, but is justified by figure 4.2, and from figure 4.1 it is
concluded that 40 m/s is good enough for representing all scales in the second domain.

There is a discrepancy in the y power spectrum of the forcing domain seen in the
figures. Power spectra from x and z directions are more or less equal, indicating isotropy,
but the y direction spectrum deviates from the other two (showing a steeper decay in the
power spectrum towards the highest wavenumbers). Repeated attempts to find the cause
of this discrepancy in the plotting code have not succeeded. Hopefully, the turbulence
is infact isotropic, and a bug or error in the plotting code is the cause of this. The fact
that the second simulation with turbulent inflow does not converge towards the same
deviating spectrum as the forcing in the y direction is a positive indication that this is
a post processing error.
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Figure 4.1: One dimensional power spectra for a cubic domain with turbulent inflow. Different
sound speeds are compared. The sound speed of the turbulent forcing (at kn = 1.5) is c = 20 m/s



Figure 4.2: One dimensional power spectra for two different forcing simulations, one with c =
80 m/s and one with c = 20 m/s. And for two simulations with c = 80 m/s that use the different
turbulence cases as inflow. The purpose of the figure is to validate that two different sound
speeds in the two different domains give realistic results.



32 Chapter 4. Parameter determination

Table 4.1: Magnitudes of length parameters in units of Lyz.

Quantity Symbol Magnitude

Cylinder diameter dc 0.1685
Particle insertion width, laminar lp,l 0.1685

Characteristic eddy size, kn = 5 turbulence l5 0.2
Particle insertion width, kn = 5 turbulence lp,5 0.5

Characteristic eddy size, kn = 1.5 turbulence l1.5 0.667
Particle insertion width, kn = 1.5 turbulence lp,1.5 1.0

Particle insertion length, all cases tinsertU0 0.75

4.2 Particle insertion

Particles should be inserted sufficiently far upstream from the cylinder to make the
deposition results independent of initial position and injection velocity. Particles are
inserted with a constant number density within a given region, and they need some
time to disperse into different regions of the vortical structures, giving a more physical
particle position distribution. From this argument, it is concluded that particles will be
inserted at the inflow boundary.

The region for the particle insertion must be sufficiently wide¸ but not larger than
necessary, since particles far away from the cylinder will not give any better deposition
statistics, and will only consume computational resources. For laminar inflow, the in-
sertion width does not have to be larger than the cylinder diameter, since no particle
trajectories will cross the laminar streamlines. For the two cases of turbulent inflow,
however, the insertion width must be increased to account for the possibility of eddies
transporting particles normal to the mean flow (y direction) into a collisional course.

For forcing at kn = 1.5 the forcing wavenumber corresponds to an integral scale of
l1.5 = L/Lxyz = 1/1.5 = 0.667, where Lxyz is the side lengths of the cubic domain. Lxyz

equals Lyz in the cylinder computational domain. kn = 5 corresponds to an integral
scale of l5 = L/Lxyz = 0.2. The insertion widths of the two cases of turbulence are
shown in figure 4.3. The width of the particle insertion regions are denoted by lp,l, lp,5

and lp,1.5, which corresponds to laminar, kn = 5 turbulence and kn = 1.5 turbulence,
respectively.

Instead of inserting all particles at the first time step, they will be inserted at a
constant rate for a certain insertion time, tinsert. The magnitude of tinsert should be
large enough to span over several characteristic turbulent eddy times to give satisfying
statistics. Also, tinsert should span over several von Karman eddy cycles. In order to limit
the running time of the simulations, one tinsert was set for all cases; tinsert = 0.75Lyz/U0.

The magnitude of all particle insertion parameters are given in table 4.1.
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l5
lp,1.5l1.5

tinsert U0

p,5l

Figure 4.3: Black region shows particle insertion for laminar inflow (equal to cylinder diameter),
blue region for turbulent inflow with forcing at kn = 5 and red region for turbulent inflow with
forcing kn = 1.5. l5 and l1.5 shows the integral scale for the two forcing scales. The width of
the particle insertion regions are denoted by lp,l, lp,5 and lp,1.5, which corresponds to laminar,
kn = 5 turbulence and kn = 1.5 turbulence, respectively. The insertion time, tinsert, is equal for
all cases.
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Results and discussion

5.1 Definition of cases

The present results for turbulent inflow are compared to results from laminar inflow. The
Reynolds number for all simulations is Rec = 420. The capture efficiency of particles on
the cylinder is recorded and compared between cases. For simulations with turbulent
inflow, a cartesian grid of 1024 × 512 × 512 was used. For laminar inflow a 2D grid
of 1024 × 512 was used, unless otherwise specified. Section 5.2 will evaluate the choice
of simulating laminar inflow in only two dimensions, by comparing laminar capture
efficiencies in 2D and 3D. Section 5.3 will evaluate the independency of grid resolution, by
comparing the results from the 2D laminar simulation with results from a high resolution
(2048 × 1024) simulation.

The two cases of turbulence forcing, kn,f = 1.5 and kn,f = 5, are simulated in cubic
domains with a cartesian grid of 512 × 512 × 512. Results from turbulent inflows are
presented in section 5.4. The Mach number of the simulations is typically 0.125 <
umax/c < 0.25. Comparison with relevant experimental results is included in section 5.5.
In section 5.6, 2D simulations with turbulent inflow are compared to corresponding 3D
simulations. Finally, the results will be discussed in section 5.7. Statistical analysis of
the results is not included, due to the main object of the project being of a qualitative
nature.

Typically, 64 or 128 CPUs have been used in parallel for 3D simulations. Approxi-
mately 180000 CPU hours have been used in total.

5.2 Validation of laminar simulations in 2D

The particle deposition results for turbulent inflow are compared to results for laminar
inflow. The laminar inflow simulations are done in 2D. To validate that the laminar
simulations are independent of the third dimension, one 3D simulation with laminar
inflow was conducted. Figure 5.1 shows the capture efficiencies for the two cases. We
can see a good agreement of the results. The different behaviour of the 3D case at the
lowest Stokes numbers (St = 0.1 and St = 0.05) are probably caused by poorer statistics.
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Figure 5.1: Capture efficiencies, ηfront, for laminar inflow, 2D and 3D simulations compared.
Generally, a good agreement is observed. The statistics for the 3D simulation at the lowest
Stokes numbers is not very good.

Table 5.1: Back side capture efficiency for St = 0.1

Simulation case Particles inserted Particles deposited on back side ηback

2D 1024 × 512 2.88 · 105 8 ≃ 3 · 10−5

3D 1024 × 512 × 512 2.25 · 105 0 0

Less than 50 particles are deposited at these Stokes numbers, thus the uncertainty is
higher. The overall agreement between the curves is good, and this justifies the current
choice of simulating laminar inflow in only two dimensions.

For capture efficiency on the back side of the cylinder, ηback, we do not see the same
agreement between 2D and 3D simulations. Because of the low magnitudes of ηback

observed, the statistics are not good enough to make general conclusions. However, the
2D simulation shows a peak of back side capture efficiency for St = 0.1. Results from
Haugen & Kragset [15] correspond well with this. For the 3D simulation, no particles
deposit whatsoever on the back side. Results for St = 0.1 are presented in Table 5.1.
As explained in section 1.3, the cylinder wake will have three dimensional effects at
Rec = 420. The present comparison might indicate that 2D simulations will over predict
back side capture efficiency.
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Figure 5.2: Capture efficiency, ηfront, comparison between different grid resolutions. Results from
a simulation with grid resolution 1024× 512 (2), which is used for producing results for laminar
inflow, is compared with results from a simulation with grid resolution 2048 × 1024 (+).

5.3 Validation of grid resolution

The 3D simulations with turbulent inflow have a grid resolution of 1024 × 512 × 512,
and the 2D simulations with laminar inflow have a grid resolution of 1024 × 512. To
make sure the boundary layers around the cylinder are well resolved, a high resolution
2D simulation (2048 × 1024) have been conducted. Results for capture efficiencies are
presented in figure 5.2. The smallest particles would be expected to be more sensitive
to changes in roughness of the cylinder boundary, due to their tendency to follow the
fluid streamlines. Small changes in the fluid behaviour at the immediate vicinity of the
cylinder could potentially mean a large difference in particle deposition for the smallest
particles. We can see from the figure that some minor differences are seen for the smallest
Stokes numbers up to St = 0.25, but no drastic differences are observed. The overall
agreement between the results is very good, indicating that the capture efficiency is
independent of grid resolution. For the present Reynolds number, Rec = 420, we can
conclude that the resolution of 1024 × 512 is high enough to produce grid independent
results for particle capture efficiencies on the cylinder.
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5.4 Results with turbulent inflow

Results from the turbulent inflows are presented in figure 5.3a. Capture efficiencies from
the two turbulent simulations approach ηlaminar for the largest Stokes numbers, and for
the lowest Stokes numbers. But for the range in between a significant difference is seen.
To get a better understanding of the differences, figure 5.3b plots the relative differences
between the turbulent cases and the laminar case. The relative difference for turbulent
case i, is given by

di =
ηi − ηlaminar

ηlaminar
. (5.1)

In figure 5.3b we can see a peak of almost 1000% difference for kn = 1.5 turbulence.
The kn = 5 turbulence has a peak value of around 700% difference compared to ηlaminar.
The difference peak is narrower for kn = 5, however, as we can see that the kn = 1.5
difference peak extends more towards smaller Stokes numbers.

To get a better understanding of the differences observed in capture efficiency, the
distribution of angles has been recorded. Each particle depoisition position is stored,
by recording the cylinder angle, θ, at which the deposition occured. The cylinder angle
is defined by figure 5.4, where θ = 0 corresponds to the cylinder centerline anti-parallel
to the mean flow. Since the deposition is assumed to be symmetric with respect to the
cylinder centerline, only the absolute value of θ is stored. For each value of θ we can
define the deposition number, n̂(θ), as the number of particles deposited at that angle.
To get intuitive plots of the deposition angle distribution, a discretization of n̂(θ) is
needed, i.e.

n(θi) =

∫ θi+∆θ

θi−∆θ
n̂(θ)dθ, (5.2)

where 2∆θ is the discretization interval. ∆θ = 1◦ was found to be a reasonable dis-
cretization. In addition, a normalization of n(θi) is needed to account for the different
particle insertion dimensions for the different simulations (as described in section 4.2).
For the laminar and turbulent kn = 5 case, n(θi) have been normalized to match the
kn = 1.5 case.

Figure 5.5 shows plots of deposition angle distribution for four different Stokes num-
bers. Note that in addition to the discretization mentioned, the n(θi) elements are
smoothed (averaged) over neighbouring elements, giving a total smoothing interval of
6◦. The smoothing is included to give more intuitive plots for qualitative considerations,
at perhaps the cost of mathematical correctness. At St = 0.48, lower right plot, the
capture efficiency is roughly the same for the three cases. It can be seen that the depo-
sitions have relatively equal angle distribution as well, but the turbulent results have a
slightly wider angle distribution. St = 0.28, lower left plot, is the Stokes number where
the relative difference between kn = 5 turbulence and laminar capture, dk5, has its peak.
The kn = 1.5 turbulence have roughly the same value in capture efficiency at this Stokes
number, but as we can see from the figure, the angle distribution has a lower maximum
at the lower angles, but stretches out to wider angles, compared to the kn = 5 case.
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(a)

(b)

Figure 5.3: Figure (a) shows front capture efficiencies for Rec = 420 and forcing at kn = 5
(blue curve), kn = 1.5 (red curve), laminar inflow (dotted black). Figure (b) shows the relative
differences, di, between the turbulent and laminar inflows.
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Mean flow, U0

θ

Figure 5.4: Cylinder angle, θ, where θ = 0 defines the centerline of the cylinder, anti-parallel to
the mean flow. Only the absolute value of θ is recorded.

In the top right plot, we can see the angle distributions for St = 0.23, which is
the peak of the relative difference for kn = 1.5 turbulence. At this stokes number, the
laminar deposition is limited to angles lower than θ = 20◦. Depositions for kn = 5 goes
slightly wider, to θ = 25◦, and much more frequent within the same area. The red curve
for kn = 1.5 depositions the widest, to about θ = 35◦, and significantly higher than the
two other cases. All cases seem to have a maximum deposition at around 7 − 9◦. At
St = 0.18, top left plot, the relative differences are dk1.5 ≃ 7 and dk5 ≃ 1. As opposed to
the higher Stokes numbers, the angle distributions at this Stokes number have the same
widths, up to around θ = 25◦. n(θ) shows the same shape for all cases as well, but the
different amplitudes gives the different capture efficiencies.

The local minimum point seen in figure 5.5 at around θ = 12◦ for the laminar
results, as well as for the turbulent cases for the lowest Stokes numbers, is probably
related to the resolution of the simulation. Deposition angle distribution for a laminar
inflow is assumed to have a continuous and well behaved curve, thus the local minimum
point appears to be non-physical. The fact that the immersed boundary method used
to represent the cylinder at the cartesian grid is not perfect, but limited by the mesh
spacing, can probably explain this.

Haugen & Kragset [15] define three different impaction modes for different regions
of the Stokes number, for laminar inflows. The particles with largest Stokes numbers,
St > 0.5 (for Rec = 420), are captured because of the classical impaction mode, according
to Haugen & Kragset. In this mode, the particles have enough inertia to penetrate the
boundary layer. For Stokes numbers in the range 0.2 < St < 0.5 they define a boundary

stopping mode, where particles start lacking sufficient inertia to penetrate the boundary
layer. Particles in the smallest Stokes number range, St < 0.2, are believed to be
deposited due to the boundary interception mode where the particles follow the fluid
flow almost perfectly, but some are still impacted due to their finite radii touching the
cylinder. From figure 5.3a we can see that the capture efficiency is extremely dependent
on the Stokes number in the boundary stopping regime, spanning almost three orders
of magnitude. We can also see that it is in the lower end of this regime where the
turbulent deviations are largest. In the boundary interception and classical impaction
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Figure 5.5: Deposition density distributions, n(θ), for the different cases. Four different particle
sizes are plotted.
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modes, however, the results from turbulent inflows are similar to the laminar result. The
smallest particles inspected here, with St = 0.05, are in the upper end of the boundary
interception range, thus general conclusions for the entire boundary interception mode
cannot be made. However, the trend seen in figure 5.3a agree well with Haugen &
Kragset, which have inspected particles down to St = 0.01. It is believed that the
turbulence does not change the nature of the boundary layer around the cylinder to a
large extent, therefore the capture efficiency in boundary interception mode is assumed
to stay roughly the same.

Figure 5.6 shows the average time spent in the fluid for particles that are deposited on
the cylinder as a function of Stokes number. The time axis is normalized by τf = rc/U0,
where t/τf = 0 is the average time of particle insertion. At mean velocity, U0, the fluid
spends about t/τf = 10.9 from inlet to cylinder front. We can see that the smallest
particles spend more time in the fluid than the larger ones. This is because the smallest
particles slow down in the boundary layer. For the largest Stokes numbers, St > 0.5,
the particle time logically approaches the mean flow time, since initial particle velocity
equals U0.

Interestingly, particles in the kn = 1.5 turbulent case have a minimum point of
time spent lower than the mean flow time. This means that the deposited particles
must have been accelerated streamwise by the turbulent eddies present. This region of
net-accelerated particles stretches from about St ≃ 0.15 to St ≃ 0.25, and this region
coincides perfectly with the region where the kn = 1.5 turbulence have larger deposition
than the kn = 5 case. At the minimum point in the kn = 1.5 curve, at St = 0.23, the
average time spent in the fluid is about t/τf = 9, which means they had an average
velocity of around 20% more than U0.

5.5 Comparison with experimental results

Figure 5.7 compares the capture efficiencies found with other relevant results. Ranz &
Wong [5] experimentally found the capture efficiency within the Reynold’s number range
62 < Rec < 500. They worked with aerosol particles of glycerol with diameter between
0.3 and 1.4 µm produced by a smoke generator. The inflow was laminar, and their
smaller particle density relative to the fluid density, ρp/ρ, may indicate that lift forces
played an important role. Their results have been acquired from the article of Davies &
Peetz [18]. Muhr [25] presents an empirical fit model to laminar particle deposition for
the Reynold’s number range 50 < Rec < 500. Muhr’s theoretical expression was found
in Kasper et. al. [7]. Both works focus on large Stokes numbers, and show relatively
good agreement with the results from the laminar simulation in this work.

The turbulent data from Douglas & Ilias [14] are also presented in the figure. They
injected aluminum silicate pigments in the flow and recorded the deposition on steel
cylinders. The variations between laminar and turbulent capture efficiencies observed
in this work are only minor compared to the differences seen in Douglas & Ilias. At
least two factors can explain this, however. Firstly, the Reynolds number in Douglas
& Ilias’ experimental rig is much higher. The turbulence is created by a duct flow,
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Figure 5.6: Average time spent (in units of τf = rc/U0) in the fluid before deposition for different
Stokes numbers. t/τf = 0 is the initial time of the simulation. At mean velocity, U0, the fluid
spends about t/τf = 10.9 from inlet to cylinder front. Note that the minimum point of the
kn = 1.5 turbulence around St = 0.20 is below t/τf = 10.9.
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Figure 5.7: Comparison of results with experimental data of Ranz & Wong (1952), Douglas &
Ilias (1988) (turbulent) as well as the empirical model of Muhr (1976)
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with ReD = DU0/ν ranging from 20000 to 140000. With the cylinder diameter used,
this corresponds to cylinder flow Reynolds number, Rec, ranging from 170 to 7120.
The capture efficiency results are plotted without distinguishing the different Reynold’s
numbers, and are probably a mix within the specified range. The large difference between
the Reynold’s number in the present work, Rec = 420, and in Douglas & Ilias at up to
Rec = 7120, is probably the main reasons for the drastically different results.

Secondly, the present results do not simulate all possible deposition mechanisms.
Only drag force is considered, and even if 100% sticking efficiency is assumed, other
mechanisms can increase the capture efficiency. Thermophoresis and depositions due to
Brownian motions are believed to play a role, and this can be a plausible explanation of
the higher deposition seen in Douglas & Ilias.

It is important to note that Muhr defines the Stokes number, equation 2.14, with
cylinder diameter instead of cylinder radius. This means that the Stokes number used
here has half the magnitude of the Stokes number used in Muhr, for the same particle
size. Douglas & Ilias define what they call impaction parameter, Ψ, which also has this
factor two difference with the Stokes number definition used here. This difference have
been taken into account in figure 5.7.

5.6 Turbulent inflow simulated in two dimensions

As explained in section 3.6, huge computational costs can be saved if 2D simulations are
sufficient. We know that turbulence is three dimensional, and the exact same results are
not expected. But if simulations in 2D give roughly the same results as in 3D, it will be
useful to conduct 2D simulations for investigation of behaviour and trends of turbulent
particle deposition. Figure 5.8 presents results from 2D simulations with turbulent
inflows. The results show relatively good agreement with turbulent 3D simulations
for the largest Stokes numbers down to about St = 0.25. At Stokes numbers lower
than this, the 2D simulations under predict the capture efficiency compared to the 3D
simulations. The sudden jump in capture efficiency from St = 0.95 to St = 1.0 shows that
the uncertainty in turbulent simulations is larger for 2D simulations. This is probably
related to the difference in the 2D slice introduced at the inlet (the same 2D slice is used
for both simulations, but particles are introduced at different positions in the 2D slice).
The 3D simulations use the entire pre-forcing domain (512 × 512 × 512) as inflow, and
all 512 possible “2D-slices” are present. Thus, in addition to more realisticly simulating
the turbulence in all its three dimensions, the 3D simulations average over 512 different
xy−planes, giving more reliable results.

The largest difference seen for turbulent results in 3D is for kn = 1.5 turbulence
between St = 0.15 and St = 0.25. This clear difference is not seen in the 2D results
presented here. Maybe this difference could be seen in 2D if the turbulence was intro-
duced in another way. Turbulence snapshots are always seemingly random, and to get
reliable results, one must average over many random snapshots. 2D simulations could
maybe give better results if the turbulent inflow was continuously changing (not just over
a relatively short period), and if particles were inserted over a larger time span. But
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further investigation of this is outside the scope of this project. We can conclude that
qualitative considerations may be made from 2D simulations, but one must be careful
making general conclusions without 3D confirmation.

5.7 Discussion

Simulations of particle deposition on a cylinder in laminar flow, produced similar results
in 2D and 3D. It is concluded that 2D simulations are sufficient for finding front side
capture efficiency. For back side depositions, however, further comparison between 2D
and 3D simulations are needed before verifying the use of 2D simulations at the present
Reynolds number, Rec = 420. The independency of grid resolution was shown by com-
parison with results from a simulation with twice the grid resolution. This indicates
that the boundary layer around the cylinder is well resolved at the chosen resolution of
1024 × 512(×512).

The introduction of turbulence at the inlet increased the particle capture efficiency
for particles in the range 0.15 < St < 0.4. One possible explanation for the different
capture efficiencies seen for turbulent inflow is a change in the nature of the boundary
layer around the cylinder. If the turbulent eddies deform the boundary layer from
time to time, bringing particles closer to the cylinder than usual, an increased capture
efficiency would be expected. But if this was the case, we would expect higher capture
efficiency also for the smallest particles, in the boundary interception range. The trend
seen from the present result, at the upper end of the boundary interception range, does
not indicate any differences here. Figure 5.9 shows vorticity contours for laminar inflow,
as well as kn = 1.5 turbulence inflow. We can see that the vorticity is much stronger
in the boundary layer than outside. Figure 5.10 shows contours zoomed in around the
cylinder. The boundary layer on the cylinder front side looks very similar for the two
cases. The structure of the back side boundary layer and wake is altered, but this will
probably not have any effect on the front side capture efficiency.

If we assume that the boundary layer is not altered to a significant degree, how
can we explain the differences seen? Figure 5.6 gives a strong indication that velocity
changes play an important role. As a rough estimation, we can maybe divide our flow
into two parts; Free fluid flow and boundary layer. If the introduced turbulence only can
change the first part, the free fluid flow, then the turbulence can in essence only do two
things to affect the particle deposition. It can change the direction of particle velocities
into the boundary layer, and it can change the magnitude of particle velocities into the
boundary layer. The latter will probably give a larger effect, since a change in incoming
direction only means another path through the boundary layer. Changes in incoming
directions can, however, be an explanation of why the angle density distributions, n(θ),
are wider for the turbulent cases.

The Stokes number tells us how heavy a particle is relative to flow geometry, but it
does not tell us the exact velocity of a particle. For laminar flows, particles far from
boundary layers will approach the mean flow velocity, U0, which is included in the Stokes
number. When turbulent structures disturb the particle velocity, however, this will not
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(a) Capture efficiencies

(b) Relative differences, di.

Figure 5.8: Capture efficiency (a) and relative differences in capture efficiency (b). Red curve
for kn = 1.5 turbulence in 2D, blue curve for kn = 5 in 2D.
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(a) Laminar

(b) kn = 1.5 turbulence

Figure 5.9: Contours of z vorticity, ωz, for laminar and kn = 1.5 turbulent inflow. The vorticity
in the boundary layer is stronger than in the free flow.
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(a) Laminar

(b) kn = 1.5 turbulence

Figure 5.10: Contours of z vorticity, ωz, for laminar and kn = 1.5 turbulent inflow, zoomed at
cylinder. The front side boundary layer looks very similar for the two cases.
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Table 5.2: Capture efficiencies, ηfront, for laminar and kn = 1.5 turbulent inflows. The value for
St = 0.29 (in italic) has been found by interpolation.

Inflow St = 0.23 St = 0.24 St = 0.26 St = 0.28 St = 0.30 St = 0.29

kn = 1.5 9.6 · 10−3 1.04 · 10−2 1.41 · 10−2 2.28 · 10−2 3.08 · 10−2 -
Laminar 9 · 10−4 1.1 · 10−3 1.9 · 10−3 3.0 · 10−3 1.59 · 10−2 9 .4 · 10−3

be included in the regular expression for the Stokes number. If we assume that the inertia
of a particle, P = mpv, tells us of how far a particle can penetrate into the boundary
layer, then an increased velocity would give equal results to an increased mass. We saw
in figure 5.6 that certain deposited particles were about 20% faster than U0 from inlet
to cylinder, on average. This indicates that particles with higher velocity have a higher
probability of deposition. Equation 2.14 defined the Stokes number as

St =
ρpd

2
pU0

18ρνrc
.

Particles having different velocities than U0 when approaching the vicinity of the cylin-
der, will maybe have an effective Stokes number comparable to

Steff =
ρpd

2
pVp

18ρνrc
,

where Vp is the streamwise particle velocity when entering the boundary layer. The
relative difference in capture efficiency for kn = 1.5 turbulence, dk1.5, has a maximum
at St = 0.23. The turbulent capture efficiency for this Stokes number, is approximately
equal to the laminar capture efficiency at St = 0.29, as seen from table 5.2. The suggested
effective Stokes number will then be Steff = 0.29, which gives a particle velocity of
Vp = 1.26U0. The simulation with turbulent forcing at kn = 1.5 has root mean square
velocity urms = 1.48 m/s. With U0 = 5.0 m/s, the suggested particle velocity entering
the boundary layer will be Vp = 6.30 m/s. That is close to U0 + urms = 6.48 m/s, which
would be an expected average particle velocity.

To investigate the effect of increased velocity, we can define two estimates of effective
Stokes numbers, Steff,A and Steff,B, with corresponding particle velocities Vp = U0 +urms

and Vp = U0 + umax, respectively. Effective Stokes number B corresponds to particle
velocities increased by the maximum magnitude of the turbulent velocity fluctuations,
i.e. umax = max(u′). Figure 5.11 shows relative differences for these two estimates of
the effective Stokes number, where the capture effieciencies have been found by shifting
the laminar capture efficiency results according to

ηeff (Steff) = ηlami

(

St
Vp

U0

)

.

Obviously, these estimates are poor, since particles will be accelerated in all directions,
not only streamwise. But what we can interpret from this, in essence, is the capture
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Figure 5.11: Relative differences in capture efficiency, compared to laminar inflow, ηlami. The
two estimates of an effective Stokes number, Steff,A and Steff,B, are found by exchanging the
mean flow velocity in the Stokes number expression with U0 + urms and U0 + umax, respectively.
The maximum point of deff,B is outside the plot region, but the important observation here is
that Steff,B provides a theoretical maximum expression for the effective Stokes number.
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efficiency’s sensitivity to velocity changes. Because of the steep increase in η with in-
creasing St in the range 0.20 < St < 0.40, an adjustment to an effective Stokes number
gives the highest difference in this region. Since umax is the maximum velocity a particle
could possibly have, capture efficiencies for Steff,B is expected to give a theoretical upper
boundary of the turbulent capture efficiency. This is confirmed in the figure. Also, it
is important to note that increased particle velocity in the effective Stokes number, i.e.
Steff,B compared to Steff,A, shifts the center of the peak in relative difference towards
smaller Stokes numbers. This is due to that Steff,B represents a larger shift in the Stokes
number, thus a lower value of Steff,B corresponds with the original Stokes number where
η is steepest. This indicates that particles in the kn = 1.5 turbulent flow are accelerated
to higher velocities than in the kn = 5 case, since the peak of the relative difference is
shifted to the left, in addition to being larger.

The reason for increased turbulent capture efficiency is believed to be increased
particle velocities. The particles accelerated streamwise will have a higher probability of
deposition on the cylinder. Similarly, the particles accelerated anti-streamwise will have
a lower probability of deposition. The turbulence will introduce particles with an interval
of velocities in the vicinity of the cylinder, rather than particles with one distinct velocity,
as in the laminar case. But why do we not see the same increased capture efficiency for
the lowest Stokes numbers (St < 0.15)? As Haugen & Kragset argumented, particles
with sufficiently low Stokes numbers will follow the fluid flow perfectly. If the boundary
layer of the cylinder is unchanged when turbulent inflow is introduced, the turbulence
will not bring the smallest particles any closer to the cylinder. Perhaps more importantly,
as was seen in figure 5.11, the capture efficiency’s sensitivity to Stokes number is smaller
in this range of Stokes numbers. Therefore, a small perturbation in particle velocity
will not give a large difference in capture probability. The same applies for the larger
particles, with St > 0.5, where the capture efficiency flattens with increasing Stokes
numbers.

The small scale turbulence, with forcing at kn = 5, did not produce as large dif-
ferences as was seen in the large scale case. A possible explanation for this can be
that the smaller eddies give smaller accelerations in all directions. This will result in
fewer particles with an increased streamwise velocity. The spread of particle velocities
will probably be more compact. But still, the differences seen between laminar inflow
and kn = 5 turbulent inflow, is believed to be from the same cause as for kn = 1.5
turbulence. Small increases in streamwise velocity will help the particles penetrate the
boundary layer.

The implementation of turbulence in 2D simulations in this project showed that
somewhat similar results as from 3D can be expected. The previous argument that
an increase in particle velocity is the main factor that increases the turbulent capture
probability, does not indicate that 2D simulations are insufficient. Streamwise eddy ac-
celerations can occur also in 2D. The challenge when finding turbulent capture efficiency
in 2D, however, is to ensure that the turbulence is of a general character. In this project,
where a 2D slice of a 3D turbulence snapshot is used as turbulent inflow, the limited
variation in turbulent structures present is probably limiting the quality of the results.
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5.7.1 Possible sources of error

The turbulence that was created by forcing, was forced with an amplitude giving umax

corresponding to 60− 80% of the mean flow, U0, in the cylinder domain. The reason for
this choice was the desire to maximize the intensity of the turbulence without getting
trouble with the NSCBC boundary conditions. When comparing the turbulence created
by forcing at kn = 5 and kn = 1.5, we need to take into account that the larger eddies
with wavenumber kn = 1.5 contain more energy than the kn = 5 eddies when urms is the
same. The difference in total turbulent kinetic energy

Ẽtot =

∫

E(k)dk, (5.3)

reflects this1. For forcing at kn = 5, the total turbulent kinetic energy is Ẽtot,k5 =
68.5 J/kg, while the energy for the other case is Ẽtot,k1.5 = 73.3 J/kg. This difference is
small, however, compared to the large differences seen in capture efficiency of the two
cases with turbulent inflow.

Possibly a more important factor explaining differences between kn = 5 and kn = 1.5
turbulence is the dissipative effect. Since the cylinder flow domain has no turbulent forc-
ing, the turbulent energy will gradually decay. Because of the power being concentrated
around a higher wavenumber, the kn = 5 turbulence will be subject to a stronger decay,
and thereby the turbulence is more suppressed.

5.7.2 Further issues

Comparison with the experimental results of Douglas & Ilias [14] showed that higher
Reynolds numbers will probably give stronger turbulent effects on particle deposition.
When conducting direct numerical simulations, however, there is always the limitation
of the computational cost. The grid resolution requirements and running time dictates
limitations on the Reynolds number in DNS. The present limitation on the boundary
conditions, requiring non negative velocities at the inlet, set strict limitations on the
maximum intensity of the turbulence used. If this could be resolved, an increased rela-
tive intensity of the turbulence, urms/U0, would probably give stronger effects on particle
deposition. This way, the turbulent effects will be stronger, but without putting increas-
ing demands on the grid resolution. Also, by increasing the turbulent intensity, the eddy
stokes numbers will increase. This project has studied the mechanisms of turbulent par-
ticle deposition for eddy stokes numbers less than 1. To get an overall understanding of
the subject, the full range of eddy stokes numbers should be investigated.

In many applications, especially in heat exchangers, there will be a temperature
gradient close to the cylinder surface. This may implicate that thermophoresis will play
an important role of the particle behaviour in the boundary layer. Further investigation
of this effect for both laminar and turbulent inflow could give better understanding on the
relative importance of depositions due to thermophoresis and due to inertial impaction.

1The units here are confusing; [E(k)] 6= J/kg, since E(k) is energy per wavenumber, but [E(k)dk] =
[Ẽ] = J/kg
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Conclusion

Particle deposition on a circular cylinder was studied numerically using DNS. Results
for capture efficiencies for laminar inflow was compared with different cases of turbulent
inflow. Turbulence was created by isotropic forcing in a presimulation. Two different
scales of forcing were considered, kn = 1.5 and kn = 5. Particles were inserted and
tracked in a Lagrangian formalism. Drag force from the fluid was used to calculate
particle velocities. Particles impacting on the cylinder were recorded and removed from
the simulation. The Reynolds number of the cylinder flow, Re, was 420.

The turbulent inflow increased the capture efficiency substantially for particles with
Stokes numbers 0.15 < St < 0.4. Variations in particle velocities was showed to be an
important factor. Particles that are accelerated streamwise by the turbulent structures
increase their inertia and thus the probability to penetrate the boundary layer of the
cylinder. No indication of a change in the nature of the boundary layer was seen.
An effective Stokes number where particle velocity changes are taken into account, have
been suggested. The effective Stokes number relates the increased capture efficiencies for
turbulent inflow to the orginial Stokes number for laminar inflow. In the range of Stokes
numbers observed, 0.07 < St < 10.0, the capture efficiency is monotonically increasing
with increasing Stokes numbers. However, the sensitivity (steepness) of the capture
efficiency to the Stokes number is highest in the boundary stopping range 0.2 < St < 0.5.
Therefore, it is in this range that the turbulent velocity changes play the most important
role on depositions. The large scale turbulence, characterized by forcing at kn = 1.5,
produced significantly higher capture efficiencies than the kn = 5 turbulence. The higher
relative decay of the kn = 5 turbulence can partly explain this. The eddy Stokes number,
Steddy = τp/τeddy, was below unity for all Stokes numbers studied, indicating that all
particles would easily interact with the turbulent structures. High intensity effects from
Steddy ≥ 1 was not investigated.

All results from turbulent inflow were produced from 3D simulations. For laminar
inflow, 2D simulations were proved to be sufficient. In addition, 2D simulations with
turbulent inflow were conducted. Turbulent capture efficiencies from 2D and 3D simula-
tions showed a somewhat similar behaviour. Although the implementation of turbulence
in 2D was relatively simple, it can be concluded that simplifying the simulations to two
dimensions can be useful for qualitative observations.
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Appendix A

Parameters used in the Pencil

Code

Dimensional values used as input to the Pencil Code are represented here:

Size of domain, presimulation [m] 0.2 × 0.2 × 0.2
Size of domain, main simulation [m] 0.4 × 0.2 × 0.2
Coordinates of domain [m] x : 0.0 → 0.4 , y : −0.1 → 0.1 , z : −0.1 → 0.1
Cylinder center position, (x, y) [m] (0.2, 0.0)
Cylinder diameter dc = 0.0337 m
Mean flow velocity U0 = 5 m/s
Kinematic viscosity for Rec = 420 ν = 4 · 10−4 m2/s
Speed of sound, presimulation c = 20 m/s
Speed of sound, main simulation c = 40 m/s
Mass density, particles ρp = 1000 kg/m3
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