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Abstract
This Ph.D. thesis examines the challenging problem of how turbulence affects the growth of cloud droplets in warm clouds. 
Droplets grow by either condensation or collision. Without turbulence, the condensation process driven by a uniform 
supersaturation field is only efficient when droplets are smaller than 15 μm (radius). Gravitational collision becomes 
effective when the radius of droplets is larger than 50 μm. The size gap of 15–50 μm, in which neither condensation nor 
collision processes dominate droplet growth, has puzzled the cloud microphysics community for around 70 years. It is 
the key to explaining the rapid warm rain formation with a timescale of about 20 minutes. Turbulence has been proposed 
to bridge this size gap by enhancing droplet growth processes, and thereby, to explain rapid warm rain formation. Since 
cloud–climate interaction is one of the greatest uncertainties for climate models, the fundamental understanding of rapid 
warm rain formation may help improve climate models.

The condensational and collisional growth of cloud droplets in atmospheric turbulence is essentially the problem of 
turbulence-droplet interaction. However, turbulence alone is one of the unresolved and most challenging problems in 
classical physics. The turbulence–droplet interaction is even more difficult due to its strong nonlinearity and multi-scale 
properties in both time and space. In this thesis, Eulerian and Lagrangian models are developed and compared to tackle 
turbulence–droplet interactions. It is found that the Lagrangian superparticle model is computationally less demanding than 
the Eulerian Smoluchowski model.

The condensation process is then investigated by solving the hydrodynamic and thermodynamic equations using 
direct numerical simulations with droplets modeled as Lagrangian particles. With turbulence included, the droplet size 
distribution is found to broaden, which is contrary to the classical theory without supersaturation fluctuations, where 
condensational growth leads to progressively narrower droplet size distributions. Furthermore, the time evolution of droplet 
size distributions is observed to strongly depend on the Reynolds number and only weakly on the mean energy dissipation 
rate. Subsequently, the effect of turbulence on the collision process driven by both turbulence and gravity is explored. It 
is found that the droplet size distribution depends moderately on the mean energy dissipation rate, but is insensitive to the 
Reynolds number. Finally, the effect of turbulence on the combined condensational and collisional growth is investigated. 
In this case, the droplet size distribution is found to depend on both the Reynolds number and the mean energy dissipation 
rate. Considering small values of the mean energy dissipation rate and high Reynolds numbers in warm clouds, it is 
concluded that turbulence enhances the condensational growth with increasing Reynolds number, while the collision 
process is indirectly affected by turbulence through the condensation process. Therefore, turbulence facilitates warm rain 
formation by enhancing the condensation process, which predominantly depends on the Reynolds number.
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Sammanfattning

I denna avhandling utreds hur turbulens påverkar dropptillväxt i moln. Droppar
kan växa genom kondensation eller kollision. Utan turbulens sker kondensa-
tionstillväxten under konstant övermättnad och är bara effektiv när dropparnas
radie är mindre än 15 µm. Kollisioner som sker genom tyngdkraftens påverkan
blir effektiv när dropparnas radie är större än 50 µm. Hur dropptillväxten sker i
intervallet mellan dessa storlekar har förbryllat molnfysikforskare i 70 år. Att
förstå detta är nyckeln till hur det kan börja regna inom ca 20 minuter från ett
moln som bara har vattendroppar. Turbulens har föreslagits vara en process
som kan hjälpa molndroppstillväxten och därmed förklara hur det kan regna så
snabbt från ett vattenmoln. Moln är en integrerad del av klimatsystemet och
klimatmodeller är känsliga för hur dessa processer är beskrivna och leder till
osäkerheter. Förståelsen av hur regn bildas i moln utan iskristaller kan bidra till
förbättrad processbeskrivning i klimatmodeller.

Tillväxt av molndroppar i en turbulent atmosfär, genom kondensation och
kollision, kan beskrivas som frågan hur turbulens interagerar med droppar.
Turbulens är ett olöst och utmanande problem inom den klassiska fysiken. Att
studera droppars interaktion med turbulens är ännu mer utmanande eftersom
det är ickelinjärt och sträcker sig över många skalor i både tid och rum. För
att studera detta så har Euleriska och Lagrangska modeller utvecklats i denna
avhandling. Tester visar att den Lagrangska superpartikelmedtoden är mindre
beräkningstung än den Eulerska Smoluchowskimodellen.

Kondensationsprocessen är också studerad genom att inkludera de hydrody-
namiska och termodynamiska ekvationerna i direkta numeriska simuleringar
med dropparna beskrivna som Lagrangska partiklar. Storleksfördelningen av
dropparna breddas genom fluktuationerna i övermättnad, utan turbulens leder
kondensationsprocessen till en smalare storleksfördelning med tiden. Utvecklin-
gen av storleksfördelningen med tiden är starkt beroende på Reynoldstalet, men
bara svagt beroende på energidissipationshastigheten. Därefter studerades turbu-
lensens effekt på kollisionsprocessen då dropparna kolliderar genom påverkan
av både turbulens och tyngdkraften. I detta fall är dropparnas storleksfördelning
måttligt beroende av energidissipations hastigheten men oberoende av Reynolds
tal. Slutligen studeras effekten för tillväxt genom både kondensation och kol-
lision. I detta fall är breddningen av dropparnas storleksfördelning beroende
av både Reynolds tal och energidissipationshastigheten. Om vi antar ett litet
värde på energidissipationshastigheten och ett högt värde på Reynoldstalet, som
vi finner i vattenmoln, så är slutsatsen att turbulensen förstärker kondensation-
stillväxten då Reynoldstal ökar. Kollisionsprocessen är indirekt påverkad av



turbulensen genom påverkan på kondensationsprocessen. Turbulens kan genom
sin förstärkning av kondensationsprocessen, som mest beror på Reynoldstalet
dvs de stora turbulenta skalorna, leda till snabbare bildning av regndroppar i
vattenmoln.
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1. Introduction

1.1 Cloud micro-physics

When viewed from space, about 70% of Earth’s surface is covered by clouds
(Schneider et al., 2017). Clouds, the regulator of the radiative heating of
the planet (Ramanathan et al., 1989), represent a major complication in the
current modeling of the climate system (Stevens and Bony, 2013; Bony et al.,
2017; Schneider et al., 2017). One of the most challenging problems of cloud–
climate interactions is to understand how cloud microscopic processes affect
macroscopic properties, such as precipitation efficiency and radiative properties
(Shaw, 2003), which largely depend on the physical mechanisms of cloud-
particles formation (Shaw, 2003; Schneider et al., 2017). Therefore, it is
fundamentally important to understand the temporal and spatial variation of the
cloud droplet (Shaw, 2003; Grabowski and Wang, 2013) in a highly turbulent
environment.

1.2 Turbulence–droplet interactions in clouds

Observations reveal that warm clouds are highly turbulent, which are character-
ized by large Reynolds numbers (Reλ ≈ 104) and relatively small mean energy
dissipation rates (ε̄ ≈ 10−3 m2s−3; see Siebert et al., 2006a). With this Reynolds
number, turbulence exhibits multi-scale interactions with energy transfers from
energy injection scales (∼ 100m) to the smallest scales in three-dimensional
(3-D) turbulence. Thus, it affects the cloud micro-physics from large to small
scales. Since the typical size1 (∼ 10 µm) of cloud droplets is about 100 times
smaller than the Kolmogorov length scale (∼ 1mm) in clouds, droplet dynam-
ics and droplet-droplet interactions are influenced by the smallest scales of
turbulence. Cloud droplets transported and dispersed by turbulence are inertial
particles because of the large mass density ratio between liquid water and the
dry air, due to which trajectories of droplets deviate from that of tracers. This
makes the droplet dynamics and droplet-droplet interaction more complicated
than the small-scale dynamics of turbulence alone. Cloud thermodynamics
is influenced by the largest scales of turbulence, which affects the latent heat
release due to the evaporation of droplets (Li et al., 2018c). The latent heat re-
lease in turn influences the motion of turbulence. Therefore, turbulence–droplet

1In this thesis, size of cloud droplets is in radius.
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interactions are multi-scale, which leads to the coupling of cloud macro-physics
and micro-physics.

1.3 Effect of turbulence on warm rain formation

In warm clouds, the typically observed timescale for rain formation is about
20 minutes (Stephens and Haynes, 2007), which is significantly shorter than
the theoretically predicted timescale of about 8 hours according to the Saffman-
Turner collision model (Saffman and Turner, 1956). Naturally, turbulence was
proposed to explain the rapid warm rain formation (Saffman and Turner, 1956;
Shaw, 2003; Bodenschatz et al., 2010; Devenish et al., 2012; Grabowski and
Wang, 2013), which is fundamentally the question of how turbulence interacts
with cloud droplets. The topic of this thesis is to explore how turbulence
influences the development of droplet size distributions in warm clouds.

2



2. Physical mechanisms and
models

The droplet size distribution f (r,xxx, t) is the key and most challenging quantity
in cloud microphysics (Shaw, 2003). It is often described by two numerical
models originated from statistical physics: the Eulerian and the Lagrangian
model. The Eulerian model treats f (r,xxx, t) as a field, which is described in a
mean-field manner, i.e., the particle density is assumed to be spatially uniform
(Pumir and Wilkinson, 2016). The Lagrangian model handles f (r,xxx, t) either in
a deterministic or a stochastic fashion. In this chapter, the motion of turbulence
and droplets, and the physical processes that determine f (r,xxx, t) for raindrop
formation are introduced. Descriptions of the two numerical models used in
this thesis are then followed.

2.1 Turbulence

2.1.1 Momentum equation

The motion of fluid is governed by the Navier-Stokes equations (Pope, 2001),

Duuu
Dt

=−ρ
−1

∇∇∇p+ρ
−1

∇∇∇ · (2νρS)+ fff , (2.1)

∂ρ

∂ t
+∇∇∇ · (ρuuu) = 0, (2.2)

where D/Dt = ∂/∂ t + uuu ·∇∇∇ is the material derivative, fff is the forcing, ν is
the kinematic viscosity of air, Si j =

1
2(∂ jui +∂iu j)− 1

3 δi j∇∇∇ ·uuu is the traceless
rate-of-strain tensor (Li et al., 2017), p is the gas pressure, and ρ is the gas
density obeying the equation of state:

p = ρc2
s/γ, (2.3)

where γ = cp/cv = 7/5 is the ratio between specific heats at constant pressure
and constant volume, cp and cv, respectively. The sound speed cs is set to a
small value to render the flow nearly incompressible. A flow becomes turbulent
when the Reynolds number Re� 1, which is defined as Re≡UL f /ν . Here U
and L f are the velocity and length scales where the fluid is forced, respectively.
The Reynolds number is used to characterize the ratio between the nonlinear
term (uuu ·∇∇∇)uuu and the viscosity term ∇∇∇ · (2νρS). In this thesis, the Taylor-scale

3



Reynolds number, defined as Reλ ≡ u2
rms

√
5/(3νε̄), is adopted to measure

the intensity of 3-D turbulence, where urms is the rms turbulent velocity, and
ε̄ = 2ν TrSijSji is the mean energy-dissipation rate per unit mass and Tr denotes
the trace. At high Reλ , analytical solutions of the Navier-Stokes equations have
not yet been found (Pope, 2001). Therefore, direct numerical simulations have
become an essential tool for studying turbulence.

2.1.2 Energy cascade in turbulence

The classic understanding of turbulence is based on the phenomenological
Kolmogorov theory (Kolmogorov, 1941), which introduced the notion that
small eddies are almost memoryless of the history of the flow. Under this as-
sumption, Kolmogorov argued that a fully-developed, steady, and homogeneous
flow can be described by a single quantity ε̄ over a wide range of length scales
(termed as the inertial range of turbulence). This results in the direct energy
cascade of turbulence, i.e., energy is transferred from large eddies to small
eddies in 3-D hydrodynamic1 turbulence. The largest scale in 3-D turbulence
is the turbulent integral length scale (energy injection scale) and the smallest
scale is the Kolmogorov length scale. Energy cascades from the integral length
scale to the Kolmogorov length scale, then dissipates due to viscosity. The
Kolmogorov theory assumes that the energy dissipation rate is isotropic, which
was, however, found to be anisotropic (She and Leveque, 1994). This is a phe-
nomenon termed as intermittency in the turbulence-community and small-scale
intermittency in meteorological context (Mahrt, 1989). Kolmogorov theory
with the intermittency constitutes the state-of-art understanding of turbulence.

2.2 Motion of particles in fluids

Determining the motion of particles in flow is in general a difficult task (Pumir
and Wilkinson, 2016) due to the nonlinear interactions between particles and
fluid. It is also affected by the geometry of particles. Cloud droplets are small
compared with the Kolmogorov length scale η = (ν3/ε̄)1/4 and have a large
mass density contrast with the air as discussed in Chapter 1.2. Thus, its motion
is only subjected to the viscous drag and gravity settling. Each droplet is treated
as a Lagrangian point-particle, where one solves for the particle position xxxi,

dxxxi

dt
=VVV i, (2.4)

1Energy can transfer from small eddies to large eddies in magnetic hydrodynamic
turbulence in the presence of magnetic helicity due to its conservation property.
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and its velocity VVV i via
dVVV i

dt
=

1
τi
(uuu−VVV i)+ggg, (2.5)

where i is the index of particles. Here, uuu is the fluid velocity at the position of
the droplet, ggg is the gravitational acceleration, and τi is the inertial response (or
stopping) time given by

τi = 2ρlr2
i /[9ρaν D(Rei)], (2.6)

where ρl = 1000kg ·m−3 is the mass density of liquid water and ρa = 1kg ·m−3

is the reference mass density of dry air. The correction factor (Schiller and
Naumann, 1933; Marchioli et al., 2008)

D(Rei) = 1+0.15Re2/3
i (2.7)

is used to approximate the effect of non-zero particle Reynolds number Rei =
2ri|uuu−VVV i|/ν .

The motion of inertial particles is determined by a single parameter, the
Stokes number, which is defined as the ratio between the particle response time
τi and the Kolmogorov time scale τη = (ν/ε̄)1/2: St = τi/τη . When St� 1,
particles behave like tracers; when St≥ 1, the trajectories of particles deviate
from that of tracers.

2.3 Condensation

When a cloud droplet is exposed to a supersaturated environment, it grows due
to a net water vapor flux towards its surface by diffusion (Pruppacher and Klett,
2012). The flux is coupled by conservation of energy, conservation of mass, and
the Clausius-Clapeyron equation (Shaw, 2003), resulting in the condensational
growth law (Pruppacher and Klett, 2012),

dr2

dt
= 2Gs(xxx, t), (2.8)

where s(xxx, t) is the supersaturation, and G (with unit of m2s−1) is a thermody-
namical parameter that weakly depends on temperature and pressure (Lamb and
Verlinde, 2011a). From Equation (2.8), one obtains dr/dt = Gs/r, namely, the
growth rate of cloud droplets is inversely proportional to the radius, suggesting
that larger droplets grow slower than smaller ones. Condensational growth
narrows the droplet size distribution under the assumption that s is positive
and uniform, which results in a diffusive behavior r ∼ t1/2. However, super-
saturation fields in clouds are spatially and temporally fluctuating, which are
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determined by the temperature T (xxx, t) and water vapor mixing ratio qv(xxx, t)
transported by turbulence. Turbulent motion is in turn affected by the buoyancy
force due to condensation and evaporation of cloud droplets. For details of
the model, see Li et al. (2018c). The effect of supersaturation fluctuations on
condensational growth will be discussed in Chapter 3.2.

2.4 Collision

To form raindrops, smaller droplets need to grow from around 2 µm to a critical
size such that it can fall out of the cloud. This critical size depends on the type of
clouds, that gives differences in the vertical velocity of the uplifting parcel. For
example, it is around 100 µm in stratocumulus clouds. Condensation dominates
the growth in the size range of around 2–15 µm (Lamb and Verlinde, 2011a).
However, as discussed in Section 2.3, the condensational growth is too slow.
Therefore, collection, another microscopical mechanism, has been proposed to
explain the rapid formation of raindrops (Yau and Rogers, 1996). The collection
process consists of collision and coalescence.

2.4.1 Collision rate

The collision rate between a particle with radius r and other particles with radius
r′ is given by (Saffman and Turner, 1956),

Rc(r) =
∫

∞

0
K(r,r′) f (r′)dr′Ec, (2.9)

where K(r,r′) is the collision probability (often termed as the collision kernel)
of two colliding particles. The collision rate Rc has a dimension of inverse
time:[Rc] = T−1. To obtain Rc, the preliminary task is to determine the col-
lision kernel K(r,r′) with dimension of L3T−1. The collision rate between
two spherical particles is the rate a particle crosses the spherical surface (Sun-
daram and Collins, 1997). Thus, K(r,r′) is proportional to the surface area
4π(r+ r′) and the radial relative velocity 〈|∆w|〉. If particles tend to cluster,
K(r,r′) would be proportional to the two-point correlation function g(r+ r′)
characterizing the clustering effect (Reade and Collins, 2000; Gustavsson and
Mehlig, 2016). When two droplet collide with each other, the droplet-droplet
aero-hydrodynamics (Wang et al., 2005, 2007; Wang and Grabowski, 2009;
Chen et al., 2018) reduce the collision rate, which can be taken into account
by introducing the collision efficiency Ec. Thus, K(r,r′) can be expressed as
(Sundaram and Collins, 1997),

K(r,r′) =
1
2

4π(r+ r′)2g(r+ r′)〈|∆w|〉Ec. (2.10)
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In this thesis, the collision efficiency Ec is assumed to be unit, which may
overestimate the collision rate. The collision efficiency is difficult to tackle
since it is a combination of particle dynamics and deformation of droplets. Com-
prehensive investigations of the collision efficiency in a turbulent environment
by laboratory experiments are appealing.

2.4.2 Continuous collision from different terminal fall velocities

The most classical mechanism causing collisions among cloud droplets is
gravity-generated collision (Lamb and Verlinde, 2011a; Li, 2016). Consider the
following continuous collision process that two particles with different size (rL

and rS) settle in still air due to gravity. There is no clustering, so g(r+ r′) = 1.
Also, the geometry is reduced from 3-D to 2-D. Therefore, Equation (2.10) can
be written as,

K(rL,rS) = π(rL + rS)
2|VL−VS|Ec, (2.11)

where VL and VS are the terminal velocity of the larger droplet and the smaller
droplet, respectively. When rL � rS, the collision rate can be simplified as
K(rL,rS) = πr2

L|VL| assuming Ec = 1. The descent speed of the cloud droplet
is roughly proportional to its size if the droplet remains spherical, i.e. |VL| ∼
rL (Lamb and Verlinde, 2011b; Li et al., 2018b). The mass growth rate of
the collector dmd/dt is proportional to K. Thus, dmd/dt ≈ πr3

L, giving an
exponential growth behavior: r(t) ∼ exp(αt) (Pruppacher and Klett, 2012),
where α is a constant.

2.4.3 Stochastic collision driven by gravity and turbulence

Continuous collisions become effective only if there are large enough collectors
(Lamb and Verlinde, 2011b). To start the process, a triggering collector is
needed, which is referred to as the “lucky” droplet (Telford, 1955; Kostinski
and Shaw, 2005). Where do the lucky ones come from? The “lucky” droplet
is assumed to emerge from the stochastic collision process (Yau and Rogers,
1996; Li, 2016). Recall that the Reynolds number of cloud-like turbulence is
Reλ ≈ 104. This is rather large, so one expects turbulence to play an important
role in the stochastic collision process (Li, 2016). For example, the vigorous
turbulence eddies may facilitate the formation of lucky droplets (Kostinski and
Shaw, 2005). A more detailed discussion of the collisional growth in turbulence
and gravity is presented in Chapter 3.3.
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2.5 Eulerian model

The Eulerian model is widely used in both meteorological (Saffman and Turner,
1956; Lamb and Verlinde, 2011a; Pruppacher and Klett, 2012) and astrophysical
(Drazkowska et al., 2014) contexts to simulate the condensation and collision
processes (Li, 2016). The evolution of the droplet size distribution f (r) is
governed by the continuity equation with additional coupling terms due to
condensation and collision (Li et al., 2017),

∂ f
∂ t

+∇∇∇ · ( f vvv)+∇r( fC) = Tcoll +Dp∇
2 f , (2.12)

where ∇r = ∂/∂ r is the derivative with respect to r, C ≡ dr/dt = Gs/r, as
given in Equation (2.8), and Tcoll describes the change of the number density
of particles for smaller and larger radii (Li et al., 2017), as will be defined
below. Furthermore, vvv(xxx,r, t) is the particle velocity within the resolved grid
cell, which is governed by the momentum equation of particles. The diffusion
term Dp∇2 f is for numerical stability, where Dp is the artificial viscosity.

The spatial distribution of cloud droplets varies dramatically because of
collisions. For a given number density of cloud droplets with different size, the
collision process yields an increasing number of larger cloud droplets and a
decreasing number of smaller ones (Li, 2016). Thus the rate of change of the
number density can be expressed by the gain of larger cloud droplets and the loss
of smaller ones (mass conservation), which is referred to as the Smoluchowski
equation (a form of Boltzmann transport equation) (Von Smoluchowski, 1916),

Tcoll =
1
2

∫ m

0
K(r− r′,r′) f (r− r′) f (r′)dr′

−
∫

∞

0
K(r,r′) f (r) f (r′)dr′. (2.13)

The Smoluchowski equation will be revisited in Chapter 3.3.3.

2.6 Lagrangian model

In the Lagrangian model, each individual droplet is tracked. Compared with the
Eulerian model, Lagrangian modeling of collisions of inertial particles is closer
to the nature of real physical collisions in the sense that it takes fluctuations
into account (Li, 2016). As will be discussed in Chapter 3.3.3, fluctuations
are significantly important for the collisional growth of cloud droplets, which,
however, may not be captured by the Eulerian model. Nevertheless, the direct
Lagrangian-detected collision approach is computationally demanding. There-
fore, a Monte Carlo-type (Bird, 1978, 1981; Jorgensen et al., 1983) Lagrangian
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Figure 2.1: A snapshot of the spatial distribution of droplets from 3-D turbulence
simulation of Paper III (Li et al., 2018b). Darker and redder color represent larger
droplets.

tracking approach is employed to model collisions between numerical super-
particles, which is a statistical approach to represent physical particles (Zsom
and Dullemond, 2008). For details of the superparticle approach, see Li et al.
(2017) and Li et al. (2018b). The superparticle approach is advantageous over
the direct Lagrangian-detected collision approach in the following perspectives.
First, it is technically easier to implement the collision processes and numeri-
cally less demanding compared with the direct Lagrangian-detected collision
approach since collision only happens if two superparticles reside in the same
grid cell (Li, 2016). This avoids handling with colliding pairs between the two
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neighboring numerical grid cells. Second, the superparticle approach is able
to deal with large domain sizes, allowing us to follow collisions together with
hydrodynamics in a larger domain at a moderate computational cost (Johansen
et al., 2012), which also makes it easy to be adapted to large-eddy simulations.
Figure 2.1 shows a snapshot of droplets simulated in 3-D turbulence.

In Paper I, the Eulerian approach is compared with two Lagrangian ap-
proaches. Good mutual agreement of the droplet size distribution is found for
both condensational growth and collisional growth. The Lagrangian schemes
are found to be superior to the Eulerian model. Therefore, the Lagrangian
model is mainly used in this thesis.
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3. Growth of cloud droplet in a
turbulent environment

In this chapter, a state-of-art summary of the growth of cloud droplet in a
turbulent environment is presented.

3.1 Observations of droplet size distributions

Observations provide us realistic information about cloud micro-physics, which
also pose challenging problems about the mechanisms for the growth of droplets.
Among all the challenging problems, effect of turbulence on condensational
and collisional growth are the most notorious but significant ones (Shaw, 2003;
Devenish et al., 2012; Grabowski and Wang, 2013).

Observing the droplet size distribution is challenging due to the fact that
cloud droplets are around 10 µm, which requires high spatial and temporal
resolutions to be observed. The Airborne Cloud Turbulence Observation Sys-
tem provides the first relatively accurate measurement of the small scales of
cloud turbulence and the droplet size distribution (Grabowski and Wang, 2013),
which showed that the small-scale properties of cloud-turbulence obey the
Kolmogorov flow with intermittency (Siebert et al., 2006b) and the droplet
size distribution is affected by the entrainment (Lehmann et al., 2009). A
more accurate measurement by Beals et al. (2015) demonstrated that the local
droplet size distribution is strongly inhomogeneous. Siebert and Shaw (2017)
observed droplets with diameter up to 20 µm in shallow cumulus clouds, while
the adiabatic diameter is about 10 µm. They attributed this to supersaturation
fluctuations, whose standard deviation is on the order of 1%. Observing the
dynamical collision process is not feasible.

Compared with observations, laboratory studies of condensational and col-
lisional growth of cloud droplets are still in a primary stage. Chandrakar et al.
(2016) measured the effect of aerosol concentration on droplet size distributions
in a laboratory cloud-chamber, where moist convection was generated. They
found that higher aerosol concentrations result in a narrow droplet size distribu-
tion and lower aerosol concentrations lead to a wider droplet size distribution.
Nevertheless, how different turbulence intensities affect supersaturation fluctu-
ations and therefore the broadening of cloud droplet is still unknown. Rapid
development of the particle velocimetry tracking method has advanced our
understanding of the Lagrangian properties of turbulence (Toschi and Boden-
schatz, 2009). However, detecting collisions of cloud droplets in turbulence has
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not been achieved so far (Pumir and Wilkinson, 2016).
Overall, numerical simulations of condensation and collision in turbulence

become significantly important due to the difficulties in investigating them by
observations or laboratory experiment. As discussed in Chapter 1, turbulence–
droplet interaction in turbulence is a strong nonlinear and multi-scale problem.
To resolve into the smallest scales, direct numerical simulations (DNS) are
required, which is challenging using the most powerful supercomputers hitherto
due to the large range of scales and a numerous number (∼ 108) of droplets
involved. Here DNS is the numerical method of solving the nonlinear physical
equations directly without adopting any sub-grid models, and thus to resolve the
dissipation scale of turbulence (Li, 2016). DNS help us understand the cloud
microphysics from first principles. However, the Reynolds number reached in
the DNS is still two orders of magnitude smaller than the one in clouds. In this
thesis, the large scales refer to scales close to the integral length scale in DNS.

3.2 Condensational growth of cloud droplets

As discussed in Chapter 2.3, the condensational growth is influenced by turbu-
lence. On the other hand, turbulence is affected by the buoyancy force due to
the latent heat release of cloud droplets. The coupling of turbulence, droplet
dynamics, and the thermodynamics renders the condensational growth untouch-
able by the analytical analysis. Well-controlled laboratory experiments are not
feasible so far. Therefore, numerical simulations became an essential tool.

Nonuniform supersaturation for condensational growth of cloud droplets
was first recognized by Srivastava (1989). Vaillancourt et al. (2002) conducted
the fist DNS study of the condensational growth and found that the effect of
turbulence is negligible. This is contrary to what others (Paoli and Shariff, 2009;
Lanotte et al., 2009; Sardina et al., 2015; Siewert et al., 2017; Grabowski and
Abade, 2017) observed that droplet size distributions broaden due to supersatu-
ration fluctuations resulted from turbulence.

To tackle the contradiction among different DNS results, Paper II scrutinizes
the effect of turbulence on condensational growth by solving the complete set
of thermodynamic equations governing the supersaturation field. It is shown
that droplet size distributions broaden dramatically with increasing Reynolds
number and decrease slightly with increasing mean energy dissipation rate
(Figure 3.1, in which rini is the initial radius of droplets). Therefore, Paper II
suggests that the contradiction between the results of Vaillancourt et al. (2002)
and others (Paoli and Shariff, 2009; Lanotte et al., 2009; Sardina et al., 2015;
Siewert et al., 2017) could be due to the fact that the scale separation is too
small in the DNS of Vaillancourt et al. (2002). More importantly, Paper II finds
that the standard deviation of the surface area of cloud droplets increases as t1/2,
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Figure 3.1: Time evolution of droplet size distributions resulted from conden-
sation in different turbulence configurations; adapted from Paper II (Li et al.,
2018c).

which is consistent with the Lagrangian stochastic model (Sardina et al., 2015).

3.3 Collisional growth of cloud droplets

The classical gravity-generated collisional growth of cloud droplets discussed
in Chapter 2.2.1 was found to be inefficient to overcome the growth barrier.
This is the main topic of Paper III. We return to computational aspects of the
collisional growth of cloud droplets as part of a broader study later in Paper IV.

As discussed in Chapter 2.2, the dynamics of inertial particles is determined
by the single parameter, the Stokes number, which determines the collision
rate as well. When the inertia of particles is very small, i.e., St� 1, they are
essentially advected by the flow. In this case, the collision rate is strongly
influenced by turbulent shear. Saffman and Turner (1956) were the first to
model the collision rate of small particles advected by turbulent shear. The key
idea of the Saffman-Turner model is that the collision rate is dominated by small
scales of turbulence (shearing motion) since the size of cloud droplets is three
orders of magnitude smaller than the Kolmogorov length. Using dimensional
analysis, Saffman-Turner suggested the following mean collision rate according
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to Equation (2.9),

R̄c =

√
8π/15n0 (2r)3

τη

, (3.1)

when there is no intermittency and the particle inertia is small. Giving τη =
0.04s, n0 = 1×108 m−3 (initial mean number density of cloud droplets), and
r = 10 µm, we obtain R̄c ≈ 2.6× 10−5 s−1, which is negligible (Wilkinson,
2016). However, turbulence is highly intermittent at small scales and cloud
droplets are inertial particles. When the inertia becomes significant, the colli-
sion rate is increased due to clustering (Maxey, 1987; Sundaram and Collins,
1997) and caustics (Falkovich et al., 2002; Wilkinson et al., 2006). Clustering
(preferential concentration) is a phenomenon that inertial particles accumulate
at the low vorticity region due to the centrifugal force (Maxey, 1987; Gustavs-
son and Mehlig, 2016), which becomes pronounced when St ≈ 0.6 (Bec et al.,
2007). Caustics (sling effect) are the singularities in the droplet dynamics giving
rise to multi-valued droplet velocities, resulting in large velocity differences
between nearby droplets (Wilkinson et al., 2006; Gustavsson and Mehlig, 2014;
Li et al., 2018b). The caustics becomes efficient when St ≥ 0.3 (Voßkuhle et al.,
2014). However, St ≈ 0.02 for 10 µm-sized droplet, suggesting that clustering
and caustics are inefficient to affect the collisional growth of cloud droplets
(Wilkinson, 2016). How does turbulence affect the collisional growth of cloud
droplets?

Telford (1955) proposed the role of fluctuations on collisional growth, “that
for drops beginning growth at twice the volume of their neighbors, random
fluctuations in the times taken for different drops to effect captures can lead to
the formation of the complete raindrop in time shorter than that required for
growth to raindrop size by the continuous growth processes”. Kostinski and
Shaw (2005) developed a model (referred to as the lucky-droplet model) to
explain how the fluctuations can overcome the growth barrier. Using large devi-
ation theory, Wilkinson (2016) demonstrated theoretically that the cumulative
collision time is a small fraction of the mean collision time. However, neither
Kostinski and Shaw (2005) nor Wilkinson (2016) addressed explicitly the role
of turbulence in random fluctuations of collisional growth (Li et al., 2018b).

As part of this thesis, collisional growth in a combined turbulence and
gravity environment using DNS are investigated. The obtained droplet size
distributions from DNS are a result of both stochastic and continuous collisions.
It is indeed artificial to distinguish between stochastic and continuous collisions.
Nevertheless, disentangling them helps us better understand the collisional
growth in the state-of-art theoretical framework.
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3.3.1 Collision

As a first step towards understanding the collisional growth of cloud droplets,
collision without coalescence has been investigated intensively. Due to the lack
of satisfactory theoretical prediction of collision and inaccessible laboratory
experiment about collision, numerical simulation has again become favorable.
The turbulence effect on the geometrical collision kernel was investigated by
Franklin et al. (2005), Ayala et al. (2008a), Rosa et al. (2013) and Chen et al.
(2016). Ayala et al. (2008b) developed a comprehensive parameterizations of the
turbulent collision rate and concluded that turbulence enhances the geometrical
collision rate with increasing energy dissipation rate. They also found that
the dependence of the collision rate on the Reynolds number is minor. Rosa
et al. (2013) and Chen et al. (2016) confirmed the secondary dependency of the
collision statistics on the Reynolds number.

3.3.2 Collision-coalescence

Droplets grow by collision and coalescence, which is more complicated than
the pure collision process due to the unresolved mechanism of coalescence and
the dynamical Stokes number. First, the physical mechanism of coalescence is
not well-established. When two droplets get close and contact with each other,
they may deform depending on the size, shape, and relative velocity of the two
colliding droplets. Also, the fluid trapped between them leads to a lubrication
film (Pumir and Wilkinson, 2016). The deformation and lubrication film can
be counted into the coalescence efficiency. Unit coalescence efficiency has
been widely used due to the fact that the Weber number is only about 10−2,
defined as the ratio between the droplet inertia and its surface tension (Perrin
and Jonker, 2015). However, more robust laboratory experiments are needed to
investigate the dynamical process of coalescence so that a realistic coalescence
efficiency can be obtained. Second, growth of cloud droplets leads to different
Stokes numbers, which makes the collision process more complicated.

We first review the DNS studies of the collision-coalescence processes, after
which, discussions of the lucky-droplet model and the Smoluchowski equation
follow.

DNS

The Smoluchowski equation discussed in Chapter 2.5 has been regarded as
the master equation to model the collision-coalescence process for both cloud
droplets (Yau and Rogers, 1996) and planet formation (Johansen and Lam-
brechts, 2017). DNS has been widely used to solve the Smoluchowski equation.
The outcome by solving the Smoluchowski equation largely depends on the
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collision kernel. However, there is no analytical formula for the collision ker-
nel. Therefore, most of the DNS work first obtained the geometrical collision
kernel of colliding pairs. Then, the parameterized collision kernel was used in
the Smoluchowski equation (Equation (2.13)). For example, Franklin (2008)
investigated collision-coalescence processes by solving the Smoluchowski equa-
tion together with the Navier-Stokes equation using DNS and found that the
droplet size distribution is significantly enhanced by turbulence with increas-
ing ε̄ . Using a similar approach, Xue et al. (2008) and Wang and Grabowski
(2009) concluded that turbulence (ε̄) enhances the collisional growth and the
dependence on Reynolds number is uncertain due to its small value in their
simulations. Onishi and Seifert (2016) updated the collision kernel model of
Wang and Grabowski (2009) and found that the collisional growth of cloud
droplets also depends on the Reynolds number.

In Paper III, to quantify the role of small-scale turbulence on the time
evolution of droplet size distributions, the collision-coalescence process are
investigated using DNS. Each droplet is tracked in a Lagrangian manner. The
droplet size distribution is determined directly from numerical simulations, thus
avoiding the use of a parameterized kernel. It is found that the time evolution of
droplet size distributions is enhanced moderately with increasing mean energy
dissipation rate ε̄ (Figure 3.2, in which Sv is the non-dimensional terminal
velocity defined as the ratio between the terminal velocity of the droplet and
the Kolmogorov velocity). Its dependency on Reynolds number is weak in the
range explored.

The lucky-droplet model

The DNS studies provide a comprehensive investigation of the collisional
growth. However, it is unclear if the broadening of droplet size distributions
results from the effect of turbulence on the mean collision rate or on fluctuations
of collision, which is explored in Paper IV.

Assume that 10 µm-sized cloud droplets with n0 = 108 m−3 are randomly
distributed. One larger droplet with radius 12.6 µm (twice the mass of 10 µm-
sized droplets) falls through the 10 µm-sized droplets due to gravity. Tracing
the collision sequences, the collision time intervals tk of the larger droplet is
assumed to follow an exponential distribution with a mean collision rate λk,

pk(tk) = λk exp(−λktk), (3.2)

where k denotes the k-th collision. The cumulative time T of collisions can
then be expressed as

T =
N

∑
k=1

tk. (3.3)
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Figure 3.2: Time evolution of the droplet size distribution resulted from collisions
for different ε̄ in combined turbulence and gravity environment. Reλ = 100.
Droplets are all with radius 10 µm initially. Figure is adapted from Paper III (Li
et al., 2018b).

The problem here is to determine the statistics of T in the limit as N → ∞

(Wilkinson, 2016). The mean collision rate λk between droplets of radii ri and
r j and velocity difference |Vi−V j| can be expressed as

λ = Ec ·π (ri + r j)
2 |Vi−V j|np/s, (3.4)

where np/s is the number density of droplets per superparticle. Since droplets
grow by collisions, after the k-th collision, the droplet volume increases by a
factor of approximately k, thus the radius increases by a factor of k1/3. Therefore
the radius of the larger droplet scales as rk ∼ r0k1/3. Thus, the collision rate
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obeys a power law (Wilkinson, 2016),

λk = λ1kγ , (3.5)

where λ1 is the mean collision rate for the first collision determined by Equa-
tion (3.4). When Ec ∼ r2 and |V| ∼ r2 (Pruppacher and Klett, 2012), the
collision rate grows as the sixth power of the droplet size, i.e., as the second
power of the droplet volume, which is the case of γ = 2. If one neglects the
droplet size dependence on the collision efficiency, i.e., Ec = 1, then γ = 4/3.
Since γ > 1, only the first few tk determine T . That is to say, the cumulative
collision time T of the first few lucky droplets is a small fraction of the mean
cumulative collision time 〈T 〉.

Mathematically, P(T ) follows an exponential distribution if λk is the same
in Equation (3.2) for different k. However, λk is different for different time
intervals, which results in a different shape of P(T ). Since τ = T /〈T 〉 is
independent of the first mean collision rate λ1, P(τ) will be determined in the
following study. Figure 3.3 shows the excellent agreement of P(τ) between
the superparticle simulation and the numerical simulation of Equation (3.2),
Equation (3.3) and Equation (3.5) with λ1 = 1s−1 and γ = 4/3 (N = 128),
where 108 realizations are conducted. The excellent agreement demonstrates
that the superparticle approach is able to capture the fluctuations of collision
correctly even though a local mean collision rate (Equation (3.4)) is adopted.

3.3.3 Smoluchowski equation is not stochastic

The Smoluchowski equation is classically referred to as a stochastic equation in
the meteorology community (Saffman and Turner, 1956; Berry and Reinhardt,
1974; Yau and Rogers, 1996; Pruppacher and Klett, 2012; Lamb and Verlinde,
2011a). At first glance, Smoluchowski equation is a mean-field equation without
stochastic terms. Is Smoluchowski equation stochastic? First of all, when
solving the Smoluchowski equation with mass binning method, one considers
the mass and momentum transfer from small bins to large bins. Each mass bin
is a representation of an ensemble of droplets, whose motion is treated in a
Eulerian manner. In contrast, for the Lagrangian scheme, the phase and radius
of each droplet (superparticle) are tracked. Second, to answer this question, we
revisit the lucky-droplet model. The PDF of the cumulative collision time P(τ)
in Figure 3.3 is calculated from the same numerical setup with different random
seeds using the superparticle approach. However, by solving the Smoluchowski
equation, one gets the same cumulative collision time for different random
seeds. This suggests that the Smoluchowski equation is a mean-field equation
instead of a stochastic equation, which should be used in caution.
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Figure 3.3: Distribution of τ calculated from 1059 simulations with different
random seeds. The black (Nd/s = 2) and red (Nd/s = 40) curves represent the
superparticle simulation results, where Nd/s is the initial number of droplets
in each superparticle. The cyan curve represents the numerical simulation of
Equation (3.2), Equation (3.3) and Equation (3.5) with λ1 = 1s−1, γ = 4/3 (N =
128), where 108 realizations are conducted. Figure is adapted from Paper IV with
modifications of the legends.

Fluctuations are essential for collisional growth of cloud droplets (Kostinski
and Shaw, 2005; Wilkinson, 2016). Can the Smoluchowski equation capture
these fluctuations? To investigate this, the time evolution of droplet size dis-
tributions calculated from the Smoluchowski equation and the superparticle
approach in 3-D turbulence are compared. As shown in Figure 3.4, the tail
from the superparticle approach is about twice as wide as that from the Smolu-
chowski equation. Whether the widening tail is due to the fluctuations captured
by the superparticle approach, which may not be represented by the Smolu-
chowski equation, requires further investigation. In Paper I, good agreement
of droplet size distributions are observed between the Eulerian approach and
the Lagrangian approach when the collision is driven by either gravity or 2-D
turbulence, which is different from the case of 3-D turbulence. This could be
due to the different initial droplet size distributions and the diluteness of the
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Figure 3.4: Comparison of the droplet size distribution simulated from the Eule-
rian approach (Smoluchowski equation) and the superparticle approach, in which
collisions are driven by both turbulence and gravity. Figure is adapted from Paper
IV.

system, which needs to be explored in the future.
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Figure 3.5: Time evolution of droplet size distributions resulted from conden-
sation and collision for (a) different ε̄ = 0.005m2s−3 (blue solid lines), 0.019
(magenta solid lines) and 0.039 (black solid line) at fixed Reλ = 45 and for (b)
different Reλ = 45 (black solid lines), 78 (red solid lines), and 130 (cyan solid
line) at fixed ε̄ = 0.039m2s−3. Figure is adapted from Paper V (Li et al., 2018a).

3.4 Combined processes

Raindrop formation is a result of multiple cloud microphysical processes. As
discussed in Section 3.2 that condensational growth due to supersaturation
fluctuations broadens the droplet size distribution. This broadening is enhanced
with increasing Reynolds number. Collisional growth is very sensitive to the
tail of droplet size distributions and depends on the mean energy dissipation
rate. Examining the effect of turbulence on the combined processes is computa-
tionally challenging because both large and small scales of turbulence need to
be well resolved.

In Paper V, the effect of turbulence on the combined condensational and
collisional growth of cloud droplets at different scales of turbulence are inves-
tigated using DNS. Thermodynamic equations governing the supersaturation
field are solved. Droplets are tracked in a Lagrangian manner, whose trajecto-
ries differs from that of gas flow tracers due to inertia. Their motion is subjected
to both turbulence and gravity. It is found that the combined condensational
and collisional growth depends on both the mean energy dissipation rate and
Reynolds number (Figure 3.5). Since the turbulence in warm clouds is char-
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acterized by high Reynolds number (Reλ ≈ 104) and relatively small mean
energy dissipation rate (ε̄ ≈ 10−3 m2 s−3) as discussed in Chapter 1.2, turbu-
lence mainly affects the condensational growth and enhances the collisional
growth indirectly through condensation.
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4. Summary of papers included in
this thesis

This thesis investigates how turbulence affects the time evolution of droplet
size distributions in warm clouds by means of DNS, aiming to explain the
rapid warm rain formation. Since the problem of coupled droplet dynam-
ics, collision-coalescence, thermodynamics, and turbulence is multi-scale and
strongly nonlinear, the Eulerian and the Lagrangian schemes are developed and
compared to find a physically and numerically optimal scheme for this problem.
Then the effect of turbulence on the condensation, the collision-coalescence,
and the combined processes are investigated, respectively.

In Paper I, two Lagrangian schemes are compared with an Eulerian scheme
based on the mean-field Smoluchowski equation for the cases of pure con-
densation and pure collision, respectively, using DNS. Assuming a uniform
supersaturation field, excellent agreement is observed between the Lagrangian
scheme and the Eulerian scheme regarding droplet size distributions for the
pure condensation case. Droplet size distributions resulted from collisional
growth are also in good agreement either in the case of gravity or in 2-D turbu-
lence in a dense system. The good agreement between the Lagrangian scheme
and the Eulerian scheme paves the path towards investigating how turbulence
affects the growth of cloud droplets. It is also found that the Lagrangian scheme
is computationally about ten times more efficient than the Eulerian scheme.
Therefore, the Lagrangian scheme has been adopted for the following studies
(Li et al., 2017).

In Paper II, effect of turbulence upon condensational growth is investigated
by solving the coupled thermodynamics, droplet dynamics, and turbulence us-
ing DNS (Li et al., 2018c). Contrary to the classical theory, that condensational
growth leads to a narrow droplet size distribution considering a uniform super-
saturation field (Pruppacher and Klett, 2012), it results in a wide droplet size
distribution due to supersaturation fluctuations. Also, the width of the droplet
size distribution increases as t1/2, which is consistent with the Lagrangian
stochastic model (Sardina et al., 2015). More importantly, the droplet size
distribution broadens with increasing Reynolds number and is insensitive to the
mean energy dissipation rate, which is due to the fact that supersaturation fluctu-
ations are enhanced with increasing Reynolds number. Condensational growth
due to supersaturation fluctuations may explain the broadening of droplet size
distributions in stratiform clouds, where the updraft velocity is almost zero.

In Paper III, collisional growth of cloud droplets is explored in a turbu-
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lent environment (Li et al., 2018b). Momentum equations of the gas flow and
droplets are solved using high-resolution DNS. The collision process is ap-
proximated by superparticle approach developed in Paper I. The collision and
coalescence efficiency are assumed to be unit such that droplets coalescence
upon collision. For a more general application, the collision process in a tur-
bulent environment without gravity is studied, which is important for the dust
growth of interstellar (Mathis et al., 1977). It is found that droplet size distribu-
tions depend strongly on the mean energy dissipation rate ε̄ and weakly on the
Reynolds number, which is explained by the Saffman-Turner collision model
(Saffman and Turner, 1956). Remarkably, the mean collision rate from the
DNS increases as ε̄1/2 as predicted by Saffman and Turner (1956), even though
coalescence and droplet inertia are invoked in the DNS. More interestingly,
the droplet size distribution exhibits power law behavior with a slope of −3.7,
which is close to the observed size distribution of interstellar dust (Mathis et al.,
1977). When collision is driven by both gravity and turbulence, it is found that
the strong dependency of droplet size distributions on ε̄ becomes weakened,
which depends on the width σ of the initial distribution. Turbulence enhances
the broadening of droplet size distributions efficiently when σ = 0 and weakly
when σ = 0.2. As investigated in Paper II, condensational growth leads to
broadening of droplet size distributions, after which collision can be triggered.
Therefore, the effect of turbulence on the collisional growth of cloud droplets
should be handled with caution. The mean collision rate resulted from collisions
driven by both gravity and turbulence is shown to grow exponentially, which
is consistent with the theoretical prediction of the continuous collision theory.
Even though the continuous collision theory excludes turbulence. In Paper IV,
how the superparticle approach represents fluctuations in the collision process
is investigated. The superparticle approach is found to be optimal to capture
the fluctuations in the collision process due to its generic stochastic property.
Open questions regarding how to analyze the role of turbulence fluctuations on
collisional growth are addressed.

In Paper V, the combined condensational and collisional growth of cloud
droplets is scrutinized (Li et al., 2018a). It is observed that turbulence affects
the combined processes from large to small scales. Considering the relative
small values of ε̄ and large Reynolds numbers of turbulence in clouds, it is
concluded that turbulence predominantly enhances the condensational growth
with increasing Reynolds number, while the collision process is indirectly
affected by turbulence through condensational growth. Overall, it is suggested
that turbulence facilitates the warm rain formation by enhancing the Reynolds
number-dependent condensation process.
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5. Outlook

Stay hungry, stay foolish
Steve Jobs

Ph.D. is an exciting journey. Many interesting scientific ideas have come
out during this journey, which will be explored in the future!

5.1 High resolution simulations of cloud microphysics: a
path towards the future climate model

DNS study is very limited by the domain size. Fortunately, the superparticle ap-
proach can be used in the large-eddy simulation (LES) with appropriate subgrid-
scale scheme. LES models compute approximate solutions of Navier-Stokes
equations and equations of thermodynamics, while using simplified representa-
tions for still unresolved cloud microphysical processes such as droplet and ice
crystal formation (Schneider et al., 2017). The superparticle approach used in
the present DNS can easily be adapted to large-eddy simulations (LES) with
appropriate subgrid-scale models. The combined condensational and collisional
growth of cloud droplets largely depends on the Reynolds number. DNS are
limited by the state-of-art supercomputer power. LES can be used to simulate
the condensational and collisional growth in high Reynolds number turbulence.
This may shed some light on explaining the rapid warm rain formation, which
will be explored in future studies.

5.2 Quantum computer for climate model

A physical and accurate future climate projection is urgent for humankind.
It is almost impossible to resolve the entire scales of climate model from
micrometer-sized aerosols to hundreds of kilometer-sized scales. Quantum
mechanics is supposed to explain every physical law, including thermodynamics
and turbulence, which are the cornerstones of atmospheric science. Quantum
computer (Nielsen and Chuang, 2002), based on quantum mechanics, may shed
some light on fully resolving the smallest scales in the climate model.

Modern computers are Turing machine, which is based on the masterpiece
Church-Turing thesis. It states that: “Any algorithm process can be simulated
efficiently using a Turing machine” (Nielsen and Chuang, 2002). After Turing’s
paper in 1936, John Von Neumann developed a theoretical model for how to put
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together all the components necessary for a computer in a practical fashion such
that the computer can be as capable as the Universal Turing Machine (Nielsen
and Chuang, 2002). When John Bardeen, Walter Brattain, and Will Shockley
developed transistors, hardware for a computer has grown in a extraordinary
pace, which has come to be known as the Moore’s law (Nielsen and Chuang,
2002). The Turing machine is based on classical physics. Since the basic law
of physics is ultimately quantum mechanics, a computer device based upon the
principles of quantum mechanics naturally fits into the development of a truly
new era of computer.

The bit is a fundamental concept of classical computer, where it can be in a
state of either 0 or 1. For a quantum computer, analogy to a classical computer,
qubit is the basic element (Nielsen and Chuang, 2002). Obeyed to principles of
quantum mechanics, qubit can be in a state other than |0〉 or |1〉, where “|〉” is
the Dirac notation. The qubit is the core to render the quantum computer faster
than the classical computer (Biamonte et al., 2017).

The ultimate question for us is how much faster the quantum computer
compared with the classical computer is when simulating turbulence or other
time-accurate simulations of classical dynamical systems with chaotic behavior.
This is referred to as the “quantum computational supremacy”, which is still
unknown (Boixo et al., 2018). When quantum computer are commercialized,
perhaps in five years (Mohseni et al., 2017), it will be a great opportunity for us
climate scientists or physicists to embrace for the future climate model.
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