SKIPNES

Doctoral theses at NTNU, 2018:307

Jorgen Rgysland Aarnes
Simple Geometry - Complex Flow

A computational study of turbulent
particle-laden flows impinging on a
cylinder

el
0p}
Q
e
I_
(O
C
@)
-
@)
(@)
O

ISBN 978-82-326-3404-0 (printed version)
ISBN 978-82-326-3405-7 (electronic version)
ISSN 1503-8181

o5 =
o
I} Eb I I
3 D “ 8
f
o
— =
— C
D
C
.0 >
j=3] =
<4 =]
(S}
§2 ¢
Q
Zwn

L0€'8L0C 'NNLIN 1B'S
Department of Energy and P

@NTNU @NTNU

Norwegian University of Norwegian University of
Science and Technology Science and Technology

NNIN®



Jorgen Rgysland Aarnes

Simple Geometry - Complex Flow

A computational study of turbulent
particle-laden flows impinging on a
cylinder

Thesis for the degree of Philosophiae Doctor

Trondheim, September 2018

Norwegian University of Science and Technology
Faculty of Engineering
Department of Energy and Process Engineering

@NTNU

Norwegian University of
Science and Technology



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Engineering
Department of Energy and Process Engineering

© Jgrgen Rgysland Aarnes

ISBN 978-82-326-3404-0 (printed version)
ISBN 978-82-326-3405-7 (electronicversion)
ISSN 1503-8181

Doctoral theses at NTNU, 2018:307

{/{I/;/ Printed by Skipnes Kommunikasjon as

4
TRy



Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) for partial fulfillment of the requirements for the degree of philosophiae
doctor. The doctoral work has been performed at the Department of Energy and
Process Engineering, NTNU, Trondheim. The supervisors of the work are Professor
Helge I. Andersson and Associate Professor Nils E. L. Haugen.

The research has been funded in full by the Research Council of Norway (Norges
Forskingsrad) under the FRINATEK Grant.

Trondheim, September 2018
Jgrgen Rgysland Aarnes






Abstract

Direct numerical simulations were performed to study the effects of free-stream
turbulence on different flow regimes past a circular cylinder. The focus was on
the transition-in-wake state of the flow and particle impact on the cylinder. To
increase accuracy of the simulations, a considerable effort was made to improve the
numerical methods used within the simulations. The focus of these improvements
was on an existing immersed boundary method and a newly developed overset grid
method for the representation of the solid cylinder in the open-source Pencil Code.

Transition-in-wake is the first stage of transition to turbulent flow around a cylin-
der, and can be characterized by three-dimensional effects developing in the wake,
along with a decrease in the vortex shedding frequency (at Re ~ 190). For medium
to high-intensity turbulent free-stream flow, the Reynolds number bandwidth for
transition is increased. That is, the transition is initiated at a lower Reynolds number
and endures to a higher Reynolds number than when the free-stream is laminar.
Relevant mechanisms for this bandwidth increase include intermittent vortex dislo-
cations and quasi-stable states at lower Reynolds numbers within the transition, and
stimulations of larger modes of instabilities for higher Reynolds numbers.

For inertial particle impaction on a cylinder at moderate Reynolds number (Re =
100 and Re = 400), high-intensity free-stream turbulence significantly amplifies the
number of particles that impact the cylinder (for certain particle Stokes numbers,
St). The peak amplification of impaction is observed at St = 0.3. This peak is
related to a change in impaction mechanism, from boundary stopping to boundary
interception, and it will therefore dependent on the size of the particles as well as the
Stokes number. The amplification decreases rapidly when the difference between a
particle’s Stokes number and Stokes number at peak impaction increases. These
observations were reproduced from laminar impaction data using an expression for
expectation value to estimate the particle impaction within the turbulent free-stream.

Improving how ghost- and mirror-points reconstruct the boundary conditions in
an existing immersed boundary method yielded a more efficient way to perform
simulations of a cylinder in a cross-flow using the Pencil Code. Yet impaction of
small particles proved computational costly, limiting St > 0.2. Overset grids were
developed as a means to overcome this limitation. The overset grid implementation
uses sixth-order finite-differences for the governing equations, with summation-by-
part operators at the boundary, Padé filtering and local time-step restrictions. The
result is high-order accuracy at the cylinder boundary reproducing particle impaction
with a 90% reduction in the necessary grid points. For 2D flow simulations, the
number of grid points could be reduced by factors of 14—18 for flows with Re = 100-
400 when using overset grids rather than the immersed boundary method.

iii






Acknowledgments

No man is an island, but can a Ph.D. student perhaps be one? At times it appears
s0, in particular after hours, days or weeks of battling an unlimited number of bugs,
impenetrable equations, server crashes and other general frustrations. Fortunately,
for one who has family, friends and colleagues, the occasional vacation from the
island of isolation, back to the continent of social community prevents one from
drifting away during the years where more and more effort is invested into research
on topics interesting perhaps to only oneself. I am exaggerating, of course. Yet, the
help from people around me, not necessarily with research, but with withstanding
the pressure of a four-year long journey of too much to do, and too little time to do
it all, cannot be overestimated.

There are many whom I would like to acknowledge in this regard. First of
all, I would like to extend my gratitude to my supervisors, Helge Andersson and
Nils Erland Haugen. You have not only been a source of continuous support and
encouragement during your time as my supervisors, you have also given me the
freedom to grow during this time and to make the research project my own. A
special thanks goes to Nils, for the many hours we have spent together on making
code improvements and discussing results, and for introducing me to the Pencil
Code and its community of researchers.

I would also like to thank my colleges in the Fluid Dynamics group at the
Department of Energy and Process Engineering. I am particularly grateful to
Bernhard Miiller, for several years of collaboration on teaching computational fluid
dynamics to Master’s students and for much appreciated advice and expertise on
numerical problems that were outside of my grasp. I must also thank those I have
struggled together with: my fellow PhD-students and postdocs. There are too many
to mention, but you definitely know who you are. Thank you for all the movie
nights, dinners, rounds of beers, and outrageous lunch discussions.

There certainly is a lot more to Trondheim than a university, and a large part of
my time here has been spent at another crucial institution in this student city: the
student society, Studentersamfundet. 1 would like to give a very special thanks to
my many close friends in Kulturutvalget ved Studentersamfundet, for all the early
morning walks home, film festivals, Rocky Horror Picture Shows and genuine (yet
sometimes misguided) efforts to make this city a better/more fun place.

Unfortunately, some of the people closest to me live the farthest away. I would
like to extend my gratitude to the support and involvement from my family and
friends in Stavanger, Bergen, Oslo, Tromsg and Copenhagen In particular, I would
like to acknowledge the support from my closest family, Peter, Andreas, Tone and
Per. Thank you for calling to check up on me every week. You know I am far too



forgetful to do so myself.

Last, but not least, I wish to thank the person who has chosen to spend (almost)
every day in my company. Your great patience and empathy, your north-Norwegian
temperament, your sincere humor, sharp intellect, and your lovely smile, gets me
out of the bed every morning (and back in every night!). Thank you Maria, for
sharing your time with me.

vi









Contents

Part |

1 Introduction

1.1 Motivation . . . . . . . . . . . e e e
1.2 Flowproblems . . . . . . ... . ... . ... ..
1.3 Numericalmethods . . . ... ... ... ... .. ... .......
1.4 Goalsandthesisoutline . . . .. ... ... .. ............

2 Theory and methodology

2.1 Compressible Navier-Stokes equations . . . . . . ... ... .....
2.2 Particleequations . . . . . . .. ...
2.3 Numerical methods for the Navier-Stokes equations . . . . . . .. ..
24 Turbulence . . .. ... ...
2.5 Resolving solid boundaries . . . . ... ... ... ... .......
2.6 Simulating particle-ladenflow . . . . ... ... ..o
2.7 Parallelization . . . . . .. ... ..

3 Contributions

3.1 Timeline . . . . . . . ...
3.2 Listofpapers . . . . . . . . e e
3.3 Summaryofpapers . . .. ... ...
3.4 Othercontributions . . . . . .. .. .. ... ..

4 Conclusion
4.1 Concludingremarks . . . . . .. ... ... ... ...,
4.2 Futureoutlook . . . . . . . . .

iii

—_
N — N W W

[a—

17
17
18
20
30
33
42
45

49
49
51
53
62

65
65
66

X



A Navier-Stokes equations
A.l Cartesian coordinates . . . . . . ... .. ... ... ...
A.2 Cylindrical coordinates . . . . . ... ... ... ... .. ...,

Bibliography

Part i

5 Research papers

5.1
52
53
54
5.5

PaperI . . . . . . . .

69
69
71

75



Part |






Everything flows.

Heraclitus!

Introduction

In this thesis, computational efforts to investigate flows past a cylinder are pre-
sented. Flows of varying complexity are studied, ranging from simple steady flows
to particle-laden flows in the unsteady vortex-shedding regime, with high-intensity
turbulence present in the free-stream. To study such flows at reasonable compu-
tational costs, novel numerical methods have been developed and implemented
in the open-source code known as the Pencil Code [15, 16, 100]. The aim of
this introductory chapter is to provide the motivation for this work and to give an
overview of relevant physical and numerical research.

1.1. Motivation

It can be quite relaxing to lie down next to a river and daydream, while watching
twigs floating by and eddies breaking apart on rocks. Contemplating the physics
of the phenomena one is observing, however, can be enough to make the most
carefree daydreamer awaken to a nightmare of non-linear interactions and unsolved
problems. Yet, if one takes a special interest in the physics of flows, it is perhaps
the knowledge that what one is observing is yet to be fully understood that causes
the relaxation itself.

Variants of this aphorism appear in Plato’s Crarylus [73] and Simplicius’ Commentary on Aristotle’s
Physics [99].



Although it is now four centuries since the great mathematician and physicist
Isaac Newton lived, there are many problems of a mechanical nature that are far
from fully understood by natural scientists. One such problem is the complex
interplay of fluids and objects in a turbulent flow. One needs not be a daydreamer or
a romantic to find such a problem interesting, as turbulent flows are found not only in
nature. Such flows exist in abundance within industrial applications, and increased
knowledge about turbulence facilitates improvements in such application. Turbulent
flow past an object may be complex enough, but it can be further complicated by
considering a multi-phase flow, such as a two-phase flow where one phase is a
fluid and the other consists of particles suspended in the flow. The flow problem
considered in this thesis is a turbulent, particle-laden flow, where an obstruction is
blocking the path of the suspended particles.

A river flowing around a rock and the fly-ash of a bio-mass fired power plant
heating tubes of water vapor are examples of turbulent particle-laden flows navigat-
ing an obstruction. Although these examples of water flowing and gas rising may
appear quite different, the flow fields can be very similar. Further similarities can
be found in the transport and deposition mechanisms of suspended particles in a
river, sediments that wear rocks over time, and particles from combusted bio-mass
transported by the fly-ash in an incinerator and deposited on heating tubes. In both
examples, one should expect intermittent, chaotic fluctuations of velocity in the flow.
These fluctuations, the turbulence in the flow, may be due to the fluid interacting
with the object or other factors upstream or surrounding the object. Examples
include rapids in the river and an incinerating flame in the bio-mass power plant.

A clear description and understanding of the fundamental physical processes of
such flows can be motivation enough to take on the research required to write a
doctoral thesis. Any applications of such research in industry can be considered
a beneficial side-effect, or the main motivation for such research. Some possible
applications are consideration below.

Particle motion, accumulation and deposition in turbulent flows are of great
importance for many critical applications in the modern world. Two relevant
examples are filter applications and industrial boilers. Particles impacting on a solid
object in the flow can lead to the build-up of a deposition layer on the solid-fluid
interface, or it can lead to erosion of the solid object. For a bio-mass power plant,
a deposition layer will lead to reduced efficiency (power output), while in a water
turbine, particles in the water will contribute to erosion and corrosion of the blades
(also lowering efficiency). In both cases efforts are therefore made to avoid particle
deposition. In the diesel filter of a car, particles passing the filter contribute to air
pollution. In this case (and in other filter applications) the goal is to maximize
particle deposition. Regardless of the particular application, increased knowledge



of the flow problem can improve design and, hence, efficiency.

Computational methods (simulations) were used in all new research presented
within this thesis. With modern supercomputers available, idealizing complex
flow problems and solving them numerically is a common approach yielding
knowledge previously unattainable by purely theoretical or experimental studies.
The computations are based on the well-founded claim that all (non-relativistic
continuum) flows can be described by the same fundamental laws: the Navier-
Stokes equations. Similarities between water in a river and gaseous flow in a
power plant were noted above. In effect, only the boundary conditions and certain
physical parameters (viscosity, density, etc.) separate these flows when described
by the Navier-Stokes equations. This computational approach does, however, have
drawbacks. Not only must a considerable effort be made to prove the validity
of the numerical results, certain methods may turn out less effective than initially
expected. This necessitates the development and implementation of novel numerical
methods. Quite a large part of the research presented in this thesis is related to
such development and the implementation of a numerical framework capable of
describing complex flow problems.

1.2. Flow problems

The domain of all flows considered are variations of a cylinder obstructing the
flow. Although there is little variation in the geometry, the flows themselves are
quite different. This leads to different flow problems, which are described in the
following section.

Transition-in-wake

The flow past a circular cylinder is usually described by a single non-dimensional
number, the (cylinder) Reynolds number?. The Reynolds number (Re) is defined as:

Re=UyD)/v, (1.1)

where Uy, D and v are the mean flow velocity, cylinder diameter and kinematic
viscosity, respectfully. The Reynolds number is the primary parameter describing
the viscous behavior of all Newtonian fluids [114]. At low Reynolds numbers,
viscous forces dominate over advective inertial forces. This flow regime is termed
laminar flow (or creeping flow, for very low Reynolds numbers). For flow past a

2Named after Osborne Reynolds, for his pioneering research on a broad range of topics in fluid
mechanics [82].



(a) Re =20 (b) Re = 60 (c) Re =100

Figure 1.1.: Visualization of instantaneous vorticity normal to the view plane,
plotted for three different Reynolds numbers. Transition from steady laminar flow
(a) to unsteady laminar flow without (b) and with (c) vortex shedding in the wake.
Inflow at the top plane.

cylinder, laminar flow does not necessarily indicate steady flow, i.e., flow constant
in time. In the very low Reynolds numbers range of laminar flow, the flow is steady,
but when the Reynolds number is increased past Re ~ 47 the steady flow becomes
unsteady through a Hopf bifurcation [79]. At this point, periodic oscillations
develop in the wake. The wake eventually breaks up and form eddies downstream
of the cylinder as the Reynolds number is increased (Re > 90). This pattern is
known as the Kdrmén vortex street®. This development, from steady laminar flow
to the K4rmén vortex street, is seen in Figure 1.1.

Up to this point, the flow could be described as purely two-dimensional, as there
was no variation of flow variables in the spanwise direction of the cylinder. With a
further increase of the Reynolds number, however, three-dimensional fluctuations
develop in the cylinder’s wake. This occurs as the flow enters the transition-in-

3 Although named after the engineer and scientist Theodor von Karman, for his early research of this
wake pattern, some controversy exists on who should be attributed as discovering this pattern.
Von Kédrmén himself remarked that he made peace with the French scientist Henri Bénard on this
matter, by jokingly suggesting that what in Berlin and London is called “Ké4rman street" should
be called “Avenue de Henri Bénard" in Paris [109].



wake state. This state of the flow spans (180 —200) < Re < (350 —400) (see, e.g.,
Zdravkovich [126]). For Re > 400 the flow progresses through other transitional
stages as the Reynolds number is increased. These are denoted transition-in-shear-
layers and transition-in-boundary-layers. Following the last transition, the flow
can be described as fully turbulent; a state that is reached when all disturbed flow
regions around the cylinder are turbulent [126]. All flows investigated in this thesis
have Re < 400.

A flow simulation operating in the Reynolds number range of the transition-
of-wake state should be able to reproduce the distinctive three-dimensional flow
behavior observed in experiments focusing on this transition. The transition-in-
wake was selected as the test case for three-dimensional simulations performed in
the present work, and motivated an in-depth look at this transitional state of the
flow. The particular focus was on the effect of a turbulent free-stream (TFS), i.e. the
flow approaching the cylinder was turbulent. Key contribution to the understanding
of the transition-in-wake state include work by Roshko [85], Williamson [115,
117], Williamson and Roshko [119], and Barkley and Henderson [8]. A brief
background on this material is presented below, including specific work on the
effect of free-stream turbulence.

It was noted above that this transition starts at 180 < Re < 200. The Reynolds
number of onset is typically identified by a sharp decrease in the vortex shedding
frequency of the K4drmén vortex street. The onset is identified over a range of
Reynolds numbers, and this reflects two things. Firstly, there is a hysteresis pattern
in the vortex shedding frequency when the Reynolds number is varied in the region
were the transition begins. Secondly, there is quite a large scatter in the observed
onset of the transition. This is especially prominent within experimental results,
which can be seen by comparing data from the literature.

The onset of transition was observed at Reynolds numbers (in chronological
order): 150 by Roshko [85] and Tritton [102], 140 by Gerrard [35], 170-180
by Williamson [115], 168 by Norberg [67], and 180-194 by Williamson [117].
Using Floquet stability analysis, Barkley and Henderson [8] identified the onset
of transition at Re = 189 and Henderson and Barkley [43] further proved that the
transition was sub-critical, explaining the hysteresis effect observed experimentally
by Williamson [115] and others. The Reynolds number computed by Barkley and
Henderson [8] was not only confirmed by the more recent results by Williamson
[117], but also by high-accuracy numerical simulations [77].

Instability modes with a spanwise length of approximately four cylinder diam-
eters develop in the flow at the onset of three-dimensionality in the wake. These
are called mode A instabilities [115, 117] and are the dominant flow features in
the spanwise direction during the first part of the transition-in-wake regime, along



with spot-like vortex dislocations. Vortex dislocations are large-scale intermittent
structures that grow downstream of the cylinder. These dislocations were discovered
experimentally by Williamson [116], and similar features have been reproduced
in numerical simulations (see, e.g., [127, 42]). Zhang et al. [127] labeled these
structures ‘“vortex adhesion”, due to vortices evidently adhering to the cylinder
over many shedding periods. The structures were also found to be self-sustained in
the range 160 < Re < 230. Henderson [42] pointed out that the spot-like disloca-
tions must be generated by the mode A instability, and concluded that a nonlinear
interaction between self-excited modes in the A-band is responsible for the appear-
ance of large-scale structures in the wake. Here, the A-band refers to the different
wavelengths of the mode A instability*.

The mode B instability develops in the wake with a further increase of the
Reynolds number. Mode B instabilities are streamwise structures with a spanwise
wavelength of approximately one cylinder diameter, dominating the flow at Re 2>
260 (see Williamson [118] and references therein). At Reynolds numbers between
210 and 220, the mode A and mode B instabilities start to co-exist in the wake. The
transition from a flow dominated by one mode to the other is gradual, with energy
in the flow shifting continuously from the larger (mode A) to the smaller (mode B)
instabilities over a range of Reynolds numbers (see Barkley et al. [9]). Note that
unlike the transition where mode A instabilities first occur, the second transition
during the transition-in-wake state of the flow is supercritical [9].

The work on transitional flow presented in the present thesis does not focus
on the general nature of the instabilities that develop in the flow. Rather, the
transitional flow and flow with a Reynolds number near the transition-in-wake
regime was studied under the disturbance of a turbulent free-stream. Experimental
studies exist with this as a partial focus, conducted by Bloor [14], Hussain and
Ramjee [45] and Norberg [66]. No effect was observed by Hussain and Ramjee [45],
leading Zdravkovich [125] to draw the conclusion that the transition-in-wake state
of the flow was insensitive to the free-stream turbulence. This finding is not
valid, as Hussain and Ramjee performed experiments with Re < 160, that is, for
Reynolds numbers outside the transition-in-wake state of the flow. Bloor [14]
and Nordberg [66] observed an effect of the turbulence on the transition, in the
bandwidth of Reynolds numbers spanning the transitional regime, but an analysis
of the process was not performed.

4Note that the observed spanwise wavelength (A4 = 4D) of the three-dimensional pattern developing
in the wake corresponds to the most unstable wavelength of the A-band.



Particle deposition

Investigating particles in a flow convected towards and (possibly) past a circular
cylinder is quite different from the study of transitional flow, and can be studied
completely independently. Nevertheless, knowledge of the effect of free-stream
turbulence on the transition-in-wake can be useful when particle-laden flow simula-
tions under turbulent flow conditions are performed. For example in understanding
unexpected behavior of the particle-laden flow at certain Reynolds numbers (per-
haps due to an early onset of the transition-in-wake state), or in setting up flow cases
with Reynolds numbers outside the most complex region of the transition. The
latter was done when particle simulations within this work were set up to conduct
an investigation of free-stream turbulence effects on particle deposition without
unnecessary disturbances.

Particle-laden flow is a huge field of research itself, and has been a focus in
recent years. For a general overview, with emphasis on numerical simulations of
such flows, the reader is referred to reviews by Kuerten [55] and Marchioli [60].
For the purpose of the research presented in the present thesis, only particle-laden
flows with a cylinder obstructing the path of the particles will be considered, and
the focus will be on the impaction of particles on the surface of the cylinder.

When considering a large number of particles impacting on an obstruction in the
flow, a practical way of quantifying the probability of impaction is by computing
impaction efficiencies, 1. The impaction efficiencies are the ratios of particles
impacting on the cylinder to the total number of particles with a centre of mass
that would hit the cylinder if not disturbed by the flow”. The impaction efficiencies
are typically split into front-side and back-side impaction, 1, and 7, respectively.
These figures are represented as functions of the particle size and density, described
by the Stokes number. The Stokes number (St) is the ratio of a particle’s Stokes
time to the timescale of the fluid flow the particle is suspended in:

St=1,/1¢. (1.2)

In the context of particle impaction on a cylinder, the fluid time scale is the ratio
between the cylinder diameter (or radius) and the mean flow velocity.

There are several different methods for determining the impaction efficiencies of
particles in flow past a cylinder. The simplest way to compute 7 is to use a potential
flow approximation derived by Israel and Rosner [48]. The potential flow method
for computing impaction efficiencies is well accepted for Stokes numbers larger

5In practice, this means that > 1 is possible, since particles with finite radii and center of mass
outside the projected cylinder area can contact the cylinder even without the flow affecting their
trajectory.



than unity. For small Stokes numbers, the particles follow the flow to a large extent,
hence, rotational and viscous effects in the vicinity of the cylinder will be important
for the transport of these particles. These effects are not resolved with a potential
flow approximation, thus, other methods must be used to calculate accurate particle
impaction efficiencies for small Stokes numbers®. Other studies on impaction and
deposition found in the literature used experimental methods (Schweers et al. [89]
and Kasper et al. [50]), numerical simulations (Yilmaz and Cliffe [122], Li et al.
[57], Haugen and Kragset [39], Haugen et al. [40], and Wactawiak and Kalisz
[110]) and phenomenological modeling (Huang et al. [44]). These studies regarded
smooth laminar flow past one or more cylinders.

Inertial particle impaction on a cylinder in a cross-flow can be split into three
different impaction modes, based on what drove the trajectories of the convected
particles during impact. The modes are classical impaction (particle inertia driven
trajectory), boundary stopping (boundary layer driven trajectory) and boundary
interception (mass center of particles do not come in contact with the cylinder)
(cf. Haugen and Kragset [39] and Weber et al. [111]). The mode is determined
by the Stokes number (with some dependence on Reynolds number). Generally,
classical impaction occurs for Stokes numbers St > 0.9, boundary stopping’ for
0.2 < St < 0.9 and boundary interception for St < 0.2. Potential flow expressions
for impaction efficiencies are applicable for the classical impaction mode, while
they are only somewhat useful for the boundary stopping mode and are not at all
applicable for boundary interception.

It is reasonable to expect that turbulence in the flow influences the rate of particle
impaction in many applications. The turbulence can be due to transitional eddies
in the free shear layers of the cylinder at high Reynolds numbers, combustion
upstream of the cylinder or wall turbulence for a cylinder in a confined space,
etc. The velocity fluctuations will affect the inertial particle impactions on the
cylinder surface, as particle trajectories deviate from the mean flow streamlines
when turbulence is present. This is particularly important for particles with small
Stokes numbers, as such particles primarily follow the flow.

An exception to the experimental studies on particles in smooth laminar flow, is
the measurements by Douglas and Ilias [29] on the effect of turbulence on particle
impaction. Douglas and Ilias [29] considered a cylinder situated within a channel

%A consequence of using the potential flow approximation for computing particle efficiencies, is
that 1 = 0 (no impaction) for particles with St < 1/8 (see Ingham et al. [46]).

"The boundary stopping mode is partly overtaken by the classical impaction mode for high Reynolds
numbers. Haugen and Kragset [39] identified boundary stopping for 0.2 < St < 0.3 and classical
impaction for St > 0.3 when Re = 1685. With Re = 20 the boundary stopping mode existed for
0.3 <S8t <0.7.

10



with turbulence generated by the channel walls. The results showed increased
impaction efficiencies when turbulence was present in the flow, and eddy diffusion
was a contributing mechanism. The scatter in the data was, however, quite large for
small Stokes numbers.

Several recent computational studies on particle impaction include turbulence
in the flow (see Lee and Lockwood [56], Weber et al. [111], Beckmann et al. [10],
and Pérez et al. [70], and a mini-review by Weber et al. [112]), but these were
limited by the use of Reynolds Average Navier-Stokes modeling®. In one such study,
performed by Weber et al. [111], it was found that the turbulence played a minor
role for particles with Stokes number larger than a critical value. The turbulence
increasing particle impactions for particles with Stokes numbers below the critical
value. However, as pointed out by the authors of said study, the accuracy of the
CFD simulation was limited by the lack of rigorous testing of the particle tracking
procedure. Further limitations were introduced by modeling and time-averaging
the flow, and by not accounting for boundary interception.

The work on particle-impaction presented in this thesis is twofold. Firstly, the
effect of free-stream turbulence on impaction efficiencies of inertial particles for
Stokes numbers from 0.2 to 10 was considered by Direct Numerical Simulations
(DNS). Secondly, the particle impaction for a large range of Stokes numbers was
used as a test case for a new numerical method developed as part of this doctoral
work. This numerical method was motivated by the very high accuracy requirement
for impaction of small particles (St < 0.2). The crux of the computations was to
resolve the flow without needing a very fine grid, and at the same time have a
sufficiently fine grid to resolve the particle trajectories in the vicinity of the cylinder.
The interpolation of fluid velocities used to update the forces acting upon particles
was particularly sensitive to the grid spacing for very small, tracer-like particles.

1.3. Numerical methods

Fluid flow in a domain that contains an immersed solid object is a common test
case for computational fluid dynamics. Obstructions in the flow include (but are
not limited to) cylinders, spheres, flat plates, rectangular or elliptical cylinders and
spheroids, triangles and complex geometries made out of a combination of these
shapes. Finding a method to represent such objects optimally in simulations is not
a trivial task, and the numerical method used is often chosen specifically for the

8This limitation is, perhaps, not of much concern to the authors of said papers, as the focus of these
articles is not on effects of the turbulence on the impaction. An exception to this is the article by
Weber et al. [111] where this is a partial focus.

11



(a) Body-conformal (b) Non-body conformal

Figure 1.2.: Representation of a solid object in the flow domain with different types
of structured meshes. Domain boundaries not shown.

problem at hand.

For many generic shapes, such as cylinders, spheres, plates, etc., body-fitted
structured meshes are commonly used to represent the object(s) in the flow. These
meshes conform to the object(s) in the flow domain, as seen in Figure 1.2(a), and
typically to the other physical boundaries of the domain (inlet, outlet, walls, etc.) as
well. Depending on the shape of the flow domain and the object in the flow, this
may require a deformation of the grid to conform to domain boundaries, in addition
to the procedures to map the grid in the flow domain to a simple computational
domain. This deformation may result in a grid with unnecessary local variations of
the grid (e.g., a grid that is denser than necessary in certain areas of the domain).
This can also contribute to time consuming grid generation (see, e.g., Versteeg and
Malalasekera [105]). A popular alternative to such meshes, particularly when the
shape of the flow domain or the objects within is more complex, is an unstructured
mesh. Unstructured meshes provide the highest flexibility in grid adaptation to a
particular flow geometry, and are a good alternative for complex geometries when
finite-volume or finite-element formulations of the governing equations are used
(see Mavriplis [62], Owen [68], and Tannehill et al. [98]). Disadvantages of such
grids include larger storage requirements, the need for intricate mesh generation
techniques and difficulties in achieving high-order accuracy.

12



Immersed boundary method

The object(s) in the flow and the flow domain can alternatively be represented
without the grid conforming to the object(s), as seen in Figure 1.2(b). Typically, this
is done by using a Cartesian grid, with a modification in either the flow equations
or the grid cells in the immediate vicinity of the solid object(s). Popular techniques
include immersed boundary methods (IBMs) (Peskin [71], Peskin [72], and Mittal
and laccarino [64]) and cut-cell methods (Quirk [81], Causon et al. [20], Ingram
et al. [47], and Schneiders et al. [88]). These two methods differ in that the IBM
uses a Cartesian grid in the entire flow domain, while the cut-cell method grids are
“cut” near objects and/or domain boundaries that do not conform to the grids. Due
to this cell cutting, care must be taken such that the cut cells do not become too
small, since this may introduce numerical instabilities.

For the IBM, rather than modifying the grid cells near the solid object, the
boundary conditions of the solid are imposed directly in the flow equations. This
is done either by a continuous or discrete forcing technique. In both cases a body-
force, present due to non-conforming boundaries in the flow, is introduced in the
Navier-Stokes equations. This is done either before discretization (continuous
forcing) or after (discrete forcing) [64]. The latter is the preferred method for IBM
used to represent rigid boundaries.

A further development of the discrete forcing method is to treat the immersed
boundary as a sharp interface, and to impose the boundary conditions directly by
using a combination of ghost-points inside the solid and mirror/image-points in
the flow domain (set by interpolation) to reconstruct the solid (Tseng and Ferziger
[103] and Berthelsen and Faltinsen [12]). An advantage to this approach is that the
boundary conditions are represented without any added force in the flow equations,
hence, the method can easily be implemented in an existing flow solver.

Disadvantages of IBMs are the lack of mass conservation’ and reduced accuracy
in the vicinity of the surface. Note that recent developments show that some of
the challenges related to high-order accurate reconstructions of velocities near the
surface can be overcome (Linnick and Fasel [58], Seo and Mittal [90], and Xia et al.

[121]).

Overset grids

Roughly ten years after the emergence of the IBM, a method of multiple grids
overset on one another was proposed to represent solids in a flow (see Steger

9Finite-volume approaches with cut-cell methodology are appropriate if mass and momentum
conservation must be guaranteed [64].
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et al. [93], Steger and Benek [94], and Benek et al. [11]). Such overset grids, or
Chimera methods, employ body-conformal grids on solid objects in the flow domain,
but the grids do not extend to the domain boundaries. Instead, a non-conforming
background grid (typically uniform Cartesian) is used, and updated flow information
of overlapping grid regions is communicated between grids at every time step. In
this way, a flow simulation is split into multiple sub-simulations, one for each grid,
and the information exchanged in overlapping regions enter as boundary conditions
into the flow equations of the sub-simulations. The background grid is used to
compute the flow outside the smaller body-fitted grids, and the communication
between the different grids is done by interpolation. The flow domain may contain
a single grid overlapping another, or several grids overlapping. The latter case
necessitates a priority of communication and computation for solutions on different
grids (see, e.g., Chesshire and Henshaw [21] and Meakin [63]). For complex
configurations, this may require extensive preprocessing for fixed objects (Rogers et
al. [84]) or intricate grid handling during the simulation for moving bodies (Noack
[65D).

Overset grid methods have the advantages of being highly accurate at the solid-
fluid interface. This is due to the use of body-fitted grids in these regions, and the
flexibility in the grid stretching when several grids are used. Additionally, no grid
deformation is necessary to conform to domain boundaries, due to the use of an
appropriate non body-conformal background grid. If the flow domain is circular, a
cylindrical grid can be used as the background grid, if rectangular, a Cartesian grid,
etc.

The communication between the grids is the limiting factor in terms of the
accuracy of overset grid methods. Interpolation of flow variables between grids in
the overlapping regions is detrimental to mass conservation. However, conservative,
mass-correcting overset grid methods do exist for finite-volume codes (see e.g.
Pért-Enander and Sjogreen [69] and Zang and Street [124]). Using high-order
interpolation between grids has proven beneficial in regard to the overall accuracy
and stability of the overset grid method for both finite-difference and finite-volume
implementations (Sherer and Scott [91], Chicheportiche and Gloerfelt [22], and
Volkner et al. [108]).

While advantageous in terms of accuracy, high-order interpolation techniques
have the disadvantages of an increase in complexity and larger interpolation stencils,
leading to more inter-processor communication and floating-point operations. Fur-
thermore, straightforward extension to high-order interpolation (e.g. from second-
order to fourth-order Lagrangian interpolation) does not guarantee a better solution.
Possible overshoots in the interpolation polynomials can have a devastating impact
on the accuracy and stability of the numerical simulation.
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1.4. Goals and thesis outline

The main goal of this thesis is to document research on the transport and deposition
of small particles on a cylindrical geometry in moderate Reynolds number flows, as
well as the necessary numerical methods developed to perform the research. The
achievements of the research as a whole can be split into four parts:

e An existing immersed boundary method was improved, such that accurate
Direct Numerical Simulations (DNS) could be performed at reasonable com-
putational costs for flows with moderate Reynolds numbers.

e The improved IBM was used to investigate the complex flow patterns in
the transition-in-wake state by DNS, with the focus on how the transition is
affected by high-intensity free-stream turbulence.

o DNS of a particle laden-flow interacting with a circular cylinder under condi-
tions of laminar and turbulent free-streams was performed. Observation and
analysis of how the impaction efficiencies were affected by high-intensity
free-stream turbulence was done. Further, a predictive expression of the
turbulence effect was suggested and the quality of this expression was con-
sidered.

e The numerical handling of the cylinder was improved by the development
of an overset grid method, in order to (1) make possible very accurate sim-
ulations of small particles impacting on the cylinder and to (2) reduce the
computational cost such that flows with larger Reynolds numbers can be
considered in future research.

Background information related to the milestones has been given in this intro-
ductory chapter. In the next chapter the focus shifts to the theory of fluid flow,
and a thorough description of the relevant numerical methods for discretization
of the flow and particle equations and representation of solid objects in the flow.
Following this, the contributions to the present thesis are described in Chapter 3.
Conclusions are drawn in the last chapter, where suggestions for further work are
also given. The scientific articles making up the bulk of the documented work can
be found in the second part of the thesis.
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What we observe is not nature itself, but nature
exposed to our method of questioning.

Werner Heisenberg !0

Theory and methodology

In this chapter the theoretical framework used to describe fluid flow and particle
transport is described, and details of the discretization and numerical methods in
use are presented.

2.1. Compressible Navier-Stokes equations

Fluid flow can be described by the Navier-Stokes equations, a set of equations
derived from Newton’s second law of motion, by considering viscous and pressure
forces acting on a fluid element. For compressible Newtonian fluids, the Navier-
Stokes equations for continuity and momentum are:

Dp _

and
D
p%z—Vp—FV'(ZuS)—FF, 2.2)

respectively. Here p, ¢, u, p and u are the density, time, velocity vector, pressure,
and dynamic viscosity (U = pV, with kinematic viscosity V), respectively, and

D J

101n Physics and Philosophy: The Revolution in Modern Science [41]
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is the substantial derivative operator. The compressible rate of strain tensor .S is
given by:

1 1
S=3 (Vu+ (Vu)T) I <3V.u> , (2.4)

where I is the identity matrix. The vector F' is an external body force, e.g. gravity,
drag from particles, etc. To close this set of equations, an equation of state is
required. Here, the ideal gas law is applied:

p=cp, (2.5)

where c; is the speed of sound.

The Navier-Stokes equations can be re-written into a form with only the differ-
entiation of variables with respect to time on the left hand side of the equations.
This is the format of the equations in the Pencil Code. With a constant speed of
sound (for the case of an isothermal fluid), constant kinematic viscosity and zero
body-force, the flow equations are:

and
Jdu 2
== —(u-V)u—c;V(Inp)

+v<V2u+;V(V~u)+25’-V(lnp)>. 2.7)

To develop a computational Navier-Stokes solver, fully expanded versions of
the equations above are needed. Despite the utility, the fully expanded Navier-
Stokes equations are rarely stated for compressible flow, particularly for coordinates
systems other than Cartesian. For this reason the expressions are included in
Appendix A.

2.2. Particle equations

Describing the fluid flow by the Navier-Stokes equations entails describing the
fluid as a continuum. This is known as a Eulerian description of the flow. Particle
descriptions in fluids are categorized as either Lagrangian tracking or Eulerian
modeling approaches (Crowe et al. [24]). Using a Lagrangian formalism means that
an individual particle (or parcel of particles) is tracked as it moves through the flow
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field. An Eulerian approach treats the particles and the fluid as two inter-penetrating
continua. A Eulerian-Eulerian description for the fluid-particle flow is useful for
when the volume fraction of the solid matter is high (see, e.g. van der Hoef et
al. [104]), but this is not the case for the flows considered in this thesis. Instead
Eulerian-Lagrangian tracking is used for particle-laden flows, such that each particle
is tracked individually as it interacts with the surrounding fluid.

The considered particles are idealized as point-particles, that is, the particle
volume is neglected (although a finite diameter is used in drag calculations and
collisions, more on the latter point in Section 2.6). Although simulations are
performed with several million particles in the flow!!, the small particle sizes makes
the flow dilute, justifying the use of a point-particle approach. This also justifies
the use of one-way coupling for fluid and particle phases. The one-way coupling
indicates that the flow of one phase (the fluid) affects the other (the particles) while
there is no reverse effect [24]. Alternatively, two-way coupling implies a mutual
effect between the flows of both phases.

For a one-way coupled, Lagrangian, point-particle, the particle’s velocity and
position is described by:

d’Up _ FD,p (2 8)
dr my ’

dx

d—tp = v, (2.9)

where v,, x, and m, are the velocity, centre of mass position and mass of the
particle, respectively. The force acting upon the particle is the drag force, Fp ,, due
to the particle moving through the fluid. The particle drag force is given by:

1
Fp,, = TCCPCD,pAp lu— vp| (u— 'Up) ) (2.10)

where A, = ndlz, /4 is the cross sectional area of the particle and

2
-1+ (1.257+o.4e<—1-1dn/2“), @2.11)
dp

is the Stokes-Cunningham factor with parameters set for air (Cunningham [25] and
Davies [27]), and a particle diameter d),. The mean free path A = 67nm accounts

"Note that although several million particles are inserted into the flow during a simulation, there
are no more than a few hundred thousand particles present in the flow in the simulations at any
given time. This is due to the removal of particles from the flow when impacting on the cylinder
or reaching the outlet boundary.
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for the fact that for very small particles, the surrounding medium cannot be regarded
as a continuum but, rather as distinct particles. The particle drag coefficient is given
by (see Schiller and Neumann [87] and Clift et al. [23]):

0.44, if Re,, > 1000,
Cp,=1{ 24 2.12
PP 2 (140.15R0%7),if Re, < 1000, 2.12)
Re,,

where Re), is the particle Reynolds number, Re, = d, |v, —u|/v. When Re,, <
1000, which is the case for all the particles considered, the particle drag force of
Eq. (2.10) can be written as:

m
Fp,= Tl(ufvp), (2.13)
P

where
Sd>C.

Tp = m 3 (214)

is the particle response time, with f. = 0.15Re?,‘687 and density ratio S = p,/p.
Note that the drag force on the particle is reduced to the Stokes drag (Stokes [95]),
Fp,=6nvpr,(u—vp),inthe limit C. = 1 and Re, < 1.

With the particle time scale defined, the Stokes number can be used as a non-
dimensional number to describe a particle in the flow. As mentioned in the intro-
duction, the Stokes number is the ratio between the particle and fluid time scales
(Eq. (1.2)). The particle time scale is given by Eq. (2.14) and the fluid time scale is:

D

— 2.15
T 2.15)

Tf =

where the factor two is included by convention. The Stokes number can be regarded
as a measure of particle inertia. Particles with small Stokes numbers follow the flow
to a large extent, while particles with large Stokes numbers are negligibly affected
by flow conditions.

2.3. Numerical methods for the Navier-Stokes
equations

All simulations performed during the Ph.D. studies used the high-order finite-
difference code known as the Pencil Code [100]. The code is a modular, open-
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source, partial differential equation solver programmed in Fortran95'2. In addition
to using this code for flow simulations, extensions were made and a new module
was added. The main code extensions were on the representation of solid surfaces
in the fluid flow. Details of the methods developed will be given in Section 2.5.
First, the discretization of the Navier-Stokes equations is considered.

Governing equations

The spatial derivatives in the governing equations (right hand side of Eqgs. (2.6)
and (2.7)) are discretized with sixth-order central differences. Finite-difference
approximations are applied to first and second order derivatives and to mixed-
derivatives (Eqgs. (A.6)—(A.10) and (A.16)—(A.20) in Appendix A). The finite-
difference stencils for first and second order derivatives of a variable f, at grid point
i, in direction A are:

ofi 3 3 1
oh 8];1 fz+3 0fi+2+4fz+1 fi—l +%fi—2_ @fi—% (2.16)
0%f; 3 9 3 3 1
2 i
(6h) o2 ﬁ+3 Ofi+2+ 2f:+1 8fi+ Efifl - %ﬁfz-F%ﬁfL

2.17)

on a standard grid with grid spacing 84 and grid points denoted by i — 1,i,i+ 1, etc.
(Fornberg [33] and Gustafsson [37]). For mixed-derivatives of f; ; along directions
h and k, the finite-difference operators can be found by applying the first order
derivative in an orthogonal direction to each term in Eq. (2.16), yielding:

92 fz,] 1 afz JE3 3 afi,jJrZ %afi,jJrl
ohdk 60 Oh 20 oh 4 Jh
~39dfij-1 3 9dfij2  1dfij3
4 oh 20 Jh 60 oJh ’

(2.18)

where the derivatives with respect to & are approximated by Eq. (2.16) and 0k is the
grid spacing in the k-direction (along the j index). Alternatively, using bidiagonal
operators:

oKD o L i) = (s —fia )
8h8kw360 i+3,j+3 i—3,j+3 30 i+2,j4+2 i—2,j+2

12Some modules make use of C and Fortran 2003 functionality. Post-processing routines are
implemented in IDL and Python. Makefiles, configuration files for compilation, and other
auxiliaries use Perl. Massively parallel by MPI, with recent CUDA-extensions allowing for
parallel simulations on graphical processing units.
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3 3

+3g (firtjrr — fimrje1) — 3 (fis1,jm1 — fim1,j—1) (2.19)
3 1
+20 (fir2,j—2 — fim2,j—2) — 360 (fir3,j—3 — fi=3,j-3) -

Notice that the bidiagonal operators reduce the number of grid points used by the
finite-difference stencil from 36 (in Eq. (2.18)) to 12 (in Eq. (2.19)).

The integration in time of the Navier-Stokes equations and the particle equations
is by a third-order memory-efficient Runge-Kutta scheme'? [120]. For a function

20
0] (220

the update from timestep n to n+ 1, that is, from ¢ (z,) to ¢(¢,+1), by this explicit
scheme, is according to the following algorithm:

551= 81 (9(0). 01 = 0(1) + 3011,
552= 815 (90)~ 2651, b=0i+ 20f Q2D
553 =81f(02) 30 f2. Oltns1) = 02+ 1205,

where 6t = (t,41 —t,). The memory efficiency of this Runge-Kutta scheme is due
to it only requiring one temporary array d f to store data as the time-integration
of ¢ is performed. No temporary arrays of ¢ are needed because the array ¢ is
overwritten when updated from one stage to the next.

Boundary closures

The finite-difference operators in Egs. (2.16)—(2.19) are only valid for grid points
that are surrounded by enough neighbouring grid points in each direction such that
all values for f;13, fi—3, fi+2, etc., which are necessary to calculate the derivatives,
exist. Hence, special handling is required to compute the derivatives of velocity and
density in the vicinity of boundaries. The accuracy of a simulation as a whole is
very sensitive to the choice of boundary closures. In the present work, three types
of boundaries occur, each with its own closure for the finite-difference stencils. The
different type of boundaries are: inlet/outlet, periodic and solid.

13Williamson [120] handles round-off errors explicitly in his Runge-Kutta algorithm. This is not
done in the implementation in the Pencil Code.
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Navier-Stokes characteristic boundary conditions

Navier-Stokes characteristic boundary conditions (NSCBC) are used for the inlet
and outlet boundaries to minimize reflection. The NSCBC is a well-posed boundary
formulation that makes use of local one-dimensional characteristic wave relations
(LODI) to approximate the amplitude of incoming acoustic waves. This allows
waves to pass through the boundaries, yielding partially reflecting inlet and outlet
boundaries. For details on NSCBC and LODI-relations the reader is referred to the
seminal paper by Poinsot and Lele [74].

To compute necessary gradients for the LODI-relations at the inlet and outlet,
fourth-order, one-sided finite-difference stencils [33] are used:

af; 25 4 1
oh; ( 12ﬁ+ fix1 ﬁi2+3ﬁi3 4fli4> , (2.22)
where points i,i+ 1,... are used for left-side boundaries and i,i — 1,... for right-

side boundaries. Note that the NSCBC implementation in the Pencil Code uses
modifications suggested by Yoo et al. [123] and Lodato et al. [59] to account for
transversal flow effects (necessary, e.g. for turbulent flow at the inlet).

Periodic boundary

Unlike inlet/outlet and solid boundaries, periodic boundaries can be handled in a
straightforward, almost trivial, manner in many fluid dynamics codes. A periodic
boundary simply implies that two boundaries of the flow domain (e.g., top and
bottom) are directly coupled, such that what exits through the one boundary enters
the other, and vice versa (see, e.g., Versteeg and Malalasekera [105]). Hence, a
periodic boundary is in principle folded onto itself. This makes the size of the
physical flow domain (artificially) infinitely long in the direction of periodicity.

The derivatives of Egs. (2.16)—(2.19) can be solved in the same manner as the
interior points, provided that the outlying points are included appropriately. For
example, if the first derivatives are computed at grid points i = 0,1,2,...,N; — 1, N;
and the boundaries are periodic, the gradient at grid point »; will need data at
IN+1, fi+2, fn+3 from points outside the domain. Due to the periodicity the grid
points i = 0 and i = N; overlap (connecting the folded domain), hence, fy+1 =
f1, fn+2 = f2, fn+3 = f3, and Eq. (2.16) can be used. In the Pencil Code the
periodic boundaries are handled by the use of a three-point deep ghost-zone on
each side of the array of flow variables. Hence, variables are stored for grid points
i=-2,—1,0,1,2,....N;— 1,N;,N;+1,N;12,N; 3, where the outliers are updated
using:

N1 =N, N2 =12, Nz =13,
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S2=fn-2, S-1=Jfn-1, Jo=/In;,

and gradients are computed for i = 1,2,...,N; by Eq. (2.16) etc.'*

Flow arrays are padded with ghost-points on each side by default in the Pencil
Code, due to the domain decomposition and communication between processors
that do not share physical memory. Hence, the periodicity does not add complexity
in this regard.

Solid boundary

In the present thesis, solid boundaries in the flow domain represent a solid object
that obstructs the fluid flow. The solid object’s boundary may or may not conform
to the computational grid. As mentioned in Section 1.3, both body-conformal and
non-body conformal grids are used to resolve such boundaries in the present work.
Body-conformal grids are used with overset grids, while grids that are not fitted to
the surface are used with immersed boundary methods.

In the case of surface representation by an immersed boundary method, the
finite-difference stencils in Eqs. (2.16),(2.17) and (2.19) are used for first, second
and mixed derivatives, respectively, at all grid points in the flow domain'®. This is
possible due to the use of a several layers of ghost-points inside the solid, set by
corresponding mirror-points in the flow domain (details in Section 2.5). For overset
grids, asymmetric stencils are necessary for grid points close to the surface, as there
are no grid points inside the solid when the grid is body-conformal.

The asymmetric stencils that are used near the boundary, when represented
by overset grids, are summation-by-parts (SBP) operators (see Strand [96] and
Mattsson and Nordstrom [61]). The choice of SBP-operators near the surface is
based on favorable features, such as of well-posedness and stability enhancement.
For the sixth-order centred stencils used for first and second derivatives, third-
order accurate SBP boundary closures exist. For an array of flow variables, f =
(fi,f2,---,fn,), the first derivative stencils are given by:

af

Q f' (2.23)

14Note that this means reducing the number of grid points from N; + 1 to N;. This can countered by
adding one grid point to any periodic direction during initialization.

I5There exist some exceptions to this. The exceptions are grid points handled by NSCBC, and grid
points that are within a very small distance from the cylinder surface (usually set to v/28x). The
latter exception will be described when details of the immersed boundary method are given in
Section 2.5

24



with

a1 Q12 Q13 914 Q15 qie O

@21 0 @3 @4 @5 @ 0

a1 g2 0 g4 q35 gq36 0 ..

|4 a2 943 0 qas qae qa7 O

Q= 51 952 953 qs4 0 gs6 qs7 gqsg O

g6,1 462 463 de4 46,5 0 g67 q68 q69 O

13 s g 3 231

60 20 3 3 20 60

(2.24)
where coefficients g;; can be found in Strand [96]. Similarly, the second derivative
stencils are given by:

5h2‘3i: =P fr (2.25)

with

P11 P12 P13 Pi4a P15 Plg
P21 P22 P23 P24 P25 P26
P31 P32 P33 D34 P3s Pie O ...

Pal P42 P43 Pa4s Pas DPas paz 0 L.

P = P51 P52 P53 P54 P55 P56 P57 DPsg 0
P61l P62 P63 Do ]76,35 pg,é P67 Pg,s pey O

o O

1 3 1
0 5% —2% 2 ~—1® 32 ~2 % VY

(2.26)
where coefficients p; ; can be found in Mattsson and Nordstrom [61]. Alternative
values for g and p; ; can be found in Gustafsson [37]. Note that the SBP-operators
for the first and second derivatives are consistent with the sixth-order centred finite-
difference schemes on the interior of the domain. This can be seen from lines
seven and on of the matrices () and P being equal to matrix formulations of
Egs. (2.16) and (2.17), respectively. For the mixed derivatives, Eq. (2.18) is used,
with SBP-operators from Eqs. (2.23) in the direction orthogonal to the surface.

Filtering

The centred finite-difference schemes used to discretize the governing equations
are non-dissipative. This can cause problems due to the potential growth of high-
frequency modes in the solutions, leading to spurious noise (wiggles) in computed
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fields or numerical instability. In the present work, such instabilities showed up in
the density array, in particular on very fine non-uniform grids. Different methods of
filtering the instabilities related to non-dissipative schemes are implemented in the
Pencil Code. Alternatives include using upwinding rather than central-differences
for certain computations, using a high-order implicit filter, or using hyper-diffusion.
The latter option was not used. For details on hyper-diffusion in the Pencil Code,
the reader is referred to Brandenburg and Sarson [18] and Haugen and Brandenburg
[38].

The upwinding filter furns on dissipation in the computation of the density
field. The procedure makes use of (dissipative) fifth-order upwind stencils for
the advective operators of the density field. Because the difference between the
sixth-order central and fifth-order upwind derivative is proportional to the operator
of second-order accuracy, the upwind gradient can be computed by:

2f
dh

af

°f
6
oh h

—uh6h 8h6

= —uh5h |uh| 0 s (2.27)

60

upwd cent cent

for any sign of the velocity components in the h-direction, uj, with the first term
on the left-hand side computed by Eq. (2.16) and the second term (sixth derivative)
computed by:

5h6 a6f

5 N firs—6fia+ 15fi1 —20fi+15fi1 —6fi o+ fiz.  (2.28)

For details see Dobler et al. [28].

Upwind filtering is an inexpensive way to add dissipation to the density field.
The filter should, however, only be used for grids that are not body-conformal. This
is because the necessary SBP boundary closures for the body-fitted grids are not
implemented for the fifth-order upwind scheme or for the second-order central
differences of the sixth derivative. The SBP boundary closures in Egs. (2.24) and
(2.26) are only appropriate for sixth-order central difference schemes of the first
and second derivative, respectively!®

In simulations performed during the development and implementation of the
overset grid method in the Pencil Code, the impact of noise in the density field
increased when cylindrical polar coordinates were used. This was especially true

16SBP operators for a fifth-order upwind scheme exist, and have been used for computation of
the Euler equations [97]. The extension to the Navier-Stokes equations, if possible, requires a
modification of boundary handling by simultaneous approximation terms which complicate the
process considerably (see [31] and references therein).
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when the grid was refined and when the flow was unsteady. As mentioned above,
the upwind filtering in the Pencil Code cannot be applied to body-fitted cylindrical
grids. Instead, high-order Padé filtering is used. The Padé filter is an implicit filter
introduced by Visbal and Gaitonde [106] that filters high-frequency modes by:

N

. . . o,
01+ Qi+ Opdir = Y 7(¢i+n +in), (2.29)
n=0

where ¢ and ¢ are components k of the filtered and unfiltered solution vectors,
respectively. The parameter o is a free (filter) parameter (‘af‘ <0.5) and N
depends on the filter order. For the tenth-order filter used here, N = 5, and the fixed
parameters o, are:

193 + 1264, 105 + 3024, 15(—1+2ay)
W=""056 N=""56 = 64 ’
45(1 - 2ay) 5(—1+2ay) 1 —2a;

B="510 =956 =510

Asymmetric filters are used near the solid boundary, where the one-sidedness
of the filter increases as the boundary is approached. Different options have been
implemented, and up to tenth-order one-sided filters can be used with overset grids.
The filter used in the work done by Aarnes et al. [2] is a “0-6-8-8-8-10-" filter in the
vicinity of the boundary. That is, the boundary value is not filtered, and the filter
order for increasing distance from the surface is sixth-order, eighth-order (three
grid points) and tenth-order (all points in the interior). The boundary stencils and
parameter values can be found in Gaitonde and Visbal [34].

The high-order Padé filtering requires solving a tridiagonal linear system of
equations (Eq. (2.29)) for every strip of grid points in each direction. In the radial
direction a system of equations with i from 1 to N, (where N, is the number of
grid point in the radial direction) is solved for every strip in the 6-direction. The
filter is one-dimensional, making the system of equations manageable. Further, the
requirement ‘ch| < 0.5 ensures that the system is diagonally dominant, hence it
can be solved directly by the Thomas algorithm (a simplified form of Gaussian
elimination without pivoting, developed by Thomas [101]). For strips along the
0-direction, the domain is periodic. This results in a cyclic tridiagonal system, that
can be solved with the Thomas algorithm after application of the Sherman-Morrison
formula [78].

The disadvantage of using an implicit filter (Padé filtering) as compared to
explicit filters (upwinding, hyper-diffusion) is increased computational cost due
to solving linear systems and increased communication between processors. The
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implicit Padé filter is, however, known to outperform explicit filtering schemes [106,
107] in terms of accuracy, and having less of an effect on larger flow structures.

Grid stretching

Many options for grid stretching are available in the Pencil Code. For grid stretching
in the radial direction of the cylindrical grid, grid stretching by hyperbolic sine
functions is appropriate. For grid points i = 1,2,...,Ng — 1, the grid points in
physical space!”, &;, are computed by:

sinh (}/z)
Ne—1

Si=le—— . (2:30)

where
Y= ang, 2.3

Lg and N are the physical length and the number of grid points in the &-direction,
respectively. The parameter ¢, is a free (grid) parameter and & is the location of
the first grid point'®. With this set-up for grid stretching, the smallest and largest
grid spacings become:

Lg’y 1

0&min = NI sinhy’ (2.32)
ng?’

O0max = Neol cothy. (2.33)

For communication between the background and body-fitted grids in the overset
grid method, it is advantageous to have grid cells with similar grid spacing in the
interpolation region. In addition, having near-quadratic cells close to the surface of
the cylinder is recommended. The grid spacing in the tangential direction on the
overset cylindrical grid (6-direction) is simply (27r;) /Ng, where Ny is the number
of grid cells in the 6-direction and r; is the radial coordinate of a strip of grid
points. Hence, the ratio between the smallest and largest grid cells in the tangential
direction is

69max . Torid

06nin Teyl ,

(2.34)

7The grid set-up in the Pencil Code is not computed directly, as presented here, but uses coordinates
in computational space and later converts to physical space. For the present purpose, however, the
physical space description is adequate (and significantly easier to comprehend).

8Note that the expressions are simplified due to the inflection point of the stretching function being
set to the boundary point &,. More general expressions can be found in the grid-generation module
in Pencil Code [100].
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where rgq 18 the radius of the body-fitted cylindrical grid and r.,; is the radius of
the cylinder that the grid is fitted to. With grid stretching in the radial direction by
Eq. (2.30), the ratio between largest and smallest grid cells in the radial direction is:

Srmax

=coshy. (2.35)

O7min
Hence, to achieve similar grid spacing in the interpolation region on all grids

and near-quadratic cells in the vicinity of the cylinder surface, the following steps
should be taken:

e Set Ny to an appropriate value for the cylinder grid size, such that § 6,,,x ~ 0x,
where Ox is the grid spacing on the Cartesian grid.

e Compute the free parameter ¢, by combining Eqs.(2.31), (2.34) and (2.35)
to get:
1 .
a, = —cosh™! (rg“d> , (2.36)
L, Teyl
where Lr = Fgrid — Feyl-

e Set the number of grid points in the radial direction by inserting 0rmax ~
0 6max into Eq. (2.33), yielding

N,
N, ~ ——2 12 coth (0, L,) . (2.37)

2n Tgrid

Other types of grid stretching can be used, but the stretching described here has
the advantage of being a straightforward way to yield a grid that is finest in the
vicinity of the cylinder and gradually becomes coarser as the distance from the
cylinder is increased.

The finite-difference stencils of Eqgs. (2.16)—(2.19) are expressed for uniform
grids, yet with a slight modification these are also applicable to non-uniform grids.
The first and second order derivatives in physical space (£) can be expressed as
derivatives in computational space (k) by:

8f , af 82f ’ Zazf " !
SE=1E)5, aT;z:(h (6))" =z —H" (& (&)= (2.38)

The functions #'(£) and A" () are the first and second derivatives of & with respect

to . These can be set during grid generation and do not vary in time unless the

grid is deformed during a simulation'®.

19The grid in computational space is generated such that it is equidistant with grid spacing §h = 1.
Using deforming grids is not an option.
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2.4. Turbulence

A central focus for much of the research within this work is effects of turbulence
in the flow field on other flow phenomena. Turbulent flows feature a velocity field
that fluctuates randomly in time and is highly disordered in space, with fluctuations
that exhibit a wide range of length scales. Turbulence is unpredictable in the sense
that a minute change to the initial conditions will produce a large change to the
subsequent motion [26].

Important length scales used to characterize a turbulent flow field are (from largest
to smallest) the integral scale, the Taylor microscale and the Kolmogorov scale.
The integral scale and the Kolmogorov scale are characteristic length, velocity and
time scales of the largest and smallest eddies in the turbulent flow field, respectively.
The Taylor microscale is an intermediate scale in-between these two?’. The energy
cascade describes the relation between the scales of turbulence (as described by
Richardson [83] and Kolmogorov [52, 53]). In brief, the largest eddies contain the
largest proportion of the energy in the flow. Energy is continuously transferred
from larger to smaller and smaller eddies, in a cascade, until the eddies become so
small that they are strongly affected by the viscosity. At the scale of these isotropic
(Kolmogorov sized) eddies, the kinetic energy is dissipated (into heat).

Computational simulations of turbulent flows

For simulation of turbulent flows, there are three main types of computations:
Reynolds-Averaged Navier-Stokes (RANS) simulations, Large-Eddy Simulations
(LES) and Direct Numerical Simulations (DNS).

In DNS, the Navier-Stokes equations are solved directly by the simulation soft-
ware, with sufficiently fine resolution to resolve all scales (spatial and temporal)
of the turbulent flow. The approach was popularized by Kim et al. [51] for a fully
developed channel flow, and has been applied to a large range of flows since then.
Because no modeling of the turbulence is used in DNS, it is regarded as the most
accurate way to simulate turbulent flows. A major drawback of DNS is that such
simulations are very computationally expensive. Resolving all scales of turbulence
(which often span several orders of magnitude), yields the number of grid points
as scaling by Re2? (Re; is the Reynolds number defined in terms of the Taylor
microscale) and the total cost as scaling by Re3 in DNS [75]. All simulations in the

20Note that the Taylor microscale is not an arithmetic mean in-between the integral and the Kol-
mogorov scales, but a well-defined length scale that can be computed from two-point correlations
of the flow field. A Taylor scale based Reynolds number is commonly used to quantify the
turbulence of a flow field (see, e.g., Pope [75]).
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present work utilize DNS.

LES is an approach where the largest scales of motion are represented explicitly
while the small scales are treated by an approximate model [32]. In effect, low-pass
filtered versions of the Navier-Stokes equations are solved, allowing for the use
of larger grid spacing and time step sizes than in DNS. To avoid losing valuable
information in the filtering process, the smaller scales are represented by sub-grid-
scale (SGS) models. A popular SGS-model is the Smagorinsky model (Smagorinsky
[92]). Although LES is much less expensive to perform than DNS, such simulations
are in many cases too expensive for practical applications. For such applications,
RANS simulation is the preferred method. RANS simulates time-averaged versions
of the flow equations?!. The time-averaging yields an additional stress term in the
equations, which must be modeled by a turbulence closure model. Such closure
models range from simple algebraic models (mixing length model) to second-order
closure models (Reynolds Stress Models) [105]. Alternatives to the mentioned
turbulence simulation strategies are unsteady RANS (URANS) and Very Large-
Eddy simulations (VLES).

Turbulence generation

For turbulence to develop in the flow past a cylinder, the Reynolds number must
be sufficiently high. The first instance of turbulence develops downstream of the
cylinder in the transition-in-wake state of the flow. To develop turbulence in the
shear layers or boundary layers around the cylinder, the Reynolds number must be
much higher than in the transition-in-wake.

Another possible source of turbulence in such a flow is turbulence inserted in
the free-stream. The present work is limited to moderate Reynolds numbers, and
insertion of free-stream turbulence at the inlet. Before a turbulent flow field is
inserted into the simulations, it is generated in a turbulence generation domain.

To generate turbulence, a rectangular box with periodic boundaries in all direc-
tions is used. Initially, the density and velocity fields are constant. Homogeneous
isotropic turbulence is generated in this periodic box by forcing in random directions
on a selected range of wave numbers. A forcing function is used to generate the
force term in the momentum equation (Eq. (2.2)), as described by Brandenburg [17],
Haugen and Brandenburg [38], and Babkovskaia et al. [7]. The forcing function is:

F(2,t) = Z{N fr(e* o0} (2.39)

where « is the position vector and % indicates the real part of the expression. The
wave vector k(t) and random phase —7 < ¢(¢) < & change at every time step, so

21To emphasize the time-averaging, the term steady RANS is often used.
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Figure 2.1.: The insertion of a turbulent flow field at the inlet of the flow domain.
Thin slices of velocity data are taken from the turbulence domain (left box) and
added to the velocity field at the inlet of flow domain (right box). Figure reproduced
from Aarnes et al. [4].

F(x,1) is delta-correlated in time. On dimensional grounds, the prefactor is chosen
to be N = focs\/kes/St, where k = | k| and fj are non-dimensional factors chosen
to regulate the intensity of the turbulence.

At each time step, one of many possible wave vectors in a certain range around
a given forcing wave number is selected. For example, with a given forcing wave
number ks = 5 this range may be 4.5 < |k| < 5.5. The system is then forced with
non-helical transversal waves,

k x

(]2 — (k-é)2 ’

where € is an arbitrary unit vector that is real and not aligned with k. Note that
il =1.

The turbulence generation is run until it is statistically stationary. When this
point is reached, the turbulence can be inserted at the flow domain’s inlet. The
insertion process is straightforward, with slices of data taken from the turbulence
generation domain and added to the inlet of the flow domain at every timestep
(see Fig. 2.1). The inlet of the flow domain has a fixed mean velocity. With mean
flow in the x-direction, the mean velocity is Uy = (Up,0,0). Since the turbulence
generation domain has a mean velocity of zero (isotropic homogeneous turbulence)
the mean inlet velocity is not affected by the added turbulent flow field. The
velocities at the inlet are updated as U = Uy + u’ at every time step, where u' are
the velocity fluctuations in the slice taken from the turbulence generation domain.

o

Je= (2.40)

&
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(a) IBM (b) Overset grids

Figure 2.2.: Illustration of grids used to represent solid objects in the Pencil Code,
by either immersed boundary methods (a) or overset grids (b).

To avoid outflow at the inlet, fy used in the forcing function is chosen such that
max{|u,|, |uy|,|u}|} < Up. Note that the size of the inlet (L, and L; in Fig. 2.1)
must be the same as the size of the data slices taken from the turbulence generation
domain. The two domains must also have the same number of grid points in these
directions.

2.5. Resolving solid boundaries

Representing a solid cylinder in a flow simulation may appear trivial, but the degree
of accuracy necessary for resolving impaction of very small embedded particles in
the flow made this one of the major challenges in this research. The background for
the two different methods used for this purpose was given in Section 1.3. In this
section a description of the implementations in the Pencil Code is presented. It is
based in part on material from research articles included in Chapter 5, in particular
from Aarnes et al. [1] and Aarnes et al. [5].

Immersed boundary methods

As mentioned in the introductory chapter, IBMs are methods that resolve boundaries
in the flow without fitting a grid to the boundaries. Typically, a non-body conformal
Cartesian grid is used for the entire flow domain, as illustrated in Figure 2.2(a). In
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Figure 2.3.: Immersed boundary method. A zone of ghost-points is used when
computing fluid-points. Ghost-points are set from corresponding mirror-points
in the flow domain, after identification of mirror-points along surface normals
(a) or along Cartesian grid lines and surface normals (b). Fluid-points within a
fixed distance from the surface are computed by interpolation. (@) ghost-points,
(#) fluid-points, (@) interpolated fluid-points, (O) hole-points, () mirror-points.

this illustration, the intersections of solid grid lines represent fluid-points, where
the governing equations are solved by using the finite-difference stencils defined
in Egs. (2.16),(2.17) and (2.19). The intersection points of dashed grid lines are
grid points inside the solid (solid-points) where the flow equations are not solved.
The solid-points can be split into two groups: ghost-points and hole-points. The
ghost-points are set by corresponding mirror-points and used in the finite-difference
stencil of fluid-points in the vicinity of the solid surface, while hole-points are
unused grid-points. The two IBM implementations in the Pencil Code that are
considered here differ only in one aspect: how the velocity components in the
ghost-points are set.

Ghost-points and mirror-points

Flow variables (velocity and density) in the ghost-points are not computed by
solving the governing equations. Rather, they are set from corresponding mirror-
points in the flow domain, by imposing boundary conditions at the solid surface. At
the mirror-points the flow variables are computed by interpolation from surrounding
fluid-points. When the ghost-points are used by other fluid-points, the boundary
conditions are imposed on the fluid flow. The boundary conditions used for the
simulations of a cylinder in a cross-flow are no-slip and impermeability for the
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velocity components, and zero gradient for the density normal to the surface?.
The distance from a ghost-point to a mirror-point is twice the distance from the
ghost-point to the surface. This yields the following relationship between a flow
variables in a ghost-point (¢,) and its corresponding mirror-point (¢,):

P (u) = — P (u), (2.41)
dg(P) = dm(p). (2.42)

The two different methods used to compute ghost-points in the present work are
by identifying mirror-points along surface normals through ghost-points or along
grid-lines through ghost-points. The different methods are denoted orthogonal
mirror-point IBM (OIBM) and Cartesian mirror-point IBM (CIBM).

In the OIBM, each ghost-point is related to a single mirror-point, as seen in
Figure 2.3(a), where points g and m make up a ghost/mirror-point pair. The values
set in ghost-point g from m (by Eqs.(2.41) and (2.42)) is used in the finite-difference
stencils of fluid-points f; and f,, when computing derivatives along the horizontal
and vertical directions, respectively. Conversely in the CIBM, each ghost-point
is related to several mirror-points, as seen Figure 2.3(b), where ghost-point g is
connected to mirror-points m, m’ and m”. The density in point g is set identically
to the orthogonal mirror-point IBM, using data interpolated to point m. Velocity
components are set from points m’ and m”. When g enters as a grid-point in the
horizontal gradients of point fi, velocities in g as set from m’ are used. When the
vertical gradients in point f> use g, velocities in g are set from mirror-point m” .

The handling of ghost- and mirror-points in the CIBM is somewhat more intri-
cate than in the OIBM, but it has the advantages of reducing distances between
fluid-points and mirror-points, and simplifying interpolation of mirror-points. Flow
variables in mirror-points are calculated by Lagrangian interpolation (Abramowitz
and Stegun [6]); bi-linear for OIBM and quadratic for CIBM (velocity components
only). With OIBM, flow variable ¢ in a mirror-point m at a position (x,,,y,,) is com-
puted from the four surrounding grid points (x;,y;), (xi+1,¥;), (X, ¥j+1), (Xit1,¥j4+1)
by

O = C1 + CoX+ C35 4+ C4i9, (2.43)

22The boundary condition for density can be derived by applying the boundary layer approximation
for pressure, dp/dr = 0 (White [113]), to the ideal gas law for an isothermal flow.
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where

Ci=0ij,
G =—0ij+0it1,,
2 (P.J ¢+1,] (2.44)
C=—0¢j+0iji1,
C=0ij—Oiv1,;— Oijr1+iv1jr1,
and
i:M7 yzu‘ (2.45)
Xit1 —Xi Yi+1—Jj

With CIBM, velocity components are interpolated using one-dimensional inter-
polants along the grid-lines. This makes increasing the order of interpolation from
linear to quadratic trivial. The quadratic interpolation stencils use three grid-points,
where one of the three grid-points is always the interception point of the grid-line
with the solid boundary. Because velocity components are zero at this point, the in-
terpolation of values to a mirror-point in-between fluid-points (x;,y;) and (xiy1,y;),
next to a boundary interception point (x;,y;) is:

On=L19; j +Lo0iy1, (2.46)

_(Xm—Xb Xm — Xi+1
Ll (xm7xi7xi+1) - )
Xi —Xp Xi — Xi+1
Xm — Xp Xm — Xi
Lo (X, Xi, Xig1) = ( > ( > ,
Xi+1 —Xp Xit1 —Xi

and similarly for mirror-points in-between grid points (x;,y;) and (x;,y;4+1) using
Li(Ym>Yj>Yj+1) and Lo (Ym, Y75 Yj+1)-

where

(2.47)

Exceptions

Not all mirror-points can be set by interpolation from surrounding fluid-points.
Mirror-points that are very close to the surface, like point m in Figure 2.3(a), are
not surrounded by enough fluid-points to use Eqgs. (2.43)—(2.45) directly, without
including ghost-points in the interpolation stencil. Flow velocities at such points are
computed by interpolation along the surface normal, where the intersection points
of the surface normal with the solid boundary and with the first grid-line outside the
solid boundary are used for interpolation. Data at the intersection with the grid-line
is interpolated from the two neighboring points along the grid-line.
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(a) Mirror-points (b) Fluid-points

Figure 2.4.: Special handling of mirror-points and fluid-points that are very close to
the solid surface. (@) ghost-points, () fluid-points, (¢) grid-line interception-point,
(O) boundary interception-point, (ll) mirror-points.

Since the velocity normal to the surface is expected to increase as a second
order function with distance from the surface, it is beneficial to interpolate this
variable by a quadratic expression. Velocities at the two interception points are
first decomposed into radial and tangential velocities. The radial component of the
velocity at the mirror-point is interpolated by the quadratic expression:

Ot 2
U = UrGI : (2.48)

erl

where u, g is the radial velocity at the grid-line interception point, and &r,, and
Orgy are the distances from the mirror-point and grid-line interception point to the
boundary interception point, respectively. Note that this interpolation expression
is quadratic, yet guarantees that there are no overshoots in the interpolated values.
The tangential velocity component is interpolated by:

07y
Ug.m = Ug,GI <3:GI> . (2.49)

The expressions for interpolation of u,.,, and ug ,,, are valid only when u = 0 at the
surface.

Figure 2.4(a) depicts such a case, for mirror-point m (used by ghost-point g).
Data at fluid-points f3 and f4 are used to interpolate values to the grid-intersection
point (<), such that the velocities at m can be computed from this and the known
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boundary value at the boundary interception point (O). Note that this handling is not
used for density, as the density at the boundary is not known (Neumann boundary
condition). Instead, regular interpolation stencils are applied, which works for
density, due to very little variation in the density field and a symmetric boundary
condition.

If a mirror-point is identified along a grid-line with the CIBM closer to the
surface than the nearest fluid-point along the grid line, the interpolation is simply
shifted one cell away from the surface. In Figure 2.4(a) the mirror-point m’ is
in-between fluid-points f| and f>, and uses these fluid-points and the boundary
interception-point next to f> in the interpolation. Mirror-point m” is too close to
the surface for such handling, and shifts the interpolation stencil to use f4 and fs.
Since the boundary interception-point next to m” is also used in the interpolation,
extrapolation is avoided and the shifting of the boundary stencil is does not produce
problems.

The second type of exception in the IBM implementation is the handling of
fluid-points very close to the surface. These points are particularly sensitive to
disturbances in the flow field, and for this reason an option is included to compute
them directly by interpolation from surrounding points and boundary interception-
points, rather than using finite-difference stencils?}. If a fluid-point is within a
pre-defined cut-off distance from the cylinder?*, the flow variables at the grid point
are computed by interpolation along surface normals, similarly to mirror-points
in the OIBM that were too close to the surface to be surrounded by enough fluid-
points. Figure 2.4(b) depicts such an interpolation: The fluid points fi, f>, f4 and
f5 are within the cut-off distance (dashed line). For each of these fluid-points,
the boundary interception-point and the grid-line interception at the first grid-line
from the surface are used in interpolation. As for mirror-point handling, data at
the grid-line interception is interpolated from neighboring fluid-points, e.g. values
at fg and f7 are used to interpolate data to the grid-line interception point used
for interpolation to fluid-point fi. As for the mirror-points, the radial velocity
component is interpolated by the quadratic expression in Eq. (2.48).

Overset grids

Representing a solid in the flow by an overset grid means applying a body-fitted
grid to said object. Other considerations, like the shape of the flow domain, number

BFinite-difference stencils used to compute grid points very close to the surface would include
ghost-points quite far into the solid cylinder, in particularly for computation of mixed derivatives.
This is avoided by handling such points as exceptions.

2ADefault value is v/26x.
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of objects in the flow?’, inlet and outlet conditions, etc., are specified by the
background grid and by communication between the overset grids.

The governing flow equations are discretized on each grid, which allows for
different coordinate systems to be used in the same flow simulation. For flow past a
cylinder in a rectangular domain, the appropriate choice is a Cartesian background
grid where Eqs. (A.1)-(A.4) are used for the flow. A cylindrical grid is fitted to
the solid (see Figure 2.2(b)) and the governing equations in Eqs. (A.12)—(A.15) are
discretized on this grid. Hence, a generalized flow solver (or two different flow
solvers) is necessary to update the solution on the different grids.

For the case of a cylinder in a cross-flow, the inlet, outlet, periodic boundaries,
etc., are handled by the background grid. Using overset grids does not affect how
the domain boundaries are specified. The solid object’s boundary, however, is
handled in a very different manner than when resolved with IBMs. Since the grid
surrounding the cylinder is body-conformal, SBP boundary closures of Egs. (2.23)—
(2.26) can be used for third-order accurate, time-stable solutions at the boundary.
Hence, no ghost/mirror-points or interpolation is used to enforce the boundary
conditions at the cylinder surface. The physical boundary conditions (no-slip and
impenetrability for velocity and zero density gradient normal to the surface) do not
change.

Communication between grids

Each of the grids must take into account one additional boundary: the numeri-
cal boundary where data is communicated between grids by interpolation. This
boundary consists of a region of overlapping background and body-fitted grids.
In Figure 2.2(b) this region is hidden to make the illustration of the overset grid
clearer. In practice, the Cartesian grid penetrates into the cylindrical grid, and the
cylindrical grid is extended with grid points extending further out over the Cartesian
grid points. In the overlapping region, the grid points can be split into regular
fluid-points (some which are used as donor-points in interpolation), interpolated
fluid-points (fringe-points) and unused grid points (hole-points). A more detailed
depiction of the overset grids can be seen in Figure 2.5.

Identification of fringe-points on the two different grids is quite different. The
cylindrical grid simply uses a zone of fringe-points three points thick outside
the fluid-points (blue grid-lines/grid-points in Figure 2.5). For the background
grid, an inner and outer radius of fringe-points is set during pre-processing, and
all points within the bounds of these radii are identified as fringe-points (orange

25 At present, the overset grid implementation in the Pencil Code only allows for a single grid overset
a background grid. Multiple grids overset one another will therefore not be considered here.
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Figure 2.5.: Identification of fringe-points in region of overlapping grids on a
background grid with 6x/D = 8.

circles/grid points in Figure 2.5). The outer radius is set first, in accordance with a
criterion of explicit interpolation®; hence, the outer radius is smaller if higher-order
interpolation is used. The inner radius is computed from the outer radius, thick
enough to guarantee that all fluid-points use only other fluid-points or fringe-points
in the finite-difference stencils (not hole-points). All grid points on the background
grid within the inner radius are identified as hole-points.

After identification of fringe-points, the grid points on the opposing grid sur-
rounding each fringe-point are identified as donor-points. Flow variables from
these donor-points are interpolated to the fringe-point. The interpolated velocity
components must be transformed to the appropriate coordinate system, before used
in the flow arrays. The analytic relations between Cartesian and cylindrical (polar)

coordinates are:
x=rcosO, r=+/x2+y2,

y=rsinf, 6 =arctan (X) .
X

(2.50)

26Explicit interpolation on overset grids means interpolating from donor-points to fringe-points,
where all donor-points are fluid-points. Using implicit interpolation between grids means that
donor-points can also be fringe-points (Chesshire and Henshaw [21])
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The velocity transformations can be done in a straightforward way by:

Uy =u,cos0 —ugsin®, u, =u,cos6+u,sin0, 2.51)
uy =u,sin@ +ugcosO, wug= —u,sin6 +u,cos0. ’

The number of donor-points for each fringe-point depends on the interpolation
stencil. Typically, the z-plane is shared between the Cartesian and the cylindri-
cal systems, hence stencils with four or nine donor-points are used for bi-linear
or bi-quadratic interpolation, respectively. If bi-linear interpolation is selected,
Eqgs. (2.43)—(2.45) can be used directly regardless of whether the interpolation is
the Cartesian to the curvilinear grid or vice versa, because the grid points are all on
rectangular grid-cells in computational space. For quadratic interpolation, spline
interpolation stencils can be used. In the Pencil Code, the form of the quadratic
splines for interpolation of a point p at position x,, from surrounding donor points
i—1,ii+11is:

Op = SoPi—1+S10i + 52011, (2.52)
where
1/1 2
S() = 5 <2 - 5xp> y (253)
3 512
S1=73-6x, (2.54)
1/1 2
S2 = 5 E + 5xp s (255)
with
Xp — X;
8x, = Psxi , (2.56)

and Oux; is the grid spacing at grid point i. Other, higher-order interpolants can also
be used, but the implementations of these have not been properly tested at present.

Timestep on overset grids

When overset grids are used to resolve a solid boundary, the timestep is split into
four parts: updating the flow array using the governing equations on the Cartesian
grid, communicating the boundary data from the Cartesian to the cylindrical grid,
updating the flow array with the governing equations on the cylindrical grid, and,
lastly, communicating the boundary data from the cylindrical to the Cartesian grid.
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In some overset grid implementations (see, e.g. Sherer and Scott [91]) such splitting
is done for each sub-iteration of the timestep in the Runge-Kutta method. This is
not done in the overset grid implementation in the Pencil Code. The Cartesian flow
solver instead completes an entire Runge-Kutta timestep before communicating
flow data to the cylindrical grid. Following this, several Runge-Kutta timesteps are
performed on the cylindrical grid, before data is sent back to the Cartesian grid.

There are two main advantages of splitting the timestep as it is done in the Pencil
Code. Firstly, the data communication between grids is reduced. This saves both
computational time on each processor and communication time used to transfer
data between processors. Communicating data once per Runge-Kutta timestep
reduced these costs by a factor of three, when compared to communicating once per
sub-iteration. Secondly (and more importantly), completing several timesteps on
the cylindrical grid for each timestep on the background grid is a way to circumvent
the very strict timestep requirement imposed by using an explicit method for the
compressible Navier-Stokes equations. This timestep restriction is the minimum of
the advective and diffusive timestep restrictions,

2 .
8ty < %7 81, < %7 (2.57)
v lu| + ¢

respectively, where 6&,,;, is the smallest grid spacing in any direction (on the
relevant grid), and C, and C, are the diffusive and advective Courant numbers,
respectively. For weakly compressible flows past a cylinder, the timestep restriction
is typically much smaller than the necessary timestep to accurately resolve the
flow, due to the necessity for a fine grid in the vicinity of the cylinder. By allowing
several timesteps on the cylindrical grid for each time step on the background grid,
the timestep restriction from the fine grid cells in the vicinity of the cylinder no
longer applies as a global timestep restriction. Thus, not only is computational
cost related to updating the region of fringe-points reduced, but the cost of the flow
solver as a whole is dramatically reduced by allowing a much larger timestep in the
major regions of the flow domain.

2.6. Simulating particle-laden flow

When the flow is particle-laden, the fluid-phase of the flow is handled with the
numerical methods described in the preceding sections, in the same way as if there
were no particles in the flow. For the Lagrangian particles, the third-order Runge-
Kutta method used for time integration in the same way as for the flow equations.
Other than this, the handling of the particle equations is fundamentally different
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from the flow equations. New considerations include the insertion of particles into
the flow, interpolation of flow data to particle positions, and particles impaction on
the cylinder.

Particle insertion

Particles are inserted at random positions within a limited volume near the inlet.
The intention of inserting particles into the flow is to study particle impaction on
the cylinder. For this reason, it is only necessary to insert particles over a volume
where the particles have a chance of hitting the cylinder. When the flow is laminar,
the front-side of the volume is the area that covers the projected cylinder area. No
particles inserted outside of this area will hit the cylinder?’. For turbulent flow, the
particle trajectories do not follow the mean flow, and a larger insertion volume is
necessary. The size is dependent on the turbulence intensity and distance from the
inlet to the cylinder?®. Whether particles are inserted over the entire flow domain or
not, the impaction efficiency:

n= ]Vimpact / Ninsert (2.58)

only takes into account the number of inserted particles (Njnsert) Over the projected
cylinder area when computed from the number of particles that impact the cylinder
(]Vimpact)-

For the smallest particle sizes St = 0.01-0.1, the number of particles that impact
on the cylinder is very small (1 ~ 107>-10~*). For confidence in the simulation
statistics, when the impaction efficiencies are computed, Nimpace should be large
enough that a single impaction does not significantly impact . With 1y~ 107>
for St = 0.01, this would require Njyget Of order 107 for this particular particle size.
Very small particles are light enough to follow the fluid almost perfectly. Hence, it
is reasonable to assume that only particles inserted very close to the center of the
inlet will have a chance of impacting on the cylinder, as fluid is pushed away from
the centerline upon approach to the cylinder. Consequently, inserting very small
particles close to the centerline only, and scaling up Njpgert correspondingly during
post-processing is a reasonable way to reduce the number of particles required
when very small particles in a laminar flow are considered. This technique has
been used with success in Aarnes et al. [2], where particles with St < 0.1 where

271n theory, particles inserted outside the projected cylinder area can hit the cylinder, due to their
finite radii. However, the force from the fluid upon the particles will push the particles away from
the cylinder, and no particles inserted outside the area hit the cylinder in these simulations.

Z81nsertion over the entire inlet was used for simplicity, for the particle-laden turbulent flow simula-
tions in Aarnes et al. [3]
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inserted only over one-tenth of the projected cylinder area. Note that for flow with
turbulence in the free-stream, this would not be an appropriate way of inserting the
particles, because particles inserted farther from the centerline can be convected
towards and past the centerline when approaching the cylinder.

Updating the particle equations

To update the particle equations (Eqs. (2.8) and (2.9)), the fluid velocity and density
at each particle position is necessary. The particle positions do not, in general,
coincide with the grid points, so these values must be set using surrounding grid
points.

The simplest way to compute the fluid velocity and density at a particle position
is by using the nearest grid point-approximation, which consists of setting « and
p equal to the values at the grid points closest to x,. While this is a very fast way
to update the particles, it is too crude an approximation for the particle impaction
simulations. Instead, a cloud-in-cell approach is used, which means that the data
is interpolated from the surrounding grid points. Hence, bi-linear interpolation
(Eqgs. (2.43)—(2.45)) is used for two-dimensional simulations, and tri-linear for
three-dimensional runs.

If an IBM is used to represent the cylinder, particles very closer to the cylinder
surface will not be surrounded by enough fluid-points to use the cloud-in-cell
interpolation. Such particles are handled by the interpolation procedure described
for mirror-points along surface normals that are surrounded by less than four
fluid-points (see handling of point m in Figure 2.4(a)). The use of quadratic
interpolation for the radial velocity component of particles in the immediate vicinity
of the cylinder has an especially large effect on the accuracy of particle impaction
simulations.

When the cylinder is represented by overset grids, the interpolation changes once
the particles are within the fringe-point radius. For particles within this radius, data
from the cylindrical grid is used, rather than from the background grid. The type
of interpolation scheme is set by the Pencil Code user to be either tri-quadratic, bi-
quadratic/linear, quadratic/bi-linear or tri-linear (for three-dimensional simulations).
In the case of bi-quadratic/linear interpolation, the interpolation is linear in the
z-direction. Alternatively, for quadratic/bi-linear interpolation, linear interpolation
is used for 6 and z-directions. The recommended settings are bi-quadratic/linear
for radial and tangential velocity components (18 grid points used in 3D) and
tri-linear for velocity in the z-direction and density (eight grid points used in 3D).
The quadratic interpolation is Lagrangian, hence interpolation stencils:

Op = LoOi—1 +Lo¢i + L3¢ 1, (2.59)

44



with
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are applied in each quadratic direction. Points x;_1,x;,x;+; are chosen such that
Xi—1 < Xp < xi41 and Min (|x, —xj|) |] i—Liit] = |x, — x;|. To avoid overshoots in
the vicinity of the cylinder, the quadratic 1nterpolat10n scheme for particles closer to
the surface than the closest grid point>® changes to Eq. (2.48) in the radial direction.
All interpolation from the cylindrical grid is done in the computational space of
radial and tangential coordinates.
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Particle impaction

If a particle contacts the cylinder, the particle is removed from the simulation and
an impaction is registered. Particle sticking mechanisms, bouncing, etc. are not
considered. Although the particles in the simulations are point-particles, their finite
radii do come into consideration when impaction is considered. For a particle to
impaction on the cylinder, it is sufficient that the particle and cylinder radii overlap.
This impaction mechanism allows for boundary interception, that is, impaction on
the cylinder by the particle being intercepted by the cylinder due to the finite radii.
Figure 2.6 illustrates this mechanism.

2.7. Parallelization

The Pencil Code is parallelized by domain decomposition (data-parallelism), using
the Message Passing Interface (MPI) to communicate data between processors on
distributed memory systems3’. The domain decomposition is a straightforward par-
allelization where grid points in the flow domain are assigned a processor according

2Users may choose a larger distance than this for the special handling, such as the momentum
thickness of a stagnation point flow [113]:

D
O ~ 0.206609 ——
" V2Re
as the limit for the special handling.
30Data-parallelism on GPUs is also possible, for parts of the code, but will not be considered here.
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(a) Streamlines for Re = 20 (b) Particle impaction by interception

Figure 2.6.: Trajectories for particles that following the streamlines to a large extent.
Without boundary interception, the particles in positions three and four (counting
from left to right) will not be removed from the simulation, but pass the cylinder.
(@) particle, (x) center of mass of particle. Mean flow from left to right, colouring
for horizontal velocity component.

to location, and local flow variable arrays are constructed on each processor. A
processor’s array of flow variables is padded with three ghost-points on all sides,
where copies of flow variables from neighboring processors are stored. These halos
of ghost-points are updated at every sub-iteration of the Runge-Kutta scheme, such
that the numerical solution is not affected by the parallelization.

With large particle simulations, an efficient parallelization is necessary. Typi-
cally, one of two methods is used: (1) particles are located on the processor that
“owns” the part of the flow domain on which the particle is located (spatial particle
parallelization) or (2) particles are distributed equally among processors, regardless
of spatial position. While (2) has the advantage of load balancing of particles
distributed unevenly in space, large amounts of data communication is a drawback
(global flow arrays may be necessary). Spatial particle distribution (1) is the pre-
ferred method in the Pencil Code although a version of (2) called particle block
domain decomposition is available (see Johansen et al. [49]).

Parallelization tests can be found in the manual for the Pencil Code [16]. Tim-
ing for up to 73 728 processors are included. Timing results show near linear
weak scaling. Strong scaling was also considered, which follows an approximate
second-order fit with very good scaling for > 163 grid-points per processor in
three-dimensional simulations. Scaling for large simulations with a fixed grid (512°
grid points) and a large amounts of particles in the flow (6.4 x 10%) on 128-4096
cores showed a linear trend.
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When overset grids are used, each processor will own a part of each grid (back-
ground and overset grids). This data layout is chosen to avoid idle processors during
the update steps on different grids, as these cannot be updated simultaneously.
In general, the domain covered by the background grid on one processor may or
may not overlap with that same processor’s domain on the cylindrical body-fitted
grid. Hence, inter-processor communication may be necessary during inter-grid
communication of interpolated flow variables in the overlapping region.

At present, the particle handling in (1) is not altered when overset grids are used.
Hence, a particle is identified on a processor by (x,y,z)-coordinate, not (r,0,z)-
coordinate. This means that additional communication may be necessary when a
particle enters the region covered by the body-fitted grid. For this reason, part of
the disadvantage of particle parallelization in (2) is encountered even though (1) is
used. Although significant, the increased data communication is not detrimental to
the parallel simulations on overset grids, since:

e only parts of the body-fitted grid need to be communicated; that which is
overlapped by the background grid of the processor in question.

e the communication needs only occur once per Runge-Kutta timestep on the
background grid, as flow variables on the body-fitted grid are not updated
during the sub-timesteps on the background grid.

e the total number of grid points on the body-fitted grid is much smaller than
that on the background grid.

As an example of the latter point, consider two-dimensional rectangular domains
with domain size Ly x Ly, = 10D x 20D, used for particle-laden flows in Aarnes
et al. [2]. Here, the ratio of grid points on the body-fitted mesh to the grid points on
the background mesh is 1/10. Even if a global flow array of the body-fitted grid?! is
communicated, it is still much smaller than communicating in the opposite direction
(from the background to the body-fitted grid) or generating global Cartesian data
arrays to use with particle handling (2).

3INote that such global arrays are not used. The worst case scenario in terms of communication
is that in a two-dimensional simulation, parallelization would only occur in one direction that
resulted in a split of the body-fitted grid region among two processors, such that a processor
needed to receive (up to) half of the grid points from the body-fitted grid.
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I am putting myself to the fullest possible use,
which is all I think that any conscious entity can
ever hope to do.

HAL 900032

Contributions

The main contributions to the present thesis consist of five manuscripts, which have
been published in or submitted to peer-review journals with scopes appropriate for
each of the manuscripts. Of the manuscripts, one has been published in conference
proceedings, two have been published in international journals and two are under
consideration for publication in international journals. In this chapter context for
and summaries of the manuscripts are given.

3.1. Timeline

The five manuscripts cover quite a wide range of topics, all within the field of
flow past a solid geometry. The range of topics reflects different phases of the
work during the Ph.D. studies. The main motivation has always been to increase
understanding of the physics of fluid and particle flows, but accuracy limitations in
the simulations forced the alternation between research on physical problems and
development of numerical methods. A rough time-line for the research is shown in
Figure 3.1.

Roughly speaking, the five manuscript included in Chapter 5 can be catego-
rized as three papers concerning numerical methods (Papers I, IV and V) and two
concerning advancements in understanding of physical mechanisms in flows with
free-stream turbulence (Papers II and III). Of the papers focusing on numerical

32From Stanley Kubrick’s 2001: A Space Odyssey, where the fictional character HAL 9000 is an
artificial general intelligence [54].
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Figure 3.1.: Timeline of Ph.D. work.

methods, Paper I [1] validates an immersed boundary method (IBM) implementa-
tion and improvements made to this method, Paper IV [2] introduces the overset grid
method for flows past a cylinder, with and without particles in the flow, and Paper
V [5] is a comparative study of IBM and overset grids for solid body representation
in the Pencil Code. For the manuscripts focusing on physical phenomena, Paper
II [4] is a study of a transitional flow under conditions of high-intensity free-stream
turbulence, and Paper 111 [3] consists of direct numerical simulations and statistical
analysis of particle impaction in laminar and turbulent flows.

Although updates to the existing immersed boundary method and development
of the overset grids in the Pencil Code are documented in the manuscripts, extensive
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work done during the Ph.D. studies was only indirectly documented within this
research. That work is related to continuous improvements of code efficiency,
post-processing routines, parallelization, interpolation, etc. To demonstrate the
amount of code development completed, consider the Fortran-module of the overset
grid method alone (not counting any post-processing or coupling to other modules),
which is more than 10* lines of code (and growing), and more than 26000 lines of
code were submitted to the Git repository of the Pencil Code by the thesis author.

3.2. List of papers

PAPERII

Jgrgen R. Aarnes, Nils E. L. Haugen and Helge I. Andersson (2015)

On validation and implementation of an immersed boundary method in a
high order finite difference code for flow simulations

Published in Meklt’15: Eighth national conference on computational mechanics;
2015 May 18-19, Trondheim, Norway. Ed. by Skallerud, Bjgrn and Andersson,
Helge 1. Barcelona, Spain: International Center for Numerical Methods in Engi-
neering, pp. 1-21.

The authors’ contribution to paper: Jgrgen R. Aarnes implemented the novel
handling of ghost-point in the Pencil Code, with support in joint-coding sessions
with Nils E. L. Haugen. Nils E. L. Haugen also contributed to the idea of the new
method. Jorgen R. Aarnes performed all validation runs and wrote the paper. The
process was supervised and the manuscript reviewed by Nils E. L. Haugen and
Helge 1. Andersson.

PAPERIII

Jgrgen R. Aarnes, Helge I. Andersson and Nils E. L. Haugen (2018)

Numerical investigation of free-stream turbulence effects on the transition-in-
wake state of flow past a circular cylinder

Published in Journal of Turbulence 19, 252-273.

The authors’ contribution to paper: Jgrgen R. Aarnes performed the simulations,
evaluated the results and wrote the paper. Helge I. Andersson suggested the topic
for study, and both Nils E. L. Haugen and Helge I. Andersson contributed with
supervision and suggestions for manuscript revision.
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PAPER Il

Jgrgen R. Aarnes, Nils E. L. Haugen and Helge 1. Andersson (2018)

Inertial particle impaction on a cylinder in a turbulent cross-flow at modest
Reynolds numbers

Submitted to journal

The authors’ contribution to paper: Jgrgen R. Aarnes performed the simulations,
evaluated the results and wrote the paper. Nils E. L. Haugen suggested the research
topic and made major contributions to the statistical analysis part of the paper.
The process was supervised and the manuscript reviewed by Nils E. L. Haugen and
Helge I. Andersson.

PAPER IV

Jgrgen R. Aarnes, Nils E. L. Haugen and Helge 1. Andersson (2018)

High-order overset grid method for detecting particle impaction on a cylinder
in a cross flow

Submitted to journal, some revisions made after submission.

The authors’ contribution to paper: Jgrgen R. Aarnes implemented and per-
formed tests on the overset grid module, evaluated the results and wrote the paper.
Code improvements and implementation details was discussed on many occasions
with Nils E. L. Haugen. The process was supervised and the manuscript reviewed
by Nils E. L. Haugen and Helge I. Andersson.

PAPER V

Jgrgen R. Aarnes, Tai Jin, Chaoli Mao, Nils E. L. Haugen, Kun Luo and Helge
I. Andersson (2018)

Treatment of solid objects in the Pencil Code using an immersed boundary
method and overset grids

Published in Geophysical & Astrophysical Fluid Dynamics. Forthcoming in special
issue titled On the Physics and Algorithms of the Pencil Code.

The authors’ contribution to paper: Jgrgen R. Aarnes performed the tests and
evaluated the results for the circular geometry part of the paper. Jprgen R. Aarnes
and Tai Jin co-wrote the complex geometry section, for which tests were performed
by Chaoli Mao and analyzed by Tai Jin. The process was supervised by Nils
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E. L. Haugen. Nils E. L. Haugen, Helge 1. Andersson and Kun Luo reviewed the
manuscript.

3.3. Summary of papers

nEY f
Inl / e € —
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(a) Orthogonal mirror-point method (b) Cartesian mirror-point method

Figure 3.2.: The two IBM implementations. Ghost-points (O) set by corresponding
mirror-points ([J) along surface normal (a) or along grid lines in X- and y-direction
(b) Mirror-points interpolated from surrounding fluid-points (@).

Solid boundary representation of a cylinder in a cross flow by the immersed
boundary method (IBM) was validated by parametric studies of relevant physical
and numerical properties that influence the simulations. The three non-dimensional
flow variables: mean drag coefficient, root-mean-square lift coefficient and Strouhal
number were computed from the simulation results, and compared for varying grid
spacing, domain size (upstream length, downstream length, width), Mach number
and Courant number. The parameter study yielded expected results, with drag, lift
and Strouhal numbers approaching asymptotic values that correlate with the param-
eter variation. An exception to this was the mean drag coefficient computed for
varying upstream and downstream length. The unexpected behavior was attributed
to blockage effects. The parametric studies were concluded with a comparison to a
large set of previously published data, showing good agreement with the present
study.

In the grid refinement study, it was found that 64 grid points per cylinder diameter
was necessary to resolve the flow with reasonable accuracy when Re = 100. To
counter this strict grid requirement a new IBM method was suggested (see Figure
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Figure 3.3.: Mean drag coefficient (Cp), root-mean-square lift coefficient (C;) and
Strouhal number (St) for different grid spacing and IBM: The Cartesian mirror
point method (solid blue) and the orthogonal mirror point method (dashed red).
Error bars indicate 1% deviation.

3.2). The previous IBM implementation in the Pencil Code identified mirror-points
along orthogonal lines from the ghost-points through the solid surface. The new
method instead used mirror-points along horizontal and vertical grid lines. The
methods were contrasted as orthogonal and Cartesian mirror-point implementations
of the immersed boundary method. With the new method, a grid spacing of 38 grid
points per cylinder diameter was found to be sufficiently fine (see Figure 3.3. This
is a significant improvement from the previous IBM implementation.

PAPER I

The transition-in-wake state of flow past a cylinder, during which the first three-
dimensional aspects of the flow develop, was studied by direct numerical simu-
lations (DNS). The effect of a turbulent free-stream (TFS) on the transition was
investigated by inserting homogeneous isotropic turbulence at the inlet of the flow
domain. The intensity of the decaying TFS varied from 3.6% to 12.2% (as it
reached the cylinder), with integral scales 0.5, 0.75 and 1.0 times the cylinder
diameter for the high intensity case. The results were compared with a laminar
free-stream (LFS) case.
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Figure 3.4.: Relationship between Strouhal number (S¢) and Reynolds number (Re)
over the transitional domain (b) TFS flow compared to LFS case. -o- LFS; -x- TFS;
--2D LFS.

Effects of the TFS were seen in two Reynolds number ranges (see Figure 3.4). At
the lower end of the transition (Re < 190) the TFS perturbed the flow, which forced
the onset of the transition at a lower Reynolds number than the corresponding
LFS case. With a laminar free-stream, there is a sharply defined critical Reynolds
number where the first three-dimensional effects in the wake were found at Re ~ 190.
With a TFS, the critical Reynolds number was not sharply defined. This is not
surprising, as this transition is subcritical, hence, flow disturbances may initiate the
transition earlier. The shift due to the TFS was, however, to a lower Re than allowed
by the hysteresis pattern of the subcritical instability seen in experiments with
an LFS. Turbulence with different integral scales and intensities revealed further
complexities at the onset of the transition. Quasi-stable states, in which the wake
alternates between two- and three-dimensional vortex shedding, were observed.
Such states are closely related to large scale vortex dislocations that develop in the
wake. For a quasi-stable shedding state, the vortex dislocation breaks up before the
wake reaches a saturated state of mode A instabilities.

The TFS also affected the upper part of the transitional regime (Re > 250).
Mode A instabilities were simulated in the wake, such that mixed A—B instabilities
were observed for Re > 250. This is in contrast to the LFS flow, where mode A
instabilities die out in the upper part of the transitional regime, and pure mode B
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Figure 3.5.: Contours of instantaneous vorticity @, = [V X u]; in a plane along
the streamwise direction, through the cylinder axis, plotted for Re = 250 (left and
middle) and Re = 350 (right) for flow simulations with LFS (top) and TFS (bottom).
Contour plots for two time instants are given for Re = 250: ¢, early development
of instabilities; #,, asymptotic state (2 > t1). Only the asymptotic state is shown
for Re = 350.

instability states are seen in the wake (see Figure 3.5). The effects of stimulated
existence of mode A instabilities in the wake (inhibiting a pure mode B wake)
correlated with the turbulence intensity, and was strongest for the highest intensity
TFS.

In accordance with the studies by Bloor [14] and Norberg [66], the effect of
the turbulent free-stream on the transition-in-wake was an increased bandwidth
of Reynolds numbers spanning the transition-in-wake. More precisely, the band-
width of Reynolds numbers where mode A instabilities are sustained in the wake
increased. Disturbances in form of turbulent fluctuations are therefore an additional
source of scatter in measured critical Reynolds numbers, previously attributed to
contamination from end conditions [118].

PAPER Il

The effects of turbulence in the free-stream on front-side particle impaction on a
cylinder were studied with direct numerical simulations and statistical analysis. A
large number of inertial point particles (~ 107) were inserted at random positions
over the inlet of the flow simulations. The particles were distributed over Stokes
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Figure 3.6.: Predicted and observed results for amplification factor (R ) of impaction
efficiencies resulting from turbulence of different integral scales interacting with
particles in the flow.

numbers 0.2 < St < 10, and the simulations were performed for moderate Reynolds
numbers (Re = 100 and Re = 400). For each Reynolds number, three cases of
particle impaction were simulated: LFS, TFS with integral scale A = 0.8D, and
TFS with A = 2.7D. In addition to the simulations, expectation values of particle
impaction affected by TFS were derived:

n" (1)
2

E(n(Stetr)) = 1(St) + o 3.1)
where St is the effective Stokes number, 1" (St) is the second derivative of the
impaction efficiency for laminar conditions and 0'52, is the variance of the effective
Stokes number. With a turbulent free-stream St.¢r is a stochastic value, St =
(St-U) /Uy, where U is the flow velocity and Uj is the velocity of the mean flow.
The effects of the TFS were large for particles with St = 0.3, in particular
at Re = 400, where 3—4 times as many particles hit the cylinder (depending on
the integral scale of the turbulence). For smaller (St = 0.2) and larger particles
(St > 0.4) only a small effect relative increase in particle impaction was seen.
Previously published results by Weber et al. [111] showed a cut-off Stokes number
for particles that were affected by the TFS. A similar upper cut-off was reproduced,
but using such a cut-off to identify which particles are affected by free-stream
turbulence was regarded as inappropriate, when boundary interception was included
as an impaction mechanism. There appears to be a peak Stokes number where the
maximum effect of the turbulence on particle impaction exists, and a small region
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of St around this maximum quite large amplification of impaction occurs. This
Stokes number is in the St-region where the dominant impaction mechanism on
the cylinder changes from boundary interception to boundary stopping. Including
impaction by boundary interception yields such a peak at Stpeax > Sterit-

The effect of turbulence on particle impaction depended on the Reynolds number
of the flow, and the integral scale and intensity of the turbulence. The turbulence
intensity (7;) decayed at a much faster rate for smaller integral scales and Reynolds
numbers. Higher Reynolds number and larger integral scale (i.e., higher turbulence
intensity) yields a larger amplification of impaction.

With n”(St) approximated from the LFS simulations and o2, computed from
decaying turbulence in a cylinder-free domain, expectation values of front-side
particle impaction were computed and plotted together with the observations from
the direct numerical simulations (coloured fields in Figure 3.6). The observed
effect of the TFS on a limited range of Stokes numbers was reproduced by the
predictions using Eq. (3.1). The fit was very good with regards to which Stokes
numbers were affected by the turbulence, and it is indicative of large amplifications
of the impaction efficiencies. The predictive power of Eq. (3.1) is good, and it
is expected that more accurate approximations of n”(St) and th will only make
the predictions better. Such an expression can be useful for predictions of particle
impaction in flows with free-stream turbulence, requiring only data from an LFS
flow and the intensity of the decaying turbulence.

PAPER IV

The recent implementation of an overset grid method (see Figure 3.7) in the Pencil
Code was described, and tests were performed to determine the formal order of
accuracy and performance of the method for practical flow simulations. Particle
impaction on a cylinder in a cross flow motivated the development of this method,
and as such, this was the sample application of overset grids used within a complex
flow problem. Unique features of the overset grid implementation were documented.
These include local time-step restrictions, summation-by-parts boundary conditions
and application to particle impactions.

The formal order of accuracy, P, was determined, by computing L,-error norms
from steady flow simulations (Re = 20) on grids with spacing refined stepwise by a
factor 1/2. Two methods of interpolation were compared, and both yielded P ~ 2.5
for all flow variables in most of the domain covered by the body-fitted cylindrical
grid. The order of accuracy was highest in the immediate vicinity of the of the solid
surface (P =~ 5 for the radial velocity component).

For unsteady flow at Re = 100, the simplest interpolation between grids (bi-linear
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Figure 3.7.: Communication from background Cartesian grid to overset cylindrical
grid (a) and back (b): Fringe-points (¢) receive data from surrounding donor-
points (@) by interpolation. Dashed lines used to identify sections of the grids where
variables are not computed by finite-differences (fringe-points and hole-points).

Lagrangian interpolation) performed better than the complex method (bi-quadratic
spline interpolation). Grid refinement runs showed very rapid convergence towards
grid independent solutions for central flow coefficients (drag, lift and Strouhal
number). Differently sized overset grids were tested, and all showed good agreement
with previously published data for the computed coefficients.

When applied to particle-laden flows, simulations reproduced previously pub-
lished results over the entire range of Stokes numbers tested (0.01 < St < 10).
The simulations using overset grids used much coarser meshes for the particle
simulations than used in previous studies. Direct comparison for equally sized
flow domains yielded a 90% reduction in the number of grid points required for
two-dimensional simulations. The dramatic reduction in computational cost was
exploited to efficiently investigate the effect of domain sizes and grid resolution
on particle impaction. Increasing the domain size, from L, X L, = 6D x 12D to
10D x 20D (with mean flow along the y-direction) revealed considerable blockage
effects on the smaller domain (see Figure 3.8). The effect of a larger flow domain
(smaller blockage effect) significantly reduced particle impaction for the smallest
particles. Together with grid refinement, the new result showed an over-prediction
in published results by Haugen and Kragset [39] of a factor of 6.3 for the small-
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Figure 3.8.: Front side impaction efficiency (1)) as a function of Stokes number
(St) at Reynolds number 100 for different domain sizes (left) and grid resolutions
(right).

est Stokes number (St = 0.01). The over-prediction was most prominent for the
smallest particles, and was reduced to a factor 2.8 for St = 0.1.

PAPER V

Two methods of solid body representation implemented in the Pencil Code, were
compared for steady and unsteady flows past a solid object. The orthogonal mirror-
point IBM and the newly implemented overset grid method were considered.

Grid refinement simulations for Reynolds numbers, Re = 20 (steady), Re = 100
(unsteady) and 400 (unsteady) revealed a large difference between resolutions
necessary to reach grid independence. With overset grids, less than one fourth the
number of grid points were necessary in each direction to reach grid independence,
as compared to when IBM was used (see Figure 3.9). Because the time-step is
proportional to the grid spacing, significantly larger time-steps could be used with
the overset grid method. This was partially due to the local time-step restriction
on the overset grids. With a sufficiently fine grid, both the IBM and overset grids
could be used to compute flow coefficients (drag, lift and Strouhal number) that
agreed well with previously published data.

The advantages of IBM over overset grids were considered. Although much
less efficient than overset grids, IBM is useful due to its straightforward imple-
mentation into an existing flow solver and the flexibility of the method. The latter
trait was demonstrated, by resolving a non-circular boundary with IBM. A semi-
circular/semi-elliptical cylinder was used as a test geometry, for which the ratio of
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Figure 3.9.: Normalized values for mean drag coefficient (Cp) for flow with Re =
100, mean drag coefficient and root-mean-square lift coefficient (Cy ) for flow with
Re = 400. Results are computed for grids with varying coarseness. The cylinder
in the flow is represented either by the immersed boundary method (IBM) or with
overset grids (OG).
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Figure 3.10.: Flow visualization. Contours of instantaneous vorticity normal to the
view plane plotted for three different geometries at Re = 100. Inflow at the top of
plane.
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circular radii R to elliptical axis b was varied (see Figure 3.10).

3.4. Other contributions

In addition to the included manuscripts and the developments in the Pencil Code,
the author played an active role in the Pencil Code community and participated in a
range of scientific conferences during the Ph.D. studies. This has also contributed
towards the present thesis, and relevant works are therefore listed here.

Conference presentations
Improving the implementation of solid objects in a high order finite difference
code for direct numerical simulations of turbulent flow

Presented at MeKIT’ 15 — The 8th National Conference in Computational Mechanics
(18-19 May, 2015), Trondheim, Norway.

The effect of turbulence on particle impaction on a cylinder in cross flow

Presented at 9th International Conference on Multiphase Flow (22-27 May, 2016),
Florence, Italy.

The effect of free stream turbulence on the transition in wake

Presented at 11th European Fluid Mechanics Conference, (12-16 September, 2016),
Seville, Spain.

Resolving bluff bodies in DNS using overset grids

Presented at MekIT’ 17 - 9th National Conference on Computational Mechanics
(11-12 May, 2017), Trondheim, Norway.

Free-stream turbulence effects on the transition-in-wake state of the flow past
a circular cylinder

Presented at 16th European Turbulence Conference (21-24 August, 2017), Sto-
cholm, Sweden.

Particle-laden flow past a cylinder resolved with IBM and overset grids

Presented at 70th Annual Meeting of the American Physical Society Division of
Fluid Dynamics (19-21 November, 2017), Denver, USA.
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Pencil Code community

Participation without presentation at the 10th Pencil Code Meeting (7-11 July,
2014), Géttingen, Germany.

Validation and immersed boundary method improvements for fluid flow sim-
ulations

Presented at 11th Pencil Code Meeting (11-14 May, 2015), Trondheim, Norway.

Free-stream turbulence effects on the onset of the transition in the wake of
a circular cylinder

Presented at 12th Pencil Code User Meeting (8—12 August, 2016), Graz, Austria.

Resolving bluff bodies in the Pencil Code using overset grids
Presented at 13th Pencil Code User Meeting (10—14 July, 2017), Newcastle, UK.
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Whenever a theory appears to you as the only
possible one, take this as a sign that you have
neither understood the theory nor the problem
which it was intended to solve.

Karl R. Popper®3

Conclusion

In this chapter, concluding remarks on the different research topics are given. Future
outlook with suggestions for further research and recommended extensions to the
work presented in this thesis are also included.

4.1. Concluding remarks

A computational study of a cylinder in a cross flow has been presented. The focus
of the study has been on both physical phenomena and numerical problems related
to such a flow case.

The physical problems considered are the transition-in-wake state of the flow
and particle impaction on the cylinder. For both of these flow problems, the novel
contribution has been the investigations of how free-stream turbulence affects the
different mechanisms at play, investigated by DNS with homogeneous isotropic tur-
bulence inserted at the flow inlet for moderate Reynolds numbers. Under conditions
of a medium to high-intensity turbulent free-stream the range of Reynolds number
spanning the transition-in-wake state of the flow is increased. The disturbances in
the flow trigger transition at a lower Reynolds number and that transition endures
to a higher Reynolds number. Relevant mechanisms for this bandwidth increase are
stimulation of mode A instabilities, intermittent vortex dislocations, quasi-stable
shedding states and mixed A—B instabilities. For inertial particle impaction on a
cylinder, the turbulence amplifies the particle impaction for Stokes numbers in
the range where the dominating impaction mechanism changes from boundary

31n Objective Knowledge: An Evolutionary Approach [76].
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stopping to boundary interception. The relative amplification of impaction is small
for particles outside this Stokes number range.

The numerical problems considered were related to the accurate resolution of
fluid and particle flow around a solid. The accurate resolution of the boundary layer
around a solid cylinder was a crucial aspect of this research, and both immersed
boundary methods and overset grid methods were employed to achieve sufficiently
accurate results at reasonable computational costs. Efforts to improve the numerical
representation of a solid cylinder by an IBM yielded a significant reduction in the
necessary grid resolution. The particle-laden flow simulations were still limited to
particles with a Stokes number larger than or equal to 0.2 for accurate represen-
tation of particle trajectories in the vicinity of the cylinder. For smaller particles,
significantly finer grids would be necessary. This motivated the implementation of
overset grids. The Pencil Code implementation of overset grids has shown great
promise. Not only is the order of accuracy of the method higher than that of the
IBM implementation, but a much more flexible grid stretching scheme and local
time-restrictions provide large cost reductions in highly accurate flow simulations.
The result is a method with outstanding performance for the simulation of a cylinder
in a cross flow, both with and without particles in the flow.

4.2. Future outlook

During the research performed in this doctoral work, many new research problems
were encountered. Some are direct extensions to the work performed, while others
are new possibilities or ideas that have arisen during the research.

The immediate extension to the investigation of transitional flow is to perform
simulations with lower intensity TFS. It is plausible that there is a cut-off for the
turbulence intensity at which the onset of transition is sensitive to flow disturbances.
Identifying a cut-off intensity can have applications to determining an acceptable
level of disturbances in experimental studies of transitional flow states. A focused
investigation into the mechanism of vortex dislocations in the wake is another
topic for future research. The dislocations are attributed to self-excited mode A
instabilities by Henderson [42], yet still occur in quasi-stable states where the wake
does not settle into a mode A instability when the free-stream is turbulent. Does
this mean that the self-excited A modes exist without other visible flow effects other
than the intermittent vortex dislocations, when high-intensity disturbances force the
transition?

For particle impaction under conditions of free-stream turbulence, an immediate
extension is to perform simulations for many more Stokes numbers, in particular
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in the region where impaction is affected by the turbulence. In this way, the peak
Stokes number for amplification can be more accurately identified, which can be
applied in practical applications when impaction should be avoided (like in indus-
trial boilers). Further studies should also aim to include a larger range of Stokes
numbers and turbulent intensities. When the Stokes number range is increased (to
include smaller particles), mechanisms like Brownian motion and thermophoresis
should also be accounted for. Perhaps even more interesting is to increase the
Reynolds numbers of such flows, such that simulations are performed under condi-
tions that are more representative of real world applications. A combination of this
and accounting for more than just inertial impactions should be the aim of future
DNS investigations of cylinders in particle-laden cross flows. For higher Reynolds
numbers, the backside impaction also becomes an interesting aspect of particle
deposition.

These research topics, and many more, can be studied with the novel numerical
methods implemented in the Pencil Code during these Ph.D. studies. The code is
open-source and freely available for anyone to download from GitHub. At present,
recent extensions to the overset grid module include handling of non-isothermal
flows (energy equation included in the solver) and computation of thermophortic
forces on particles in the flow.

The intent of this thesis is to provide useful information and inspiration to
researchers in the field of fluid dynamics, who have the time and patience to
investigate fundamental flow problems by direct numerical simulations. Together
with advances made by researchers in experimental fluid dynamics and efforts
by engineers to make use of fundamental research in the design of real-world
applications, such computational studies are a source of continuous progress in the
understanding of the physics of fluid and particle flows.
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Let no one ignorant of geometry enter here.

Inscription, Plato’s Acadamy>*

Navier-Stokes equations

The compressible Navier-Stokes equations are rarely written out in full. Although
the short-hand notation is quite elegant, the Navier-Stokes equations written in
an expanded format are useful when developing or understanding procedures in
a computational fluid dynamics software. The expressions are given here. To
understand how computations are performed in The Pencil Code, the Navier-Stokes
equations: (Egs. (2.6) and (2.7)) formulated term-by-term are most useful, as this
is how the equations are solved by this particular software. Both the full form
and the term-by-term form are given here. The expressions are based on and
checked against material found in Cantwell [19], Griffiths [36], Bird et al. [13], and
Quartapelle [80].

A.1. Cartesian coordinates

It is straightforward to write the Navier-Stokes equations in Cartesian coordinates.
The full form of the continuity equation (Eq. (2.1)) is:

ap ap ap ap duy duy  Jdu,
o Ty gy TG T TP oy Ty T o )

(A1)

The momentum equation, Eq. (2.2), in Cartesian coordinates is given by the set of
equations:

34Tradition has it that the statement was engraved over the door of Plato’s Academy [30].
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where the divergence (V u = %‘jj +3 au’ + ) is written in compact form to keep

the equations from spanning too many 11nes

Writing out the right-hand sides of Egs. (2.6) and (2.7) is trivial in Cartesian
coordinates. These are included here for completeness. The terms on the right hand
side of the continuity equation are:

_adp ap ap
(uV)p —MXai—'—Myaiy"—MZaiZ,

v. du  du ou
PV u=P\ox "oy "9z )

The terms on the right hand side of Eq. (2.7) are split into components in in x,y and
z-direction. This yields:

(AS)

du, Ju, du,

[(U'V)U]XZMXT+”y7+Mz77
duy d d
(- V)ul, =52+, a”y+ . a”y (A.6)
_dug du, du,
[(u-V)u]quxa——i-uya—y —I—uZa—Z,
1dp
[c?V(lnp)] —Czﬁg
10
[}V (Inp)], CZETS (A7)
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A.2. Cylindrical coordinates

(A.8)

(A9)

The momentum equations in Cartesian coordinates have an identical structure in all
three directions. This is not the case in cylindrical (polar) coordinates, where the
equations become notably more complicated.

In cylindrical coordinates, the Navier-Stokes equations can be written out in
the r, 0 and z-directions by using the cylindrical coordinate form of the gradient,
divergence, curl, Laplacian, vector Laplacian and advective operators for a scalar

and vector field:
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In Eq. (A.11), 7,0 and 2 are unit vectors in r, 0 and z-directions, respectively.
The scalar function f = f(r,0,z), F and G are vector functions F' = F,.(r,0,z)7 +
Fo(r,0,2)0 + F.(r,0,2)2 (and similar for G), and V is a three-dimensional deriva-
tive operator in cylindrical coordinate space. With these, the continuity equation
can be written as:

ap dp  ugdp ap 1 <3(rur) 1dug du,

EE A T R i WP +rae+a)’ (A12)

and the momentum equations as:

8u,+ 8u,+ul8u, u%,+ du,\  dp
ar T "or r 00 y T dz |

10 u, 10 0 /ug 1du,
+rar[2r“ (af““)]*rae[“ (”ar (Jﬂae)]

1
3
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(A.13)
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The term-by-term formulation of right hand sides of Egs. (2.6) and (2.7) in
cylindrical coordinates are:

(A.15)
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The term-by-term equations can be reduced to versions of the ordinary formulations
of the Navier-Stokes equations, provided the fluid can be described by the ideal gas
law (Eq. (2.5)) with constant speed of sound and constant kinematic viscosity.

The cylindrical terms of Egs. (A.16)—(A.20) appear more unwieldy than the
Cartesian counterparts, Eqs. (A.6)—(A.10). However, by formulating the Navier-
Stokes equations in this way it becomes clear that regardless of the choice of
coordinate system, the equations are functions of the fluid variables p and w and a
set of primitive derivatives only. The primitive derivatives are:

% ou, P,
dx;’ dx;  dx;ox;’

(A.21)

where x; € {x,y,z} for Cartesian coordinates and x; € {r, 6,z} for cylindrical coor-
dinates (the same goes for x; and xi).
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Abstract. An open source code using high-order finite differences for fluid flow simula-
tions has been validated for use for flows past a stationary cylinder. The implementation
of the immersed boundary method in the code has been considered. A new implemen-
tation is suggested, replacing orthogonal mirror points by mirror points along grid lines.
This implementation resulted in more accurate computation of drag and lift coefficients,
indicating increased accuracy of the computed flow close to the cylinder and allowing for
coarser grids to be used in the simulations.

1 INTRODUCTION

As the cost of high computing power is ever decreasing, the use of high accuracy com-
putations of fluid flow is no longer restricted to academia, but widespread in both research
and engineering applications. The extent one trusts the results from computational fluid
dynamic simulations can be illustrated by the way direct numerical simulations (DNS) of
turbulence are often referred to as numerical experiments, rather than simulations or nu-
merical computations. The firm belief in computational results is not unfounded. Indeed,
numerical simulations compare very well with experimental results, and open for research
on many scientific problems that cannot easily be studied experimentally.

A problem may, however, arise when developed software is applied to research for which
it has not been thoroughly tested and validated. The value of numerical results that are
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seemingly trustworthy will quickly decrease if a small change of the case studied, e.g.
a small increase of the domain size, has a large, unexpected influence on the computed
results.

The aim of this paper is to present a thorough and systematic validation of the open
source high order finite difference code known as the Pencil code [1] used to compute
compressible flow around a circular cylinder at Reynolds number Re = 100, where

Re = =P (1)

14

with free stream velocity Uy, cylinder diameter D and kinematic viscosity v. The flow
problem is a well-known benchmarking case. The validation is presented in detail as the
code used is open for use by other researchers, whom may easily compare their validation
to the results presented here. Further, it is the intent of the authors to make use of this
software for simulating turbulent two-phase flow and the importance of understanding
how different parameters affect the results cannot be overstated.

The Pencil Code is an open source code where all routines can be inspected in detail.
In the process of validation, a closer look is taken on the way the fluid-solid interface in
the flow problem is represented. This is done by the immersed boundary method with
discrete forcing and ghost cells as described in, e.g., [2, 3]. The code uses 6th order central
difference on all fluid points, and a three point deep ghost zone is therefore necessary
in representing the solid interface. More details on the implementation of the immersed
boundary implementation and a suggested method of improvement can be found in Sec. 3.

2 VALIDATION

In conducting a thorough validation meant to lay the foundation for further work for
a specific case, the effect of varying several different parameters has been studied. The
parameters include both physical properties of the system (domain size, Mach number)
and numerical properties (grid spacing, Courant number). For all validation runs the drag

coefficient
2Fp

Cp = 25, @)
the lift coefficient oF,
C1= ot )
and the Strouhal number
St = %, (4)

are computed, and used to compare the effect of tuning different parameters. The coefhi-
cients are expressed in terms of the free stream velocity Uy, density p, cylinder diameter
D, vortex shedding frequency f, drag force Fp and lift force Fy. The drag and lift forces
are computed on a given number of forcepoints close to the cylinder surface. These forces
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Figure 1: Definition of physical set-up. Cylinder is not to scale.

vary with time, as the Reynolds number is sufficiently high to cause vortex shedding.
Therefore, the mean drag coefficient and the root-mean-square lift coefficient are com-
puted and used in the validation. The using root-mean-square values of the lift coefficient
is standard practice. The mean value should be close to zero, when rms value is not used.

The physical set-up is a two-dimensional rectangular domain of length L, and width
L,, as show in Fig. 1. The length can be split into the upstream length, L,, and the
downstream length, L, ,, which need not be equal. Partially reflecting Navier-Stokes
characteristic boundary conditions (NCSBC) (see [4]) are used at both the inlet and the
outlet, with constant inflow velocity U, at the inlet. In the spanwise direction periodic
boundary conditions are used. One could argue that free-slip walls should also be tested,
but as this is not appropriate for the author’s further work with this set up it is not the
focus of this study.

For all the validation runs the following properties are not altered: D = 0.1 m, Uy, =
1.0 m/s and v = 1.0 - 1073 m?/s. All lengths in the system are non-dimensionalized in
terms of the cylinder diameter D.

The results from the validations runs are plotted with error bars, such that the effect
of the different parameters are more easily compared. The area spanned by an error
bar is 1% (0.5% above and 0.5% below a point) of the “correct” value of the drag, lift
and Strouhal number. Note that the correct value is not obtainable analytically, and
the results found by Qu et al. [5] using body conformal grids and very large domains
are used for this purpose. For the largest domain in [5] (200Dx200D) the values are
Cp = 1.310, C}, = 0.2151 and St = 0.1647 for incompressible flow. An alternative would
be to use the asymptotical values at very large domains with body conformal grids, found
by Posdziech and Grundermann [6]. They do, however, not include root-mean-square lift
in their results.
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2.1 Grid refinement

The first parameter that is validated is the grid spacing. The grid is Cartesian, and
the convective time step is computed for each time step by

(Ax)min

At - CCFL7>
(la] + ¢s)max

(5)
where Copy, is the Courant number, (Az), = min(Az, Ay, Az), u is the fluid velocity
at a grid point and ¢, is the sound speed. Hence, the time-step is proportional to the
smallest grid spacing in the system. This motivates choosing the grid spacing equal in
the x- and y-direction, Az = Ay. The remaining parameters (the domain size, Mach
number and Courant number) are chosen rather arbitrarily, some of them perhaps overly
cautiously others not strict enough, as will be shown in the validation to come. The
reason for the rather arbitrary choice of parameters is the lack of a detailed validation
in literature, for the specific flow problem computed with a similar software. The grid
refinement results are purely of qualitative interest, to find a sufficiently fine grid, not to
find quantitative information about the drag, lift and Strouhal number. The upstream
and downstream length are chosen equal, and the length and width of the system are set
to 20D and 10D, respectively. The flow is weakly compressible with a Mach number set
to 0.05. The Courant number is set to 0.4.

In Fig. 2 it can be seen that the resolution has little effect on the Strouhal number.
The effect on the rms lift and the drag coefficient are comparable for D/Axz > 25 (for
D/Ax < 25, however, the rms lift has a large drop, making the similarity between Cp and
('} less than obvious in the figure). The oscillatory behaviour for both these quantities
for D/Ax < 64 is an unwanted effect. Thus, the grid spacing should be chosen such that
D/Ax > 64 to avoid this. Hence, quite a large number of grid points are necessary to
compute accurate results, especially when the domain size is increased (assuming that the
grid refinement is close to independent of the domain size). The use of a stretched grid
should therefore be considered in order to reduce the resolution without using a coarser
grid close to the cylinder surface.

The magenta curve in Fig. 2 depicts the mean lift coefficient for this grid refinement
study. This is included for completeness, to confirm that the mean lift is indeed close
to zero. The error bars in the figure are the same ones that are used for the root-mean-
square lift coefficient. The results show a tendency towards negative mean coefficients for
coarse grids, which may indicate symmetry breaking in the computations. This tendency
is, however, not obvious as the grid spacing is decreased. Apart from this, it can be seen
that the mean lift coefficient is not affected much by decreasing the grid spacing beyond
D/Axz > 25. This indicates that rms lift coefficient is a more appropriate measure of
accuracy in the validation runs. The mean lift coefficient will not be included beyond
this.
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Figure 2: Computed mean drag coefficient, root-mean-square lift coefficient, Strouhal
number and mean lift coefficient for different grid spacing.

2.2 Mach number

The Mach number, defined here as

Ma = = (6)

Cs

has a large impact on the time-step in the simulations of compressible fluid flow. As
the Mach number is reduced to approach the incompressible limit, the time step is also
reduced. It is therefore necessary to consider the qualitative impact of the Mach number
on the results, such that the effects are known for Mach numbers that are convenient to
use in the simulations. All Mach numbers considered here are for subsonic flow. The
domain size and Courant number is equal to that in the grid refinement simulations. The
grid spacing is set to D/Az = 64.
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Figure 3: Computed mean drag coefficient, root-mean-square lift coefficient and Strouhal
number for varying Mach number.

Figure 3 depicts the results from runs with varying Mach number. It can be seen that
once again the Strouhal number is much less affected by the parameter variation, than
the drag and lift coefficients. In contrast to the grid refinement results, the results in
Fig. 3 vary in a smooth, non-oscillatory fashion, approaching the incompressible limit
as the Mach number is decreased. This is as expected, as for most flows no important
changes is observed when the Mach number is reduced from 0.2 to 0.01 [7] (not reduced
below 0.025 in the present computations). From the results, one should expect less than
1% deviation from the incompressible limit, when the Mach number is set to 0.1. Thus,
setting Ma = 0.1 is a reasonable trade-off between accuracy and computational cost.

2.3 Domain size

While both grid refinement and varying the Mach number is fairly straightforward,
looking at the effect of changing the domain size requires some more thought. Not only
should one expect that the three parameters L, ,,, L, and L, affect the computed results,
when varied one at the time, one might also expect that the variations are not independent
(as assumed with grid spacing and Mach number variations). Hence, varying a single
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parameter at a time is not necessarily enough to fully understand how the domain size
affect the computed quantities.

0_16 L L L L L L L L
5 10 15 20 25 30 35 40 45 50

L,/D
Figure 4: Computed mean drag coefficient, root-mean-square lift coefficient and Strouhal
number for varying domain width.

Consider first the variation of system width, where the results are depicted in Fig. 4.
These results are computed with D/Az = 64, Copr, =04, Ma=0.1 and L, , = L, 4 =
10D. It is clear that the width of the system has a large impact on the computed
coefficients, and it is the first parameter this far that has more than a modest impact
on the Strouhal number. This far the system width has been set to L, = 10D. The
results in Fig 4 indicates that this is, by far, a too narrow domain to obtain results
that quantitatively accurate. However, as the results, in a similar manner as the results
from the Mach number variation, drop quite smoothly towards an asymptotic limit, the
qualitative behaviour in the system may be satisfyingly resolved with such a domain
width.

The computed drag coefficient, lift coefficient and Strouhal number for varied stream-
wise lengths are depicted Fig. 5, where the blue and red curves represent the results for
varied upstream and downstream lengths, respectively. The results are computed with
D/Az =64, Copr, = 0.4, Ma = 0.1 and L, = 10D. When the upstream length is varied
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Figure 5: Computed mean drag coefficient, root-mean-square lift coefficient and Strouhal
number for varying upstream length (blue) and downstream length (red).

the downstream length is set to 10D, and vice versa. Hence, the curves overlap exactly
at the point where the varied parameter is 10D. The curves also overlap to a large extent
for the computed Strouhal number for L, ,, L, 4 > 10D, which is robust to changes of the
upstream and downstream lengths.

The way the mean drag and rms lift coefficient vary, on the other hand, is not as
expected. Both show a significant drop as the upstream and downstream lengths are
increased from 5D to 10D. This trend does not, however, extend towards an asymptotic
limit, as was the case for increasingly large domain width. Consider the mean drag
coefficient for increasingly large downstream lengths (red curve in top window of Fig. 5).
The curve shows some oscillations for small values of L, 4, before it decreases steadily. For
L, q > 35D, however, there is an unexpected increase in the computed drag coefficient.
This increase is not only apparent in the results computed at L,q = 40D, there is a
further increase for L, 4 = 50D. The reason for this behaviour, and the similar behaviour
for the variations with upstream length, is not obvious. It is probable that it is related
to some blocking effect due to the domain being too small for the flow problem, either in
the spanwise or the streamwise direction, or both.

Figure 6 depicts the von Karman vortex street at close time intervals for two different
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Figure 7: Computed mean drag coefficient for varying downstream length, for three pa-
rameter configurations: L,, = 10D and L, = 10D (red), Ly, = 20D and L, = 10D
(blue), Ly, = 10D and L, = 20D (green).

downstream lengths, L, = 20D and L, = 40D. The snapshots do not indicate that
the vortices leave the domain differently in the two different simulations and there is no
sign of reflections that distort the results. Thus, it is unlikely that the this is the reason
for the unexpected results in Fig. 5.

To understand the behaviour of the computed drag coefficient in Fig. 5 a few more
validation runs for varying domain size are performed. The downstream length is varied
for three different parameter configurations. One with L,, = 10D and L, = 10D (the
same as before), one with L,, = 20D and L, = 10D and one with L,, = 10D and
L, =20D. The results are seen in Fig. 7.

Several aspects of the domains influence on the computed mean drag coefficient are
apparent in the figure. Consider first the difference between the red and the green curves.
The red curve is equal to the computed drag for varying downstream length in Fig. 5,
while the green curve depicts the results with doubled domain width. The two curves are,
qualitatively, very similar; the bottom curve is only shifted downwards by approximately
0.075. This shift, towards a more accurate result for the computed drag coefficient, can
also be seen in Fig. 4, when comparing the computed mean drag coefficient for L, = 10D
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Figure 8: Computed mean drag coefficient for varying upstream length, for three param-
eter configurations: L, 4 = 10D and L, = 10D (red), L, 4 = 20D and L, = 10D (blue),
L,q=10D and L, = 20D (green).

and L, = 20D. This confirms that the blockage effects from a narrow width has a large
impact on the quantitative results and a very modest impact on the qualitative results.

Comparing the red curve with the blue curve, for which the upstream length has
been doubled shows that a possible reason for the unexpected jagged form of the drag
coefficient computed with L,, = 10D is a blockage effect due to a too short upstream
length. This is in accordance with [6] that advise against using domain with smaller
upstream lengths than 20D. The blue curve shows the expected behaviour of dropping
towards an asymptotic value for increasingly large downstream lengths. Thus, to achieve
the expected qualitative behaviour of increasing the domain in the downstream direction
the upstream direction must be larger than some threshold value.

The effects are somewhat similar for the computed drag coefficient with varying up-
stream lengths, for different L, and L, 4. Figure 8 depict the results for varied upstream
length, for three parameter configurations. One equal to the one in Fig. 5 (red), one with
L,q=20D and L, = 10D (blue), and one with L, 4 = 10D and L, = 20D (blue). Again,
the green and red curves are qualitatively very similar, indicating independent effects of
increasing upstream length and domain width. The blue curve is more smooth. Beyond

11



Jorgen R. Aarnes, Nils E. L. Haugen, Helge I. Andersson

1.490 . . . . . .
1.485} 1 1 1 1 ] 1

S 1.480}
1.475}

1.470 L L L L L L
0.256 T T T T T T

0.255¢ E

0.2541 E

0.253 ' ' ' ' ' '
0.1775 T T T T T T
0.1770} ]

_ 01765} ]

“ 0.1760} 4
0.1755} ]

01750 L L L L L L
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

C(‘FL

Figure 9: Computed mean drag coefficient, root-mean-square lift coefficient and Strouhal
number for different Courant numbers.

the value for the smallest upstream length (L., = 5D) the computed drag coefficient
increases towards a limiting value for increasing upstream length for the configuration
with L, 4 = 20D.

2.4 Courant number

The Courant number is a numerical constant that sets restrictions on the time step
(Eq. (5)) to maintain stability of the explicit time discretization. One often tries to
avoid a larger Courant number than one, which is related to the stability limit found
by von Neumann analysis of the one-dimensional advection equation discretized by the
upwind scheme. An even lower Courant number is often used chosen, to ensure that the
simulations are well within the stability region. This is not necessarily a good idea, as the
time step will become small. Indeed, for higher order discretization schemes a Courant
number larger than unity may be permitted (as shown in, e.g., [8] where Copp = 1.43 is
the stability criteria).

Figure 9 depict the computed drag and lift coefficients and the Strouhal number for
different Courant numbers. The constant parameters are D/Az = 64, Ma = 0.1, L, =
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L,q = 10D and L, = 10D. It can be seen that the Courant number has no significant
effect on the computed quantities for Copr < 1.2. This does not mean that Corp = 1.2
is the optimal choice of Courant number for all simulations with this set-up. If, e.g.,
forced turbulence is introduced or the Reynolds number is increased such that turbulence
is generated in the flow, the small scale structures will have a significant impact on the
result. This may influence the choice of Courant number as the Courant number influences
the small scale error.

With Cepr = 1.4 the computations are close to becoming unstable, and the computed
lift and drag show some deviations from sinusoidal behaviour. A run with Ceprp = 1.6
was also initiated, but did not complete successfully, as instability produced NaNs in the
solution.

2.5 Comparison to data sets from previous studies

The impact of variation of different parameters of interest has been studied in detail.
To conclude the validation part of this paper a few runs for a large domain have been
computed, and are compared to previous studies. Table 1 show computed values for mean
drag coefficient, rms lift coefficient and Strouhal number, from several different previous
studies as well as the present one. The extent the previous studies are comparable to the
present one varies from study to study. All studies are assumed grid independent, and
only the domain size is given for comparison. While some studies use the rms lift as a
control parameter, others use the amplitude of the lift. This amplitude has been scaled by
0.707 to an approximate rms-value. This may be done as the lift coefficient is a smooth
sinusoidal-like function with zero mean value.

The present results have been computed on a rectangular domain of width L, = 60D,
upstream length L, ,, = 20D and downstream length L, ; = 40D. The flow is compressible
with Mach number Ma = 0.1 and the Courant number is set to Corr = 1.0. The grid
is equidistant with grid spacing Az = D/60. In addition, two numerical parameters
have been altered, as compared to the previous runs. One is a scaling parameter used in
the computations of the drag force and lift force, and one is a parameter related to the
fluid points very close to the cylinder surface. The latter (linear_close_interpolate) will
be discussed further in Sec. 3. Default values in the software have been used for these
parameters, this far. The change is made before computing the runs for the large domain
and is based on previous experience with high accuracy runs for this flow problem.

The studies in Tab. 1 represent a wide spread of computational fluid dynamic methods
for computing the flow past a cylinder. The top seven and the present study use the
immersed boundary method to represent the cylinder in the flow, yet they use quite dif-
ferent domain sizes. The eight remaining do not use the immersed boundary method, but
different body conformal grids. Finite-volume, finite-difference, finite element, spectral
element and lattice-boltzmann methods are represented in the table. Only [14], [19] and
the present study are for compressible flows, while the remaining are computations for
incompressible flows. The study [14] uses the Pencil Code, the same software that is used
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Table 1: Comparison with data sets from previous studies. Root-mean-square lift co-
efficients marked by a superscript star (*)) denote lift coefficient amplitudes scaled to
root-mean-square values. The non-rectangular grids are marked as circular inlet/C-type
(0 ) or circular/O-grid (O). Domains where the cylinder is not centred have both upstream
and downstream length given.

[(Le, + La,) x LJ/D> Cp,  C} St

Lai & Peskin [9] (6.1+20.5) x 26.6  1.4473 0.233™)  0.165
Kim, Kim & Choi [10] 70 x 100 .33 0220 0.165
Su, Lai & Lin [11] (13.4+16.5) x 16.7  1.40  0.240%) 0.168
Pan [12] 60 x 60 132 0.226%) 0.16
Tseng & Ferziger [3] 32 x 16 1.42 0.29 0.164
Noor, Chern & Horng [13] - 14 - 0.167
Haugen & Kragset [14] 70 % 35 1.328 - 0.166
Park et al. [15] (50 + 20) x 100, q 1.33 0235 0.165
Shi et al. [16] 100, O 1.331 - 0.1650
Mittal [17] 100 x 100 1322 0.226  0.1644
Stalberg et al. [18] 160, O 132 0.233%) 0.166

Posdziech & Grundmann [6] (20 4 50) x 40 q 1.3504 0.234%)  0.1667
Posdziech & Grundmann [6] (40 4 50) x 80 @ 1.3321  0.229%)  0.1650

Li et al. [19] 100 x 100 1.336 — 0.164
Qu et al. [5] 60 x 60 1.326  0.2191  0.1660
Present (20 + 40) x 60 1.334  0.227 0.1658

in the present study, but with a different domain size and resolution. The studies [5]
and [6] are intended to compute the coefficients to high accuracy, for very large domains,
meant to give qualitative results useful for, e.g., benchmarking purposes. Only the do-
mains most similar to the domain used in the present study are included in Tab. 1. Two
of the domains in [6] are close to the present domain size, and both are included in the
table.

It is seen that the computed results are in very good agreement with previous studies.
A few of the studies using the immersed boundary method are for smaller domains than
the high accuracy runs in this study. These results compare well with the results for
similar domain sizes, as depicted in Figs. 4-7. The validations performed does not only
show how the different parameters affect the solution, but also that the solution is in good
agreement with literature.

The results computed with the Pencil Code can be regarded as highly accurate. The
results are, however, achieved by using a very fine grid, something that may prove trou-
blesome if the computed case is to be generalized to three dimensions. The critical point
when regarding the grid spacing in the set-up is the resolution of the points closest to
the cylinder surface. Therefore, the way the fluid equations are solved here is studied in
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detail to find possible improvements to the boundary layer representation.

3 IMMERSED BOUNDARY METHOD

The immersed boundary method was introduced by Peskin in the 1970s to model
flow around heart valves [20]. Today it is a class of methods that represent a boundary
immersed in a flow with non-body conformal grids [2]. As the grid does not conform to
the solid boundary, incorporating the boundary conditions require a modification to the
equations in the vicinity of the boundary. In the Pencil Code, this is done by what is
called a discrete forcing approach. In this way of implementing the immersed boundaries
the flow equations are first discretized on a Cartesian grid without regard to the immersed
boundary, and then forcing terms that represent the boundaries’ effect on the flow are
introduced. For details on the grid representation close to the boundaries the reader is
referred to [14]. Only the main outline will be repeated here.

3.1 Orthogonal mirror point method

To avoid special handling of the grid points close to the solid surface, a ghost-cell zone is
constructed inside the solid surface. The ghost-cell zone is three grid points deep, contrary
to the much used single ghost-point in discrete forcing immersed boundary methods (see,
e.g., [3]). Three points are necessary to make the sixth order central differencing scheme
applicable at the grid points close to the solid surface as well as far from the boundaries.
The ghost-cells are given values by using mirror points outside the solid surface. Figure
10 illustrates the relation between mirror points and ghost points for three ghost points.

The boundary conditions at the cylinder surface is no-slip and impearmeability for the
velocity, and zero gradient in the radial direction for the density. The way the mirror
points are set up using lines orthogonal to the interface makes satisfying these boundary
conditions fairly straightforward. However, the distance from a computed fluid point close
to the immersed boundary to the mirror points used to generate ghost points necessary
to compute the flow variables at the fluid point can be large. This may have a negative
influence on the accuracy of the computations. This effect will be greatest on the grid
points nearest to the cylinder surface, as they make use of three grid points inside the
solid geometry. This is illustrated in Fig 10, where the relation between the fluid point
a close to the cylinder surface and the position of the mirror point used to set the value
at the ghost points d can be seen. It is possible to handle these points as exceptions. A
parameter limit_close_linear in the Pencil Code lets the user choose the distance from the
cylinder that qualifies for special handling — using interpolation between the surface and
the neighbouring point to compute the flow variables, rather than the high order finite
difference method (detail in [14]). The default distance is half a grid cell (thus fluid point
a in Fig. 10 would be handled as an exception). This distance is used in all the validation
runs in Sec. 2, except for the simulations compared with previous studies (Tab. 1), where
a larger distance has been used (this gave favourable results).
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\
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Figure 10: Ghost points set by corresponding mirror points at orthogonal distance from
the solid surface. Fluid points (a,b,c; @), ghost points (z,y,z; O) and a mirror points
(«' .25 0).

3.2 Cartesian mirror point method

A new implementation of the immersed boundary method in the Pencil Code is sug-
gested. The method makes use of the Cartesian grid by setting local mirror points along
the grid lines. This minimises the distance from a fluid point to the mirror points used
when setting the ghost-cell values. The method is quite straightforward for the velocity
components in the flow, but requires special handling of the density function to satisfy a
zero gradient in the radial direction. In addition some ghost points will have to be com-
puted several times — once for each direction for which they are to be used. The concept
is illustrated in Fig. 11.

Consider a computation of the fluid point b. The ghost points = and y are needed (in
addition to three fluid points to the right and the left fluid point a) in the 6th order central
differencing scheme. The mirror points used in the computation of the fluid velocities in
the ghost-points x and y are 2’ and ¥/, respectively. It can be seen that the mirror points
2’ and 3y’ are much closer to b than the corresponding mirror points in the orthogonal
mirror point method (Fig. 10). This is expected to reduce the error in the ghost point
representation in the central differencing scheme, as behaviour of the fluid velocities at
the ghost points are more strongly coupled to the fluid point velocity if the mirror points
are in close proximity to said grid point.

The fluid velocity vector in the mirror points is computed by interpolation between the
two nearest grid points and the surface point on this grid line. Hence, when computing
2/ in Fig. 11 the points b and a are used, as well and the surface point to the right of

16



Jorgen R. Aarnes, Nils E. L. Haugen, Helge I. Andersson

Figure 11: Ghost points set by corresponding mirror points along the grid lines in x-
and y-direction. Fluid points (a,...,f; @), ghost points (z,y,z; O) and a mirror points
(Il7y,72/7$”; D)

a. When computing 3 points ¢, b and the surface point to the right of a is used in the
interpolation, etc. The surface points can be used for the velocity interpolation since
non-slip and impearmeability conditions at the surface require all velocity components to
be zero there. Such conditions do not apply to the density, for which all that is known is
that the radial component of the density gradient is zero at the surface. Due to this, the
new immersed boundary method is more of a hybrid method than a pure Cartesian grid
method. The orthogonal mirror points shown in Fig. 10 are constructed in this scheme
as well, yet only to set the density in the ghost-points.

The mirror point z” that is included in Fig. 11 is used when computing the velocity
vector in x for computation of the y-components of d, e and f. This drawback, the
necessity to compute the value in some ghost points several times, is not expected to have
a large impact on the computational cost of the immersed boundary implementation.

This new immersed boundary implementation is expected to improve the accuracy
of the computed flow variables, such that high accuracy results can be computed with
a coarser grid than that used in the validation runs. If these expectations are met,
this will not only negate the added cost of decomposition and additional ghost points
computations, but reduce the overall simulation time significantly.

3.3 Results

Figure 12 depict mean drag coefficient, rms lift coefficient and Strouhal number for
varying grid size computed with the two different implementations of the immersed bound-
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D/Ax

Figure 12: Computed mean drag coefficient, root-mean-square lift coefficient and Strouhal
number for different different grid spacing. Two different implementations of the immersed
boundary method have been used to get the results. The Cartesian mirror point method
(blue) and the orthogonal mirror point method (red, dashed).

ary method in the Pencil Code. The blue and red curves show the results for the Cartesian
mirror point method (see Sec. 3.2) and the orthogonal mirror point method (see Sec. 3.1),
respectively. The computations have been carried out with L, = 10D, L, ,, = L, 4 = 10D,
Ma = 0.1 and Copp = 0.9. The scaling parameter and the parameter related to the treat-
ment of fluid points close to the solid surface (both mentioned in Sec. 2.5) have been set
to the same values as those used in Sec. 2.1-2.4.

It is seen that performing a grid refinement study with the new implementation of the
immersed boundary method yields less oscillatory behaviour when going from one grid
size to the next. Further, it can be seen that all three computed quantities, Cp, C, and St
reach a point where decreasing the grid spacing has only a small effect. As a matter of fact,
the variations in the computed results, for all three quantities, is within the error bounds
for D/Axz > 38. This is a substantial improvement over the grid refinement performed
in Sec. 2.1, indicating that the new immersed boundary method does indeed yield more
accurate ghost points within the cylinder. The extra overhead in the computations,
due to some ghost points being computed several times, has a negligible impact on the
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computational time compared to increasing the grid spacing by a factor of 1.7, when going
from D/Axz = 64 to D/Axz = 38 (recall that the grid spacing not only affects the spatial
resolution, but also the time step used in the computations).

4 CONCLUSION

Thorough validation for the case of computing flow past a stationary cylinder has
been conducted. In the validations, the effect of the grid spacing, Mach number, domain
size and Courant number on the computed mean drag coefficient, root-mean-square lift
coeflicient and Strouhal number was studied.

Out of the different parameters tuned in during the validation, only the grid spacing
and the domain size behaved somewhat unexpected. The computed results showed an
oscillatory behaviour for different grid sizes, resulting in the choice of a quite fine grid
for the remaining validation runs (D/Ax = 64). When considering the domain size,
the upstream and downstream lengths showed dependent behaviour. This indicated that
a minimum length in the streamwise direction is not itself sufficient in computing high
accuracy results, the cylinder placements in the domain must be such that the upstream
and downstream lengths are both sufficiently large (> 20D). Of the remaining parameters,
both the domain width and the Mach number indicated smooth decrease towards an
asymptotic value for the computed quantities. The Courant number had very little effect
on the computed values, for Copp, < 1.2.

The results computed with the Pencil Code compared very well to previous studies.
The computations of high accuracy results were, however, very computationally costly,
on the fine grid used in the computations. This motivated a closer look at the flow
computations closest to the solid cylinder, where the immersed boundary method with a
ghost-zone is used in the Pencil Code.

A new implementation of the immersed boundary method was suggested. The method
improves on the way the ghost-points inside the cylinder are computed, by making use
of the grid lines in computing the fluid flow on corresponding mirror points. Such an
improvement greatly reduced the oscillatory behaviour seen in the grid refinement results,
indicating higher accuracy of the boundary layer around the cylinder. The increased
accuracy allows for an increase in the grid spacing of a factor of 1.7 with negligible impact
on the accuracy.

The presented study lays a solid foundation for further work on flows past a circular
cylinder using the high order finite difference Pencil code. As the impact of many cen-
tral parameters is well understood, the choice of these parameters — which is always a
compromises between accuracy and computational cost — can be made without too much
guesswork and hand-waving arguments. Further, the improved accuracy close to the solid
surface will be beneficial in the authors’ further study with this set-up, and for other users
of the open source code that include immersed solid objects in their flow simulations.
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We investigate how a turbulent free-stream (TFS) affects the Received 28 June 2017
transition-in-wake state of flow past a cylinder. Direct numerical sim- Accepted 28 November 2017

ulations of a decaying TFS flow past a cylinder have been performed,
vyhere the intensity and integral scale of the TFS was varieq. Dis- Isotropic turbulence; chaos
tinct effects of the TFS are observed for Reynolds numbers in the and fractals; direct numerical
lower (Re < 190) and upper (Re > 250) ranges of the transitional simulation

regime. For a flow with a laminar free-stream (LFS), the onset of the

transition-in-wake is observed at critical Reynolds number 190, where

the first three-dimensional effects develop in the wake (mode A insta-

bilities). A TFS perturbs the flow, forcing the onset of the transition

at a lower Reynolds number and inhibiting a sharply defined criti-

cal Reynolds number. Quasi-stable states, where the wake alternates

between two- and three-dimensional vortex shedding, are observed

for Re <190. These states are closely related to intermittent vortex dis-

locations in the wake. In the upper Re part of the transition-in-wake

regime, mode Binstabilities dominate the wake of the LFS flow. A TFS

stimulates the existence of mode A instabilities, resulting in mixed A-

Binstabilities in the wake for Re > 250. This effect correlates with the

turbulence intensity.

KEYWORDS

1. Introduction

The unsteady vortex shedding and the transition to turbulence in flows past a circular cylin-
der have been an actively studied field of fluid mechanics during the last century. The flow
problem has a generic nature and direct relevance to engineering applications.

The flow past a circular cylinder is steady at sufficiently low Reynolds numbers. The
Reynolds number of the flow is defined as Re = UD/v, where U is the mean velocity of the
flow, D is the diameter of the cylinder and v is the kinematic viscosity. At Re = 47 the flow
becomes unsteady by a Hopf bifurcation (see, e.g. [1]), which can be observed as oscillations
in the wake of the cylinder. As the Reynolds number is increased, the characteristic von
Kérmén vortex street develops. The flow pattern of alternating vortices being shed from
the cylinder is purely two-dimensional. With a further increase in the Reynolds number,
the first three-dimensional effects can be observed in the flow. At this point, the flow past
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the cylinder is in the transition-in-wake state, which spans the range of Reynolds numbers:
(180 — 200) < Re < (350 — 400) [2,3]. Following the transition-in-wake state of the flow,
increasing Re leads to further break-up of the flow through several transitional regimes,
before it can be characterised as fully turbulent.

The focus of this study is on the transition-in-wake state of the flow, and the effects that
a turbulent free-stream (TFS) may have on this particular transition. Although it was noted
above that this transition starts at 180 < Re < 200, there is considerable variation in the
reported critical point where this transition first occurs (see [3], and references therein). We
will henceforth denote this point the critical Reynolds number, abbreviated as Re. for flow
with laminar free-stream (LFS) and Re, 155 for the TFS case. This is a secondary instability of
the flow (opposed to the primary instability at Re =~ 47 [4]), and other authors may use Re;,
Rey, etc. to denote the onset of this instability. We will not consider the primary instability
any further and therefore find Re, to be an appropriate notation for the Reynolds number
at onset of the transition-in-wake state of the flow.

By Floquet stability analysis, Barkley and Henderson [4] could identify the onset of tran-
sition at Re, = 189 and Henderson and Barkley [5] further proved that the transition is sub-
critical, explaining the hysteresis effect observed experimentally [6]. For Re = 189, three-
dimensional modes with spanwise length of approximately four cylinder diameters develop
in the flow. These mode A instabilities [6,7] are the dominant flow features in the spanwise
direction in the first part of the transition-in-wake regime, along with spot-like vortex dis-
locations. The vortex dislocations are large-scale intermittent structures that grow down-
stream of the cylinder. These dislocations were discovered experimentally by Williamson
[8], and similar features have been reproduced in numerical simulations (see [9,10]). Zhang
et al. [9] call these structures vortex adhesion, due to vortices evidently adhering to the
cylinder over many shedding periods, and found them to be self-sustained in the range 160
< Re < 230. Henderson [10] points out that the spot-like dislocations must be generated
by the mode A instability, and concludes that a nonlinear interaction between self-excited
modes in the A-band is responsible for the appearance of large-scale structures in the wake.
Here, the A-band refers to the different possible wavelengths of the mode A instability. The
observed spanwise wavelength of the three-dimensional pattern developing in the wake
corresponds to the most unstable wavelength of the A-band. The wavelength is 1, = 4D at
Re,, decreasing somewhat as Re is increased (details in [4], Figure 12). Through high accu-
racy numerical simulations, Posdziech and Grundmann [11] reproduced the transition-
in-wake with excellent agreement with experimental results. By using a spanwise domain
length equal to the most unstable mode A instability the authors claim to exclude vortex
dislocations in the wake, and conclude therefore that the role of such dislocations are over-
rated in experimental studies of the transitional regime.

When the Reynolds number is further increased, a new mode of instabilities develops in
the wake: mode B instabilities. These instabilities are streamwise structures with spanwise
length of approximately one cylinder diameter, dominating the flow at Re 2 260 (see [7]
and references therein). At Reynolds numbers between 210 and 220 the mode A and mode
B instabilities start to coexist in the wake. The transition from a flow dominated by one
mode to dominance of the other is gradual, with energy in the flow shifting continuously
from the larger to the smaller instabilities (see, e.g. [12]) over a range of Reynolds numbers.
Note that unlike the transition where mode A instabilities first occur, the second transition
in the transition-in-wake state of the flow is supercritical [12].
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The onset of the three-dimensional transition-in-wake can be identified by a sharp drop
in the Strouhal number as Re is increased. The Strouhal number is defined as St = fD/U,
where fis the vortex shedding frequency. The drop in St is observed at the onset of the sub-
critical instability where the first mode A instabilities develop in the cylinder wake. As mode
B instabilities start to develop alongside of the mode A instabilities, the shedding frequency
is gradually increased towards that of the two-dimensional shedding state. As already men-
tioned, there is a considerable scatter in the reported critical Reynolds number where this
St drop occurs. This is especially prominent in experimental results, which can be seen by
comparing data from e.g. Gerrard [13], Williamson [6] and Norberg [14], where Re, -values
between 140 and 200 are reported. This point should be kept in mind when studies where
the effect of free-stream turbulence upstream of the cylinder in the transitional regime
are considered. The effect of TFS may have been overrated by some authors and under-
rated by others in previous studies, due to other disturbances (e.g. contamination from end
conditions).

In studies performed in two different wind tunnels, Bloor [15] found a significant effect
of TES on the critical Reynolds number. The experiments were performed with low turbu-
lence intensity, T; = tyms/ U = 0.03% and 1% (where 1,y is the root-mean-square value
of the three-dimensional velocity fluctuations). Instabilities developed in the wake for Re
between 160 and 200, where the higher Re consistently corresponded to the experimental
set-up with the lowest turbulence intensity. How large the contribution of, e.g. end con-
ditions was on the onset of transition in these experiments is hard to say, but it cannot
be ruled out as an influencing parameter in the experiments, since the different turbulence
intensities correspond to different experimental rigs in this study. Hussain and Ramjee [16]
studied the effect of TFS on the shedding frequency at Reynolds numbers in the range of
the von Karman vortex street. The experiments were performed for 60 < Re < 160 and T;
up to 8%. No effect of the TFS on the flow was found. This result has been used to argue
that the transition-in-wake state of the flow is insensitive to TFS [17]. This is not a valid
argument, since Hussain and Ramjee [16] only considered Re below the Re, reported in
the majority of studies on the subject. In a study by Norberg [18], flow past a cylinder for
a large Re span was investigated, and the flow was deemed ‘rather insensitive’ to low inten-
sity, free-stream turbulence (T; = 1.4%) for 50 < Re < 10°. Norberg [18] did, however,
find an increase in the relative bandwidth of Re spanning the transitional regime, thereby
supporting the observations by Bloor [15].

Beyond the investigations mentioned here, there exist few studies on the effect of TFS on
the transition-in-wake state of the flow past a circular cylinder. To the best of our knowl-
edge, no such studies have been performed using direct numerical simulations (DNS) as
the main research tool. An advantage of DNS is that the end conditions, turbulence inten-
sity, etc. can be kept exactly the same in all the simulations. This makes it an ideal tool for
further investigations of the effect of TFS on the transition-in-wake, since the effects of the
turbulence can be isolated from other disturbances of the flow.

In this paper, a DNS study on the effect of TFS on the transition-in-wake regime of a cir-
cular cylinder is presented. The aim of the study is to determine if and how the transition
with TFS differs from a transition with LFS. The entire transition-in-wake regime is consid-
ered, by using 120 < Re < 350. The structure of the paper is the following: in Section 2, the
framework and validation of the numerical simulations are described. Section 3 is a pre-
sentation of the main results, with the discussion split into the different Reynolds number
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spans where effects from the TFS are seen. In Section 4, TFS flows with different turbulence
properties (intensity, scale and length of the turbulence production domain) are considered,
before conclusions are drawn in Section 5.

2. Methodology

To perform the simulations, the high-order finite-difference code for compressible hydro-
dynamic flows known as The Pencil Code (see [19,20]) has been used. The governing equa-
tions of the flow are the continuity equation:

— =—pV-u, (1)
and the momentum equation:

Du
p— = —Vp+V-@us). 2)
Dt
where p, t, u and p are the density, time, velocity vector and pressure, respectively. The rate
of strain tensor is given by

1 1
§= (Vu+ (V") —I<§V.u>, (3)
where I is the identity matrix. The pressure is computed by the ideal gas law, p = ¢?p, where
¢; is the speed of sound. The flow is isothermal and weakly compressible (the Mach number
is 0.1 in all simulations).

2.1. Numerical method

The equations are discretised with sixth-order central-differences in space and a third-order
Runge-Kutta scheme in time. An equidistant Cartesian mesh is used to simplify the process
of inserting turbulence upstream of the circular cylinder. The cylinder is situated in the
centre of the flow domain (details in Section 2.3), and an immersed boundary method is
used to resolve the cylinder boundary.

The immersed boundary method, introduced by Peskin in the 1970s to model flow
around heart valves [21], is a class of methods that represent a boundary immersed in a
flow with non-body conformal grids (see review article by Mittal and Iaccarino [22] and
references therein). As the grid does not conform to the solid boundary, incorporating the
boundary conditions requires a modification of the governing equations in the vicinity of
the boundary. In our implementation, a discrete forcing approach is used, in which the
boundary conditions at the cylinder are enforced through ghost points inside the cylinder.
The advantage of this approach is that it allows direct control over the numerical accuracy,
stability and discrete conservation properties of the solver.

The seven-point finite-difference stencil used for the sixth-order method is not altered
near the surface. Rather, a three-point deep ghost point zone is constructed inside the
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Figure 1. Immersed boundary method. Ghost points (x, y, z; o) used in the central-difference stencils of
fluid points (a—c; e) are set by mirror points (x',y’, Z; ). The mirror points are interpolated along grid lines.
When (x; o) is used to compute vertical velocity components of fluid points (d—f; e) the corresponding
mirror point is (x”; ). For a fluid point (a; o) very close to the cylinder surface, interpolation between
a surface point (s; ) and the intersection between the surface normal and the first grid line at (p; o) is
used. (a) Ghost and mirror points for velocity computation; (b) special handling of fluid points close to
the surface.

solid geometry (unlike the more common single ghost point discretisation, see, e.g. [23]).
To resolve the boundary conditions set at the cylinder surface, the ghost points are
assigned values from corresponding mirror points. These are no-slip and impermeabil-
ity for the velocity, and zero gradient in the radial direction for the density. The latter
condition can be derived from the ideal gas law and the boundary layer approximation
(g—ﬁ = 0, where # is the wall normal direction) for an isothermal flow.

Ghost points and mirror points used for velocity are computed along Cartesian grid
lines; see Figure 1(a). Note that ghost point x is set by mirror point x’ when used to compute
the horizontal velocity component at fluid points a—c, and by mirror point x” when used to
compute the vertical velocity component at fluid points d-f. Ghost points used to resolve
the density gradient are set from mirror points in the radial direction, since only the radial
gradient is known (details in [24]). Computation along radial lines minimises the distance
between a ghost point and its corresponding mirror point. The use of mirror points along
grid lines, however, ensures that the mirror points are closer to the fluid points where the
corresponding ghost points are used in the finite-difference stencils. This has been found
advantageous, as spurious effects that arise due to the effective delocalised dependency in
the finite-differences are reduced. Further, interpolation along grid lines is cheap and imple-
mentation of higher-order Lagrangian interpolation is trivial. Here, quadratic interpolation
is used along the grid lines. The point where a grid line intersects the surface is always
included in an interpolation stencil, thus extrapolation is avoided. Tri-linear interpolation
is used to compute the density mirror points.

Special handling is used for fluid points very close to the solid surface: if a fluid point
is closer to the surface than some predefined cut-off (e.g. 0.7Ax), a value is explicitly
assigned to the fluid point based on an interpolation along the surface normal, as shown in
Figure 1(b). The fluid point a is computed by linear interpolation of the values at the surface
point s and at the grid intersection point p. The intersection point p is itself interpolated
from its nearest neighbours along the grid line.
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Table 1. Comparison of mean drag coefficient Cp and Strouhal number St
for a range of resolutions and Reynolds numbers for a two-dimensional
domain with L, =10D and L, = 20D.

Re =100 Re =200 Re =300 Re =350

Resoluon  C, St C, St C St G St

160 x 320 149 0174 148 0204 153 0.218 155 0.223
240 x 480 149 0176 146 0206 146  0.206 152 0.225
320 x 640 146 0176 142 0206 144 0220 1.45 0.225
400 x 800 147 0176 143 0205 146 0.220 147 0224
480 x 960 147 0176 143 0.205 1.45 0.219 146 0224
640 x 1280 146 0176 143 0205 146 0.219 147 0224
800 x 1600 146 0176 143 0205 146 0.219 147 0223

2.2. Gridresolution

Grid refinement has been performed to determine the necessary resolution to capture the
flow phenomena in the transition-in-wake. The number of equidistant grid points on a
two-dimensional flow domain with dimensions L, x L, = 10D x 20D was varied from
160 x 320 to 800 x 1600 for Reynolds numbers from 100 to 350. The inflow velocity and
cylinder diameter were held constant, while the viscosity was used as a control parameter
to set the Reynolds number.

From the grid refinement study, a resolution of D/ Ax = D/ Ay =40 (i.e. a 400 x 800 grid)
is found to be sufficient for Reynolds numbers spanning the transition-in-wake state of the
flow (see Table 1). For simplicity, the same resolution is used for all Reynolds numbers,
although a coarser grid would be sufficient at the lower Reynolds numbers. The laminar
boundary layer around the cylinder is thinnest at the front stagnation point. This (non-
dimensional) boundary layer thickness is § =8/D = 2.4,/v/(BD?), where B~ 4U /D
for weakly compressible flows [25]. Hence, with dimensionless grid spacing Ax = Ay =
0.025, the boundary layer is at minimum 4.8 grid points deep for Re = 100 (§ = 0.12) and
2.6 grid points deep for Re = 350 (§ = 0.064). In practice, this guarantees that at most one
of the grid points used for interpolation of the mirror point farthest from the surface (2
in Figure 1(a)) is (barely) outside the boundary layer for Re = 350. All other interpolation
grid points, and all mirror points, are guaranteed to be inside the boundary layer at this res-
olution. This is due to the special handling of grid points closer to the surface than 0.7Ax,
ensuring that a ghost point is not used if it is farther than 2.3 Ax from the surface.

The stability requirement for the Runge—Kutta method for a weakly compressible flow
imposes a very strict limit on the time step. An adaptable time step is used, which results
in the dimensionless time step Af = AtU/D < 1.3 x 107> after the development of the
von Kérman vortex street. To verify that this time step is adequate, two-dimensional flow
simulations were performed on the 400 x 800 grid, with fixed time stepping. Reducing the
time step to Af < 1.0 x 10~ had a negligible impact on the flow simulation, increasing Cp,
and St only by 0.015% and 0.06%, respectively.

For DN, it is not sufficient to resolve the boundary layer around the cylinder, all scales
of the TFS (spatial and temporal) must also be resolved. Fortunately, at the low to mod-
erate Reynolds numbers spanning the transition-in-wake regime, the Kolmogorov length
scale n = (v3/e)', where ¢ is the average energy dissipation rate, is larger than the nec-
essary resolution required to resolve the boundary layer, for the turbulence considered in
this research. The Kolmogorov time scale, 7, = (v/€)"?, is substantially larger than the
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Table 2. Comparison of the Kolmogorov microscales with
spatial and temporal resolution for the TFS with integral
scale A/D = 1for Re =100 and Re = 350. Non-dimensional
properties given by § = eD/U?, j = n/D, %, = 1,U/D.
The grid is equidistant with Ax = Ay.

Re € max n fn n/Ax rn/At
100 0.0161 0.089 0.788 3.55 606
350 0.016 0.038 0.497 1.51 382

required temporal resolution imposed by the stability requirement (details are found in
Table 2).

2.3. Computational domain

The computational domain consists of two rectangular boxes. In the first box, isotropic
turbulence is generated by external forcing on given wave numbers (details in [26]). This
domain (left box in Figure 2, henceforth called the turbulence domain) has periodic bound-
ary conditions in all directions and is equal in size to the flow domain (more on this in
Section 4.3). Once the forced turbulence is statistically stationary, slices of flow quanti-
ties from the turbulence domain are added to the inlet of the flow domain (right box in
Figure 2). The flow domain has mean inlet velocity U = (U, 0, 0). Since the mean velocity
in the turbulent box is zero, this mean inlet velocity is not affected by the added turbulent
velocities. Hence, the inlet velocity is U = U + u/, where u’ is updated at every time step
using data from the turbulence domain. To avoid outflows at the inlet, the turbulence inten-
sity is limited such that max |u/| < U. Navier-Stokes characteristic boundary conditions,
which is a formulation that uses one-dimensional characteristic wave relations to allow
acoustic waves to pass through the boundaries, are used both at the inlet and at the outlet
of the flow domain [27]. The boundaries normal to the mean flow direction are periodic.
The size of the flow domain is (L, L,, L;) = (12D, 6D, 8D). The size of the domain is
chosen to be sufficiently large to resolve the flow phenomena qualitatively. Consider the

Figure 2. Computational domain, split into two rectangular boxes. Left box for turbulence generation
and right box for flow domain. Thin slices of velocity data are taken from the turbulence domain and
added to the velocity on the inlet of the flow domain, illustrated here by a thin rectangular box between
the two domains. The slice thickness and cylinder diameter are not to scale.
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Figure 3. Comparison of St-Re relationships for flows with laminar free-stream conditions, for Reynolds
numbers spanning over the transition-in-wake regime. Ly =6D: -0-3D,_ _2D; Ly =12D: -x- 3D, _ _ 2D;
« data from experiments by Williamson [6].

solid blue curve with o-markers in Figure 3, depicting the Strouhal number as a function of
Reynolds number for the flow in the transitional regime with LFS. The results are compared
with experimental results from Williamson [6] (black dots). Results from two-dimensional
simulations, where the transition-in-wake does not occur, are also included in the figure
(dashed blue line). The qualitative match between the three-dimensional simulations and
the experimental results is good, but the quantitative match is poor. A discrepancy between
the oblique vortex shedding results by Williamson [6] and the parallel vortex shedding from
the DNS is expected, as parallel vortices are shed at a somewhat higher frequency than
oblique vortices (see [28]). The mismatch between the experimental and DNS results is,
however, too large to be attributed to this effect alone. It is well known that a limited L, will
generate blockage effects in the flow [29,30]. Previous validation runs show that L, is the
domain size parameter that has the greatest influence on the computed Strouhal number
[31]. The blockage ratio is D/L, = 0.167, and significantly larger St values are found in the
simulations than in the experimental data. The blockage effect, however, does not affect
the value of Re, or the increase in St in the upper Re part of the transition. Doubling L,,
from 6D to 12D, and thus approaching the recommended distance of 8D from the lateral
boundaries to the cylinder, as suggested by Behr et al. [29], reduces the St values by ~9%
(red curve with x-markers in Figure 3). Since the quantitative value of St is not of interest to
us, L, = 6D is used in the subsequent simulations in order to keep the computational costs
manageable. Similarly to Thompson et al. [32], we believe that the restricted domain does
not alter the essential physics underlying the development and interaction of the three-
dimensional structures. Note that even with this limited domain width, the typical cost of
running a simulation resulting in a single point in Figure 3 is 5.4 x 10> CPU hours. For
simulations with TFS the typical simulation time is approximately 40% longer.
Two-dimensional simulations with varying upstream and downstream lengths have
been performed, and the results showed that a cylinder situated in the centre of a 12D long
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Figure 4. The computed instantaneous drag and lift coefficients, C;, and C;, respectively, for Reynolds

numbers 180 (left), 190 (middle) and 210 (right) as a function of the dimensionless time f = tU/D.

flow domain gives accurate results for the shedding frequency. The simulations were per-
formed for Re = 100, with upstream and downstream lengths varied up to 50D each. The
Strouhal number St was barely affected by these lengths, as long as the lengths were above
a certain threshold. Results from validation runs with L, = 20 and Re spanning over the
transition-in-wake region (with the cylinder in the centre of the domain) are not included
in Figure 3 since they are indistinguishable from the corresponding results with L, = 12D.

The spanwise length L, is chosen sufficiently large to allow room for at least two wave-
lengths of the mode A instabilities inside the flow domain at Re,. The choice of the spanwise
length is based on the findings of Posdziech and Grundmann [11], that an L, twice as large
as the most unstable wavelength of the mode A instabilities (A4 S 4D) guarantees an accu-
rate reproduction of the measurements.

2.4. Measuring the shedding frequency

There is a large variation in the size of the error bars in Figure 3. This stems from the nature
of the shedding of vortices in the transitional regime, particularly for Reynolds numbers
where several vortex dislocations occur.

Let us consider as an illustration Figure 4, depicting the drag and lift coefficients for
Re = 180, 190 and 210. For the two-dimensional vortex shedding (Re = 180) the coeffi-
cients vary sinusoidally with a constant shedding frequency. For Re > Re,, the oscillations
diverge from a sinusoidal behaviour. The sharpest amplitude drops in the drag and lift coef-
ficients correspond to time instants where vortex dislocations develop in the cylinder wake.
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Figure 5. Power spectral density (PSD) as a function of Strouhal number with curve fitted Gaussian dis-
tribution (GF), for LFS flow at Re =180 (PSD:x, GF:__) and Re =190 (PSD:®, GF:- - -).

The vortex dislocations also affect the vortex shedding frequency, i.e. strong intermittent
vortex dislocations result in a drop in St over a short time interval.

To find the shedding frequency from the lift data, a Lomb-Scargle power spectral density
(PSD) estimate [33] is computed, followed by a Gaussian curve fitting. The Lomb-Scargle
periodogram is preferred rather than a Fourier transform, due to uneven time sampling
from the adaptable time step in the simulations. A curve fitting in frequency space is nec-
essary since the Strouhal number varies with time in the transitional regime (particularly
in regions with intermittent vortex dislocations). A Gaussian fit is used since the strongest
peaks in frequency space generate a normal-like distribution (admittedly skewed for Re >
Re,); see Figure 5. The error bars in the St-Re curves in Figures 3, 6, 10, 12 and 13 are stan-
dard deviations of the curve-fitted Gaussian distributions in frequency space. Although
using a moving average over extrema would suffice for computing St in the LFS simula-
tions, for flow with a TFS high-frequency noise from the turbulence makes measurements
of shedding frequency without the transformation to frequency space hard and inaccu-
rate. Another advantage of the Gaussian fitting (compared to, e.g. setting St equal to the
dominant frequency of the PSD) is that the standard deviation of the fitted curve provides
information about the St span at each Re. In particular, this brings attention to simulations
that develop vortex shedding that alternates between two- and three-dimensional vortex
shedding. These quasi-stable states (see Section 4) are easily overlooked by using the dom-
inating shedding frequency directly.

The simulations are run for 50-120 shedding periods after the vortex shedding has
developed. The simulations in which the strongest vortex dislocations appear are run for
the longest time to avoid an incorrect influence of the dislocations on St. Imagine, for
instance, that only 30 periods were included for Re = 210, i.e. terminating the simulation at
t between 200 and 250. This would give an excessive influence of the strong vortex disloca-
tion close to £ = 200 on the flow statistics. For all but a few simulations, the flow is consid-
ered to be developed after a time corresponding to approximately 20 shedding periods. The
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exceptions are for Re very close to the critical Reynolds number, where the flow needs
longer time to develop before the measurements start.

3. Effects of high-intensity free-stream turbulence on the transition-in-wake

Turbulence with intensity T; = 25% and integral scale A = D is inserted at the inlet of
the flow domain for simulations with Reynolds numbers ranging from 120 to 350. The
high intensity turbulence decays in the flow direction, and reaches the cylinder surface
with an intensity of 10.5%-13.5% (highest decay of T; for the lowest flow Re). Figure 6
depicts the resulting St-Re relationship, together with results from the LFS simulations.
For the lowest and intermediate Re, corresponding to Regions I and III in the figure, the
difference between St for the two cases is negligible. In Regions ITand IV, this is not the case.
In this section, we will discuss the two regions where the TFS and LFS results differ, before
considering the effect of varying the properties of the TFS (intensity, scale and length of the
turbulence domain) in Section 4.

3.1. Mode A instabilities and the onset of three-dimensionality in the wake

The drop in shedding frequency at the onset of three-dimensionality in the wake is known
to be closely related to the mode A instabilities and vortex dislocations in the wake of the
cylinder for flows with LFS conditions. This is confirmed in our simulations by looking at
instantaneous plots of the vorticity (@ = V X #) in a plane along the flow direction and the
cylinder axis (the xz-plane).

The wake at Re = 180 is purely two-dimensional, as seen by the lack of cross-stream
vorticity in Figure 7(a). At Re = 190, mode A instabilities (with 14 = 4D) have developed
in the wake; see Figure 7(c-f). A vortex dislocation is seen in Figure 7(e,f), obscuring the
observations of mode A instabilities.

0.23

0.22

St

0.21

0.2 —o—laminar
—»—turbulent
150 200 250 300 350
Re

Figure 6. Comparison of St-Re relationships for flows with and without free-stream turbulence intro-
duced upstream of the cylinder, for Reynolds numbers spanning over the transition-in-wake regime: -o-
LFS; -x- TFS; - - 2D LFS.
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Re = 180 Re=190,t=t, Re =190, t = t,

Figure 7. Laminar free-stream. Contours of instantaneous vorticity o, (top) and w, (bottom) in a plane
along the streamwise direction, through the cylinder axis, plotted for Re =180 (left) and Re = 190 (mid-
dle and right). Top and bottom frames correspond to the same time instant. Contour plots for two time
instants are given for Re = 190: t;, time instant without vortex dislocation; t,, time instant with vortex
dislocation.

Re = 160 Re=170,t =1, Re =170, t = t,

L)

Figure 8. Turbulent free-stream. Contours of instantaneous vorticity ,(top) and w, (bottom) in a plane
along the streamwise direction, through the cylinder axis, plotted for Re = 160 (left) and Re = 170 (mid-
dle and right). Top and bottom frames correspond to the same time instant. Contour plots for two time
instants are given for Re = 170: t,, time instant with vortex dislocation beginning to develop; t,, time
instant with fully developed vortex dislocation.

The drop in St occurs at lower Re for the TFS simulations as compared to the LFS, hence,
Re, trs < Re, (see Region II of Figure 6). Based on the results with LFS, one would expect
this to be due to mode A instabilities with vortex dislocations occurring at lower Reynolds
numbers as a result of the TFS in the flow. Figure 8 shows instantaneous contours for the
TFS flow in Region IT and confirms this to some degree: The inherent three-dimensionality
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in the TFS results in three-dimensional flow effects even at Re < Re,, rps, distorting the
vorticity plots. This is apparent as w, # 0 in the near wake in Figure 8(a) although St has
not dropped from the two-dimensional mode (Re = 160 data point in Figure 6). Despite
this ‘noise; coherent flow structures can be observed in the contour plots. Let us compare
Figure 8(c,d) to Figure 7(c,d), depicting @, and w, for TES flow with Re > Re tgs and LES
flow with Re > Re,, respectively. Vortex dislocations do not dominate the near wake at
the specific time instant of these snapshots. While a mode A instability is clearly visible in
the LFS contours, this mode is less clear in the TFS case. There is an alternation between
positive and negative w, in Figure 8(c), similar to the variation in the LES flow, and the
wavy structures in Figure 8(d) appear to have a wavelength close to 4D. The mode A
instability is present, but the view is obscured by a vortex dislocation beginning to develop
in the upper half of the frames.

Strong vortex dislocations develop at Re = 170, as can be seen in Figure 8(e,f). The pat-
tern is similar to the experimental flow visualisation by Zhang et al. (see [9], Figure 5),
where the term vortex adhesion is used to describe this phenomenon. The development
in time, from Figure 8(d-f), appears to be the development of a large-scale structure, and
similar vortex dislocation patterns occur repeatedly after the initialisation of the simula-
tion for this Re. The snapshot in Figure 8(f) is among the clearest observations of a vortex
dislocation appearing to adhere to the cylinder at this Reynolds number.

Henderson [10] reported that spot-like disturbances (i.e. vortex dislocations) always
developed from small perturbations at sufficiently large Re > Re. and L, > A4, and that
these large-scale structures only appear in a natural transition after mode A instability. The
results of the present study can hardly be considered as a natural transition, as the TFS acts
as a strong perturbation on the wake instability; the shift of the critical Reynolds number
to alower value is a direct consequence of the TFS. Yet, similar to the observations by Hen-
derson [10], the vortex dislocations in the wake first occur for Re > Re. 1gs. The strong
vortex dislocation and inherent three-dimensionality of the TES obscure the view of mode
A instability in the flow. Still, the similarity between the drop in St in Region II of Figure 6
for the two flow cases, the presence of vortex dislocations in Figure 8(e,f) and the vorticity
snapshot in Figure 8(d), are strong indications of the existence of mode A instabilities at Re
= 170 for the TFS flow past the cylinder.

3.2. Mixed instability modes in the upper part of the transition

In moving from Region III to Region IV of Figure 6 the results for TFS and LFS diverge.
The difference in shedding frequency between the two cases remains almost constant for
250 < Re < 300, before decreasing somewhat for Re = 350.

The detailed analysis by Henderson [10] revealed a spatio-temporal chaos in the tran-
sition to a wake dominated by mode B instabilities at Re = 265. Since mode B instabilities
are slower to develop than mode A instabilities (in development of the mode B dominated
near wake) there exists a temporal region dominated by mode A instabilities and a temporal
region of mixed mode A and B instabilities even at Re above the threshold where mode B is
dominant. During this development the shedding frequency is reduced by Af € (—0.004,
—0.014) (corresponding to ASt € (—0.04, —0.14)) as compared to the frequency for the
2D shedding state (see [10], Figure 12).
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Figure 9. Contours of instantaneous vorticity w, in a plane along the streamwise direction, through the
cylinder axis, plotted for Re = 250 (left and middle) and Re = 350 (right) for flow simulations with LFS
(top) and TFS (bottom). Contour plots for two time instants are given for Re = 250, t;, early development
of instabilities; t,, asymptotic state (t, > t;). Only the asymptotic state is shown for Re = 350.

Figure 9 depicts snapshots of spanwise vorticity w, in the central xz-plane, with and
without TFS, at two different Reynolds numbers in Region IV. The snapshots are taken at
times that show the early development of the wake (Figure 9(a,b)) and at times where the
wake has had time to reach an asymptotic state (Figure 9(c,f)). After a temporal region of
mode A dominated flow (Figure 9(a)), the mode B dominated near wake develops for the
LES flow. At t, > t; the mode B instability is clearly visible, with a spanwise wavelength
of approximately 1D (see Figure 9(c,e)). The spatio-temporal chaos [10] is present in the
development of mode B instabilities, but comes to an end as the wake settles in a state
dominated by mode B instabilities. For the flow with TFS mode B instabilities have barely
started to develop at Re = 250. The vorticity in the near wake (Figure 9(d)) reveals that the
flow is more similar to that at the onset of the transition (Figure 8(d)) than with the flow
with LFS at Re = 250. Thus, the mode A dominated state at ¢; (Figure 9(b)) is not temporal
when the free-stream is turbulent. At Re = 350, smaller scale instabilities have developed,
with vortex fingers that adhere strongly to the cylinder before the vortices are distorted and
dissipate downstream; see Figure 9(f). The flow is more similar to the LFS case at this Re,
although larger-scale disturbances are still present in the near wake.

From the vorticity plots and the reduced shedding frequency;, it is evident that the dis-
turbances from the TFS suppress the transition to a near-wake dominated by mode B insta-
bilities. The asymptotic state with no discernible large-scale pattern reported by Henderson
[10] is not reached with a high-intensity TFS. Rather, the TFS stimulates the existence of
mode A instabilities, resulting in the mixed state of mode A and B instabilities at higher Re
when the free-stream is turbulent than when it is laminar.

Williamson [7] discussed measurements by Prasad and Williamson [34], where manip-
ulation of the end conditions in experiments made vortex dislocations at Re > 260 possible.
By means of this disturbance, the jump to higher St in Region IV of Figure 6 did not occur.
A low frequency curve, similar to our TFS results, is shown for Re up to 400 in Williamson
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[7]. This instability state was called B* instabilities, where the asterisk denotes vortex dis-
locations in the flow. It is likely that end conditions might have a similar effect as the TES,
and that the B* instabilities reported by Williamson [7] are the mixed A-B instabilities
we observe in the present study. Hence, the asterisk denoting vortex dislocations is some-
what misleading. Dislocations are a product of interacting self-exiting mode A instabilities,
present due to disturbances in the flow, and not unrelated to the flow instabilities and simply
forced by end conditions.

4. Effects of varying free-stream turbulence properties on the
transition-in-wake

So far, the turbulence inserted at the inlet of the flow domain has been of high intensity and
with the integral scale equal to the cylinder diameter. The turbulence has been generated in
a turbulence domain equal in length to the flow domain. In this section, we shall consider
the effect (if any) that varying these properties of the TFS has on the St-Re relationship in
the transition-in-wake state of the flow.

4.1. The effect of the intensity of the TFS

Figure 10 depicts the development of St for a span of Re for flows with TFS with four dif-
ferent turbulence intensities: T; = 25%, 13.5%, 8.1% and 4.8%, henceforth denoted high,
medium high, medium low and low turbulence intensity. At Re = 200, the turbulence inten-
sity decays to 12.2%, 7.4%, 5.2% and 3.6%, respectively, before reaching the cylinder. Lower
Re gives a more rapid decay, e.g. the high intensity turbulence (T; = 25%) decays to 11.1%
for Re = 150 and 13.5% for Re = 350, before reaching the cylinder surface.

Consider first the upper part of the St-Re relationship for varying T;, as seen in
Figure 10(b). The effect of the turbulence intensity in the part of the transition-in-wake,
where the role of mode B instabilities becomes important, is perhaps what one intuitively
would expect: A lower T; yields a St-Re relationship that is more similar to what is found
for LFS in the range 250 < Re < 350. The correlation between T; and St can be understood
in light of our discussion in Section 3.2. The TFS stimulates the mode A instabilities in

0.23
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Rl Rl
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C medium low
021 r 4 - low
—— laminar
0.19 ' ' ' ' '
120 140 160 180 200 200 250 300 350
Re Re

Figure 10. Comparison of St-Re relationships for flows with TFS with different turbulence intensities T,
on the inlet of the flow domain: -x- 25%; -o- 13.5%; -+~ 8.1%; _*_ 4.8%; - - LFS.
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Figure 11. Instantaneous lift coefficient C; of the cylinder as a function of the dimensionless time t=
tU/D, for flows with Re = 170 and free-stream turbulence upstream of the cylinder. The intensity T; of the
turbulence at the inlet of the flow domain is: (a) 25%; (b) 13.5%; (c) 8.1%; (d) 4.8%.

the mixed A-B instability mode (inhibiting the development of pure mode B in the near
wake). The larger the effect of the mode A instabilities, the lower the shedding frequency.
While the high intensity TFS in Section 3 almost completely suppresses the mode B insta-
bilities, the results for moderate T; reflect a more even mix between the two modes for Re =
250 and a wake dominated by mode B instabilities for Re = 350.

Consider now the more complex situation at the onset of three-dimensionality in the
wake, seen in Figure 10(a). At Re = 170, all TFS simulations have St below the LFS flow
(which is two-dimensional for this Reynolds number), yet there is a scatter in the TFS
data. For the T; = 13.5% and T; = 4.8% cases, St is surprisingly high, indicating that the
wakes have not fully developed to three-dimensional flows. Further, the early drop in St for
the case with medium low turbulence intensity contradicts a possible simple correlation
between high T; and low Re, 1gs for our T; range. This reflects the complicated nature of
the instability in the transition-in-wake state of the flow. To gain insight into the mecha-
nisms in play here, we take a more detailed look at the temporal development of the flow at
Re =170.

Figure 11 depicts the instantaneous lift coeflicient of the cylinder at Re = 170 for the
four different TFS intensities. For T; = 25% and T; = 8.1% the transition to a three-
dimensional wake happens at 200 < f < 300, where the amplitude of C; drops significantly
in Figure 11(a,c). The frequency of the oscillations decreases together with the drop in
amplitude. A similar drop in C;, also occurs for the T; = 13.5% and T; = 4.8% cases at
200 < f < 400, but C;, returns quickly to its previous amplitude; see Figure 11(b,d). This
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Figure 12. Comparison of St-Re relationships for flows with TFS with T, = 25% and different integral
scales: -x- A/D =1.0;-0- A/D =0.75; A/D=0.5;--LFS.

behaviour can be explained in terms of a single vortex dislocation that is unable to satu-
rate the wake in a mode A instability state. When the vortex dislocation disperses, the wake
resumes two-dimensional vortex shedding. Such a drop also occurs at t & 800 for the T; =
13.5% case, again followed by a rebound to the two-dimensional vortex street. The low-
intensity TFS case (Figure 11(d)) shows several short periods of three-dimensionality in
the wake for f > 400. A saturated state of mode A instabilities is not reached, and the wake
alternates between two- and three-dimensional flow. The result of these quasi-stable shed-
ding modes is a St in-between frequencies computed for three-dimensional flows (high and
medium low intensity) and the two-dimensional flow (LFS) at Re = 170. The instantaneous
shedding frequency varies between a high and a low mode as the wake alternates between
two- and three-dimensional states.

The results for varying turbulence intensities suggest that the TFS destabilises the wake
when Re is near the critical Reynolds number, resulting in possible alternations between
two- and three-dimensional flow. Furthermore, the onset of three-dimensionality at Re =
150 for T; = 8.1% and quasi-stable transition at Re = 170 for T; = 13.5% and T; = 4.8%
suggest that Re, 15 is not sharply defined when large disturbances are present in the flow.
This is in accordance with the discussion by Williamson [3] on scattered Re, data reported
in experiments. In our cases, however, the disturbance is a TFS, not a contamination in the
form of vortex dislocations excited by the end conditions in the experiments.

4.2. The effect of the integral scale of the TFS

Figure 12 depicts the St-Re relationship in the transition-in-wake regime for flows with
TFS with different integral scales. The turbulence intensity is approximately 25% at the
inlet for each case. However, as small-scale turbulence decays significantly faster than large-
scale turbulence, the turbulence intensities for the different flow cases are no longer equal
when the turbulence reaches the cylinder. For Re = 200, T; is 12.2%, 7.2% and 6.7% at the
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front side of the cylinder for the turbulence with A/D = 1.0, A/D = 0.75 and A/D = 0.5,
respectively.

The deviations between the St-Re relationships in Figure 12 are similar to those dis-
cussed in the previous subsection. Again, the complicated nature of the onset of the
transition-in-wake is seen, particularly by considering the case with A/D = 0.75 for low Re.
At Re = 160, three-dimensionality has developed in the flow, but at Re = 170 a quasi-stable
shedding mode with St alternating between results for large-scale TFS and LFS occurs. The
behaviour is a result of interactions of the TFS with the wake. At Re = 160, conditions are
favorable for a saturated state of mode A dominating the flow, while at Re = 170 they are
not. The results show that the quasi-stable state can occur for Re > Re,, rgs. For very long
simulations, we expect that alternation between arbitrarily long periods of two- and three-
dimensional flow in the wake will appear in several of the simulations with TFS. At present,
we cannot conclude that a flow in a quasi-stable shedding state eventually will end up in a
saturated three-dimensional state.

In the upper part of the transition-in-wake regime, the deviation between the curves in
Figure 12 is in accordance with the observations in Section 4.1. The low intensity turbulence
associated with the shorter integral scales results in a mixed A-B instability at Re = 250,
whereas the wake is dominated by mode B instability at Re = 350.

4.3. The effect of the length of the turbulence domain

As described in Section 2.3, slices of forced turbulence from the turbulence domain are
inserted on the inlet of the flow domain, from where the inflow turbulence is convected
past the cylinder. The validity of introducing turbulence in a flow in such a way has not yet
been addressed. Therefore, a short validation section is included here, with a focus on the
effect of the size of the domain used for turbulence generation. The interesting length of
the turbulence domain is the length corresponding to the streamwise direction in the flow
domain (denoted by L,r). This is the only free length parameter of the turbulence domain
(the other lengths must match the size of the flow domain inlet).

Inserting turbulence from slices taken from a rectangular domain into the flow domain
will introduce an artificial periodicity. This is because the same turbulence re-enters the
inlet several times over the time span that the wake flow is investigated, due to the cycling
over slices along L,r. The artificial period introduced is the time it takes to iterate through
all the slices along the x-direction in the turbulence domain, i.e. the time between each
re-occurrence of the same slice at the inlet of the flow domain. The frequency introduced
from the turbulence domain is f; = U/L,r. Non-dimensionalising this frequency with the
characteristic length (cylinder diameter D) and characteristic velocity in the flow domain
yields fT = D/L,y. For a turbulence domain equal in length to the flow domain (12D),
j:T = 0.083, which is close enough to the Strouhal number in the transitional regime to not
be neglected prior to further investigations.

Figure 13 depicts results from flow simulations with TFS generated in domains with
L.r = 12D and L,y = 24D. Turbulence of two different integral scales are included for both
domain sizes. Doubling L,r does not affect the general trends in the St-Re relationship,
but a deviation occurs for Re = 170 for the cases with A/D = 1.0. The deviation is in the
behaviour at Re close to Re, rrs, discussed in Sections 4.1 and 4.2. Unlike the flow with TFS
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Figure 13. Comparison of St-Re relationships for flows with TFS, with turbulence generated in domains
of different size and with different integral scales. Dashed lines for L ; = 12D and solid lines for L ; = 24D.

generated in the L,y = 12D domain, flow from the simulations with L,y = 24D and A/D =
1.0 enters a quasi-stable state, alternating between two- and three-dimensional shedding
modes, at Re = 170. The resulting St is therefore in-between the results for TFS and LFS
at this Re. This is not an effect related to the artificial periodicity, but rather of a different
realisation of the same turbulence having less favourable conditions for a saturated mode A
dominated flow for this particular simulation. The effect of the turbulence domain length
is negligible.

5. Conclusions

In the DNS presented here, free-stream turbulence has been inserted upstream of a circular
cylinder for Reynolds numbers spanning over the entire transition-in-wake state of the flow.
Distinct effects of the turbulence on the transition-in-wake are observed in two particular
Re regions. These regions (denoted as Regions IT and IV in Figure 6) have Re near the onset
of three-dimensionality in the flow and Re where mode B instabilities dominate the wake
for flows with LFS, respectively.

With TES, the critical Reynolds number, identified by the sudden drop in shedding fre-
quency due to the three-dimensional flow effects, is not sharply defined. This is not sur-
prising, as the instability at the onset of the transition-in-wake state of the flow is subcrit-
ical, hence, disturbances in the flow can shift the point where the transition occurs. The
shift due to the TFS is, however, to lower Re than allowed by the hysteresis pattern seen in
experiments for the subcritical instability. With TES, we observe 150 < Re 1ps < 170 (as
compared to Re, = 190 for LES), with intermittent vortex dislocations present in the wake
for Re > Re,, rps. Quasi-stable shedding states, in which the wake alternates between two-
and three-dimensional vortex shedding, are observed in several of our simulations for Re =
Re, 1rs. In such cases, the shedding frequency is reduced when vortex dislocations occur
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in the wake. The vortex dislocations do not, however, lead to a saturated state of mode A
instabilities. Rather, the wake either returns to a state of two-dimensional vortex shedding,
until the next vortex dislocation occurs, or stays in a three-dimensional shedding state for
some time before returning to the two-dimensional state.

Variations of the intensity and integral scale of the TFS revealed the complexity of the
onset of the transition-in-wake state of the flow. For turbulence intensity between 3.6% and
12.2%, no correlation between intensity and Re. rps was found. Surprisingly, the lowest
Re,, 1rs was seen for T; in-between the two extremes. A reduction of the integral scale of
the turbulence resulted in a lower Re,, rs. Unfortunately, the integral scale of the turbulence
could not be isolated from the intensity as small-scale turbulence decays faster than the
large scales in the flow domain. The results are therefore inconclusive in regard to the effect
of the integral scale.

In the discussion by Williamson [3] regarding the scatter in Re, data reported from
experiments, Williamson concluded that (in absence of other effects) the scatter can be
accounted for by contamination from end conditions. The scatter of the critical Reynolds
number in our simulations show another possible source of Re, variation. The disturbances
in the flow from the TFS were large enough to perturb the flow and initiate the transition ata
significantly lower Re than for a corresponding flow with LFS and identical end conditions.
Hence, in the absence of other effects (including contamination from end conditions), the
scatter in Re, can be ascribed to turbulence in the free-stream.

The second range of Re, in which an effect from the TFS is seen, is the region that for
LFS is dominated by mode B instabilities. A lower shedding frequency is observed for the
simulations with TFS in this region. This is due to the TFS stimulating the existence of mode
A instabilities, thereby inhibiting the development of a near wake dominated by mode B
instabilities. Simulations with varying turbulence intensities revealed a correlation between
this effect and T;. A lower T; means a closer relationship between the TFS flow and the LFS
flow for Re > 250.

The lowest intensity case of our DNS has turbulence with T; that has decayed to approxi-
mately 3% before it reaches the cylinder for Re = Re.. An interesting extension of this study
would be to find a cut-off for the intensity of the TFS that forces the transition.
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Abstract

Particle impaction on a cylinder in a cross-flow is investigated with the use
of Direct Numerical Simulations, with focus on the effect of free-stream tur-
bulence on the front-side impaction efficiency. The turbulence considered is
high-intensity homogeneous isotropic turbulence, introduced upstream of the
cylinder in moderate Reynolds number flows. It is found that the free-stream
turbulence leads to a significant increase in the number of particles that im-
pact the cylinder for certain Stokes numbers (St). The peak amplification of
impaction is observed at St = 0.3, for different integral scales and Reynolds
numbers. This peak is related to a change in impaction mechanism, from
boundary stopping to boundary interception, and it will therefore dependent
on the size of the particles as well as the Stokes number. The effect of the
free-stream turbulence on impaction decreases rapidly when the difference
between a particle’s Stokes number and Stokes number at peak impaction
increases. Using statistical analysis, an expectation value of predicted effects
of free-stream turbulence on particle impaction is derived. This expression
predicts the observed impaction amplification to a good degree, particularly
in terms of which Stokes numbers that are affected by the turbulence.

1. Introduction

Particle laden fluid flows are common both in nature and in a large num-
ber of industrial applications. In many applications the impaction between
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particles and solid objects entrained in the fluid flow is central. Such im-
pactions may lead to the buildup of a deposition layer on the solid-fluid
interface or to erosion of the solid object. In industry, these mechanisms are
typically found in filters, furnaces, industrial boilers and ventilation systems.

A simple cylindrical geometry may well approximate the solid objects in
several of the applications mentioned above, and a cylinder in a cross-flow has
become a benchmark case for particle impaction. Inertial particle impaction
on a cylinder in a cross-flow can be split into three different impaction modes,
based on what drives the trajectories of the convected particles during im-
pact. The modes are classical impaction (particle inertia driven trajectory),
boundary stopping (boundary layer driven trajectory) and boundary inter-
ception (mass center of particles do not come in contact with the cylinder)
(cf. Haugen and Kragset, 2010; Weber et al., 2013b). The mode is deter-
mined by the Stokes number (with some dependence on Reynolds number).
Here we define the Stokes number as the ratio of the particle Stokes time
to the timescale of the fluid flow around the solid object (St = 7,/7). The
Reynolds number is Re = UyD /v, where Uy is the free-stream velocity, D
is the cylinder diameter and v is the kinematic viscosity. Generally, classi-
cal impaction occurs for Stokes numbers St 2 0.9, boundary stopping for
0.2 < St < 0.9 and boundary interception for St < 0.2. Note that the
boundary stopping mode is partly overtaken by the classical impaction mode
for high Reynolds numbers (see Haugen and Kragset, 2010).

Potential flow theory can be used to calculate the particle impaction ef-
ficiencies as a function of particle size (see Israel and Rosner, 1982). The
method is well accepted for Stokes numbers larger than unity. Rotational
and viscous flow effects are not resolved with a potential flow approximation.
These are particularly important for transport of particles with small Stokes
numbers, as these follow the flow to a large extent. Further, the approxima-
tion assumes infinitesimal particles sizes, and will therefore not account for
boundary interception. Consequently, no impaction occurs for particles with
St < Stai, = 1/8 (Ingham et al., 1990) (note that viscous effects will increase
the value of Stuit, hence St.i is larger for smaller Reynolds numbers (see
Phillips and Kaye, 1999)).

Other approaches to finding the impaction efficiencies, using experimental
(Schweers et al., 1994; Kasper et al., 2009), numerical (Yilmaz et al., 2000;
Li et al., 2008; Haugen and Kragset, 2010; Haugen et al., 2013) and phe-
nomenological modeling (Huang et al., 1996) are found in literature. With
few exceptions, these studies regard smooth laminar flow past one or more
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cylinders. It is, however, reasonable to expect that the influence of any tur-
bulence in the flow is highly relevant for the rate of particle impaction in
the mentioned applications. The turbulence in said applications can be due
to, e.g., transitional eddies in the free shear layers of the cylinder at high
Reynolds numbers, combustion upstream of the cylinder, wall turbulence for
a cylinder in a confined space, or similar sources. FEither way, one would
expect the velocity fluctuations to affect the inertial particle impactions on
the cylinder surface.

An exception to the experimental studies on particles in smooth laminar
flow, is the measurements by Douglas and Ilias (1988) on the effect of turbu-
lence on particle impaction. In that study the cylinder was situated within
a channel such that the turbulence was generated by the channel walls. The
results showed increased impaction efficiencies when turbulence was present
in the flow, and eddy diffusion was considered as a prime mechanism leading
to this. The scatter in the data was, however, quite large for small Stokes
numbers.

Numerical studies on particle impaction in turbulent flows are often lim-
ited by the fact that they use Reynolds Average Navier-Stokes modeling of
the turbulence (see review by Weber et al., 2013a). One such study was
performed by Weber et al. (2013b), in which it was found that the turbu-
lence played a minor role for particles with Stokes number larger than St
and had the effect of increasing the particle impactions below this critical
point. However, as pointed out by the authors of said study, the predictable
power of these CFD-simulations is limited by the lack of rigorous testing of
the particle tracking procedure in use. Further limitations are introduced
from the modeling and time-averaging of the flow, as seen by the factor two
difference in impaction efficiency for small particles when switching between
turbulence modeled by the k-¢ model and Reynolds Stress Models.

In the current study, we consider the effect of turbulence in the flow
on the particle impaction efficiencies on a circular cylinder by using Direct
Numerical Simulations (DNS), i.e., three-dimensional simulations where all
scales of the turbulence (spatial and temporal) are resolved. The turbulence
is not generated in the flow past the cylinder, as the Reynolds numbers in
our study are too low for this. Rather, free-stream turbulence is inserted
upstream of the cylinder and decays as it is convected by the mean flow.
This typically emulates the flow regime above a thermal incinerator or boiler
for solid fuels. As particles impact they deposit on the cylinder surface. The
aim of this study is to understand the way the turbulence affects the inertial
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impaction mechanism of the particles.

The structure of the paper is the following: In Section 2 the governing
flow equation and particle equations are given, and the simulation set-up is
described. Following this, different ways to predict the effects of turbulence
on the particle impaction is described in Section 3. Results from simulations
with and without free-stream turbulence are presented in Section 4, and
compared to predicted amplification of particle impaction, before conclusions
are drawn in Section 5.

2. Methodology

2.1. Governing equations
The equations describing the flow are the equation for continuity,
Dp

ﬁ:_pv'u7 (1)

and momentum,
Du
"Dt
where p, t, u and p are the density, time, velocity vector and pressure,
respectively, i = pv is the dynamic viscosity and

D 0
ﬁ—a"”u-v (3)

is the substantial derivative operator. The rate of strain tensor is given by:

— —Vp+V-(2uS), (2)

S = % (Vu + (Vu)T) I (;V : u> : (4)

where I is the identity matrix. The pressure is computed by the isothermal
ideal gas law, p = ¢2p, where c, is the speed of sound. The flow is isothermal
and weakly compressible.

Particles in the flow are point particles. A Lagrangian formalism is used
to track the particles. A particle’s velocity and position is described by:

dvp o FD,p

-, (5)
dx

ditp = vpa (6)



where v,, €, and m, are the velocity, center of mass position and mass of
the particle, respectively. The drag force acting upon a particle is given by:

1
Fpp = 5=rCppdp[u—vp| (u—vp) , (7)
2C,
where A, = 7d2 /4 is the cross sectional area of the particle and

2)
Co =1+ (1257 + 0.4cTH1w/2) (8)

P

is the Stokes-Cunningham factor with parameters set for air for a particle
with diameter d,, (Cunningham, 1910; Davies, 1945) . The mean free path A
accounts for the fact that for very small particles, the surrounding medium
can no longer be regarded as a continuum but, rather, distinct particles. The
particle drag coefficient is given by:

24 0.687
The expression is valid for particles with particle Reynolds number Re, =
d, |vp — u| /v < 1000, which is the case for all particles in the present study.
Thus, the particle drag force can be written as:

m
Fpp=—""(u—-wv), (10)

Tp
where
S&C, "
T+ 1) )
is the particle response time, f. = 0.15Re)®" and S = p,/p. Note that

Eq. (11) equals the Stokes time in the limit C. = 1 and Re, < 1. The Stokes
number (St = 7,/7¢) is defined with a fluid time scale

D

- = 12
EhaTin (12)

An alternative convention is to define the Stokes number without a factor
two in the denominator of the fluid time scale.
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Figure 1: Computational domain, split into two rectangular boxes. Left box for turbulence
generation and right box for flow domain. Thin slices of velocity data are taken from the
turbulence domain and added to the inlet of the flow domain, illustrated here by a thin
rectangular box between the two domains. The slice thickness and the cylinder in the flow
domain are not to scale.

2.2. Simulations

The simulations were performed with the high-order finite-difference code
for compressible hydrodynamic flows known as The Pencil Code (see Bran-
denburg and Dobler, 2002; The Pencil Code, 2018). The equations describ-
ing the flow are discretized with a memory efficient third-order Runge-Kutta
method in time (developed by Williamson, 1980) and sixth-order central
differencing in space. A three-point deep ghost-zone immersed boundary
method was used to resolve the cylinder surface, with ghost-points set by no-
slip and impermeability boundary conditions along grid lines (with quadratic
interpolation) and zero gradient of the density along the surface normal (with
linear interpolation). For details on the numerical method, and grid and time
independence tests, see Aarnes et al. (2018).

The fluid velocities used to update the particle trajectories were interpo-
lated from surrounding grid points by tri-linear Lagrangian interpolation. In
the immediate vicinity of the cylinder surface, quadratic interpolation was
used to compute the velocity component normal to the surface.

2.2.1. Fluid flow and turbulence generation

The computational domain consists of two rectangular boxes: a turbu-
lence production domain and a flow domain (see Fig. 1). The production
domain is a periodic box in which homogeneous isotropic turbulence was
generated by external forcing in random directions over a selected range of
wave numbers. The strength of the forcing and the wavenumber range are
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free parameters which determine the turbulence intensity and length scale,
respectively. For details, see Brandenburg (2001); Haugen and Brandenburg
(2006); Aarnes et al. (2018). The flow domain is a rectangular box with
periodicity in two direction (z- and z-direction), and a mean flow in the
third direction (y-direction). Navier-Stokes characteristic boundary condi-
tions (NSCBC) were used both at the inlet and at the outlet of the flow
domain. This boundary formulation is a formulation that makes use of one-
dimensional characteristic wave relations to allow acoustic waves to pass
through the boundaries (Poinsot and Lele, 1992). The NSCBC implemen-
tation in the Pencil Code uses modifications suggested by Yoo et al. (2005)
and Lodato et al. (2008) to account for transversal flow effects, e.g. for tur-
bulent flow at the inlet. A circular cylinder is placed in the center of the flow
domain, with axis along the z-direction. Simulations were performed for flow
in the unsteady vortex shadding regime, with Reynolds numbers Re = 100
and Re = 400.

The size of both the turbulence production domain and the flow domain is
(Ly, Ly, L.) = (6D,12D,4D), where D is the cylinder diameter. The domain
size was set sufficiently large to resolve the three-dimensional phenomena
in the flow (the wavelength of instabilities in the cylinder wake is approxi-
mately 1D in the z-direction at Re = 400 (Williamson, 1996)). Validation
runs have been performed, and a uniform grid spacing of D/Axz = 40 and
D/Axz = 64 for flow with Re = 100 and Re = 400, respectively, was deemed
sufficiently accurate to fully resolve all scales of the free-stream turbulence
and the boundary layer around the cylinder. The grid spacing did, however,
limit the particle Stokes numbers which could be used to St > 0.2. Smaller
particles require a finer resolution in order to be represented accurately in
the vicinity of the cylinder, as the interpolation of fluid velocities for use in
Eq. (10) is sensitive to the grid spacing. Very small, tracer-like particles are
particularly sensitive to incorrect estimation of forces from the fluid on the
particle, as being brought marginally closer to the surface may result in inter-
ception rather than no interception. Note that grid spacings Az = Ay = Az
were used, to ensure that the spatial Kolmogorov microscale (1k.) was re-
solved in all directions (Az/nke = 3.48,1.92 for Re = 100,400). The strict
advective time step restriction (At < C,Az/ (|ul,,,, + ¢s), where C, is the
advective Courant number) due to the low Mach number (Ma = 0.1) , en-
sured several hundred time steps per (temporal) Kolmogorov microscale.

Once the forced turbulence was statistically stationary, slices of flow quan-
tities from the turbulence domain were added to the inlet of the flow do-



Table 1: Turbulence intensity 7; at different positions along the streamwise direction in a
12D long domain, with no cylinder present in the flow.

Position Re =100 Re =400
(downstream) A =27D A=0.8D A=27D A=08D
0 0.230 0.222 0.232 0.225
3D 0.172 0.090 0.203 0.143
6D 0.152 0.061 0.183 0.106
9D 0.139 0.048 0.169 0.086

main. The inlet velocity in the flow domain U = (Up) + ', with mean flow
Uy = (0,Up,0) and the velocity flucuations u’. The velocity fluctuations at
the inlet were updated at every time step using data from the turbulence
domain. The mean velocity was not affected by the insertion of turbulence
at the inlet, since the turbulence was isotropic. In the flow domain, the
turbulence decayed when convected downstream towards and past the cir-
cular cylinder. The decay rate of the turbulence depends on its intensity
(T; = Urms/{(U) where s is the is the root-mean-square value of the three-
dimensional velocity fluctuations) and integral scale (A), and the Reynolds
number of the flow. Turbulence with integral scale A = 2.7D and A = 0.8D
was used, with intensity 0.22-0.23% at the inlet. For details on the turbu-
lence decay, see Tab. 1, where T; at selected points along the streamwise
direction in a cylinder-free flow domain is listed, for the different Reynolds
numbers and integral scales. Instantaneous velocity contours of the decaying
turbulence at Re = 400 can be seen in Fig. 2.

2.2.2. Particles

Particles with Stokes numbers ranging from 0.2 to 10 were inserted at
random positions within a thin box covering the inlet of the flow domain.
The velocity of an inserted particle was initialized to the mean inlet velocity.
Particles were removed from the simulations either when hitting the cylinder
or when reaching the outlet boundary.

In each simulation, a large number of particles (1.0 x 107) over a selection
of Stokes numbers were inserted at a constant rate of approximately (1.25 x
10%) /7, where 7 is the shedding period of the von Kérman eddy street.
This ensured that the particles interacted with the flow past the cylinder
over several shedding cycles. The variation in Stokes number was achieved
by varying the particle radii. For a given Stokes and Reynolds number, the
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(a) A~ 2.7D (b) A= 0.8D

Figure 2: Contours of velocity component normal to the plane of view, in a plane along
the streamwise direction, perpendicular to the cylinder axis, with flow from top to bottom.
High intensity free-stream turbulence with integrals scale A inserted at the top and con-
vected downstream. Flow Reynolds number is 400. Dark blue (light yellow) corresponds
to negative (positive) values.

particle diameter can be determined by:

d, . [ St
D~V SRe (13)

In all simulations the ratio of particle to fluid density S = p,/p = 1000.
The distribution of particles with respect to Stokes numbers was non-
uniform. Since the impaction probability is a lot lower for particles with
small St than high St, more particles were needed in the low than in the
high St range in order to obtain good statistics of the impaction rate. To
illustrate this, consider that even with 14% of the inserted particles having
St = 0.2 and only 2.3% having St = 10, approximately 250 times more



Table 2: Typical distribution of particles in a simulation. Stokes number greater or equal
2.0 include St = 2.0,3.0,5.0 and 10, each containing approximately 2.3% of the particles
in the simulation.

St 02 03 04 05 06 0.7 08 09 1.0 >20
Net/New (%) 14 13 12 12 9 9 9 6 6 9

particles with St = 10 impact the cylinder than with St = 0.2. The particle
distribution for a typical simulations is given in Tab. 2.

3. Estimated effects of turbulence on particle impaction

When turbulence is introduced at the inlet of the flow domain, there are
several possible ways it can affect the particle trajectories and impaction.

3.1. The turbulence based Stokes number

The turnover time of an integral scale turbulent eddy is given as
Te = N/ Upms - (14)

With this time scale a turbulence based Stokes number can be defined as
St. = 7,/7.. If the eddy turnover time is much shorter than the particle
Stokes time (St. > 1) the particles are too heavy to be affected by the
turbulent eddies, i.e, for large St. the turbulence has a negligible effect on
the particles. In this work, St. < 1.5 for A = 0.8D and St. < 0.5 for
A =2.7D at the inlet, so large scale effects cannot be disregarded for any of
the particle sizes in use.

Alternatively, the turbulent Stokes number can be defined as St,, = 7, /7,
where 7, = m is the Kolmogorov time scale (with the average energy
dissipation rate €). It is known that particles with 7, < 7, < 7. will expe-
rience preferential concentration (Yoshimoto and Goto, 2007), i.e particles
will cluster if St, $1 S Ste. The clustering has been found in low vorticity
regions (Squires and Eaton, 1991). In the present study, 0.3 < St, < 13.8
(0.1 < St, < 6.6) for Re = 400 (Re = 100). Hence, some preferential con-
centration should be expected, in particular for Re = 400 flow with particles
that have particle Stokes numbers St 2 0.7 (St, = 0.96 when St = 0.7
for this Reynolds number). Consider Fig. 3 for an illustration of preferen-
tial concentration for St = 0.2 and St = 0.8 particles. A higher degree of
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(a) St =0.2 (b) St =0.8

Figure 3: Particles convected towards the cylinder in Re = 400 flow with free-stream
turbulence with integral scale A = 0.8D. The thickness of the 2D-slice (in z-direction) is
12nKor-

clustering can be seen for the larger particles (clustering takes some time to
develop, and is mainly seen for particles that have been convected at least
half of the upstream length). Note that corresponding plots for Re = 100
show no notable clustering.

3.2. Large scale turbulence

The impaction efficiency 7 = Nimpact/Nimit i & laminar flow is determined
by the Stokes number. Here, Nimpact is the number of particles impacting
on the cylinder surface and Ny is the number of particles initially posi-
tioned such that their finite radii would overlap with the cylinder at some
point if convected with the mean flow in the direction of the cylinder. When
St.<1, the particle trajectories will be affected by the turbulent eddies. Con-
sequently, the particle velocities will deviate from the mean flow velocity.
When the scale of the turbulence is not small compared to the size of the
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cylinder, this yields a modified Stokes number, which will then also give a
change in the particle impaction efficiency.

The Stokes number St = 7,/7y is by definition proportional to the mean
fluid flow velocity since 7 = D/2U,. With turbulence present in the flow,
the magnitude of the flow velocity U (in general different from the mean
flow velocity) is stochastic. Thus, the Stokes number is also a stochastic
variable, effectively different from the laminar St, expressed by the uniform
fluid velocity Uy. The effective Stokes number can be expressed as

U
Steg = St—. 15
fr i (15)

As St.g is a linear function of U, its variance becomes

2
Var(Ste) = 02, = <5t> Var(U). (16)
0

Since Uy is constant, the variance of St.g is zero when U = U,. The ex-
pectation value of the Stokes number is E(Steg) = St, since U fluctuates
symmetrically around the mean velocity in homogeneous isotropic turbu-
lence.

We may re-write the effective Stokes number to St.x = St + Ag;, where
Ag = (U = Up)/Uyp)St is the fluctuation in the Stokes number due to U #
Uy. Taylor expanding the impaction efficiency yields

1! St
n(Star) = (s +/($02s + TNz L oAty a7)
The expectation value of the impaction efficiency can now be found:
1" (5t)

E(n(Steg)) = n(St) + 1/ (S E(Ase) + BE(A%G) + E((O(A)) - (18)

2
Neglecting higher order terms and using that 0%, = F(A%) — E(Ag)? =
E(A%,), due to the symmetry of velocity fluctuations around the mean, yields
a simple expression for the expectation value of particle impaction efficiency:

B(n(Star)) = n(s) + 03, (19)

When there is no turbulence Ag; = 0 and the expectation value of the im-
paction efficiency is E(n(Ster) = 1n(St). In other words, it equals the im-
paction efficiency in the laminar case, as anticipated.
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In order to use Eq. (19) to predict front-side particle impaction efficiencies
with turbulence present, values for 7;(St), n7(St) and 0%, are required. There
are different ways to find or approximate these variables, and we suggest
the following: Results for front-side impaction efficiencies, ny, are readily
available in literature (see, e.g. Haugen and Kragset, 2010) and from our
recent simulations. Second derivatives of these measurements can be found
by curve fitting to existing results, and finding derivatives of the fitted curves.
To find the effective Stokes number, the variance of U is needed. This value
can be computed straightforwardly by considering the sample variance of the
velocity field of the decaying turbulence. This can be done either in the flow
domain, upstream of the cylinder, or in a cylinder-free domain, where the
decaying turbulence is considered free from any obstructions in the flow. The
latter approach is used in this study. We will return to this subject in Section
4.2.

As the front side impaction is also dependent on the Reynolds number,
a Reynolds number dependent expectation value expression can be derived.
With the same procedure for derivation as above, we get:

i
R
n (2 6)012%’

E(n(Recs)) ~ n(Re) + (20)
where Reeq = Re(U/Up) and 0%, = Var(Rees). To use this expression,
n(Re) and (approximations of) n”(Re) are needed. In the present study,
simulations were only performed for two different Reynolds numbers, which
is insufficient to compute 7(Re) and n”(Re). We will therefore only focus on
the predictions of turbulence effects based on the effective Stokes number.

3.8. Small scale turbulence

If the integral scale of the turbulent eddies is very small, the eddies may
penetrate into the boundary layer around the cylinder. If this happens,
the particles can impact on the cylinder surface due to turbophoresis, i.e.
the transport of particles from areas of high turbulent intensity to areas of
low turbulent intensity (related to much larger spatial scales than preferen-
tial concentration), which could have a significant effect on the impaction
efficiency. Let us call this “impaction by external turbophoresis” (see Mi-
tra et al., 2018, and references therein for a study of non-channel-flow tur-
bophoresis). For a weakly compressible flow, the thickness of the cylinder’s
front-side boundary layer (stagnation layer) is given by

§~24\/v/B, (21)
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where B = 4Uy/D (White, 2006). Hence,

kD
VTe (22)
where k is a constant approximately equal to 1.2. In order to have impaction
by external turbophoresis the turbulent integral scale A must fulfill the in-
equality
0> A. (23)

If the Navier-Stokes equations are transformed into spectral space, the dis-
sipative term of the velocity is vk, where @ is the Fourier transform of
the fluctuating velocity vector. It is apparent that small scale turbulence,
that is, turbulence with large wavenumber k, will decay very fast. If the
turbulence generated upstream of the cylinder shall survive all the way down
to the cylinder, the timescale of the turbulence decay, given by 7, = A2 /v,
must be longer than the convective time scale 7, = L./Uy, where L. is the
distance that the decaying turbulence is convected before reaching the cylin-
der (upstream length of the flow domain in the present case). Hence, from
the inequality (7, > 7.), and the definitions of 7,, and 7, the following must
be true if the turbulence shall survive until it reaches the cylinder:

A > \/\/%37 (24)

where v = L./D. Combining Egs. (22) - (24) yields

VA < %\/ﬁ < K. (25)

For the inequality to be satisfied, we must have ,/y < x. Hence, unless
very small upstream domain lengths are used, the inequality in Eq. (25) is a
contradiction. Consequently, impaction by external turbophoresis, where the
integral scale of the turbulence is small enough to penetrate the boundary
layer around the cylinder, is not practically feasible if the source of turbulence
is not very close to the cylinder. An example where the source is indeed
close to the cylinder is a cylinder placed in a turbulent channel flow as in the
study by Douglas and Ilias (1988). This is a situation which is encountered
in many industrial applications, and it introduces some extra parameters
into the study. Due to the increased parameter space this application is
not considered here; instead, this work focuses solely on decaying isotropic
turbulence introduced upstream of the cylinder.
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Figure 4: Front side impaction efficiency n; for laminar free-stream flow. Present results
computed in a three-dimensional domain at Re = 100 and 400, compared to results by
Haugen and Kragset (2010) computed at Re = 100 and 421 in a two-dimensional domain.

4. Results and discussion

As mentioned the impaction efficiency 7 = Nimpact/Ninit, Where Nt is
the total number of particles inserted over a cylinder area projected onto
the flow inlet. The impaction efficiency can be considered as a sum of two
parts, n = 1y + 1, where ny and 7, are the front- and back-side impaction
efficiencies, respectively. The bulk of the particles that impact the cylinder
at low and moderate Reynolds numbers do so on the front-side, and we focus
only on this part of the impaction efficiency here. For backside impaction to
become significant, larger Reynolds numbers and smaller particles than used
in this study must be considered.

To verify that the particle impaction results are sufficiently accurate,
results from a flow without disturbances from free-stream turbulence are
compared with results from a two-dimensional impaction study in literature.
The comparison can be seen in Fig. 4, where it is apparent that the earlier
results are reproduced very well by the present DNS.

From Fig. 4 it is also clear that the three-dimensional effects present in
the flow at Re = 400 do not have a noticeable impact on the front-side
impaction efficiency (this would be seen as discrepancy between the present
(3D) and literature (2D) results for Re = 400). This is not surprising, as the
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Figure 5: Front side impaction efficiency 7. Results for laminar and turbulent free-stream,
the latter with integral scale A = 2.7D or 0.8D. Results for Reynolds numbers Re = 100
and 400.

flow is in the upper part of the transition-in-wake regime at this Reynolds
number, where tree-dimensional effects occur in the wake of the cylinder, not
on the front-side.

4.1. Simulations with free-stream turbulence

High-intensity turbulence was inserted at the inlet an decayed when con-
vected downstream. The intensity of the turbulence was 22% —23% at the in-
let in all simulations with free-stream turbulence, and the decay was strongly
dependent on integral scale and Reynolds number (see Section 2.2 for details).

Consider Fig. 5, depicting the impaction efficiencies with and without
a turbulent free-stream. A few changes are apparent in the results: For
certain Stokes numbers an increase in 7y can be seen, for both Reynolds
numbers. The increase is largest for the largest integral scale turbulence.
Further, the effect of the turbulence appears to be larger for Re = 400 than
for Re = 100. These observation are not surprising, as larger effects are
expected from the turbulence with higher turbulence intensity. Another,
perhaps more unexpected consequence of the turbulence, is that the increase
in impaction is largest at St < 0.3. This is in the Stokes number-region
where the dominant impaction mechanism changes from boundary stopping
to boundary interception (as the Stokes number is decreased).
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To gain further insight into the effect of the turbulence on the front-side
impaction, the impaction results from particles subjected to a turbulent free-
stream are normalized with corresponding results from laminar free-stream
flow. The resulting amplification factor:

Rf _ 1 turb 7 (26)
71 flam
is a direct measure of increase or decrease of impactions due to the free-stream
turbulence. The amplification factor is plotted together with predicted values
in Fig. 6. The predicted values will be considered in Section 4.2.

Figure 6(a) depicts Ry as a function of Stokes number for Re = 100 for the
two different turbulence cases considered. It is evident that the turbulence
significantly increased impaction of particles in the lower range of the Stokes
number domain. This is in accordance with the findings of Weber et al.
(2013b), where only impaction below a critical Stokes number, St., was
affected by turbulence. For Re = 106, Weber et al. (2013b) computed Stei, =
0.324, which is in agreement with the Re = 100 simulation results, showing
only a small effect of the turbulence for St > 0.4. For particles with St > 0.4
we observe a small decrease in the impaction for particles in the free-stream
turbulence, with R; approaching one as the Stokes number is increased.

Contrary to the results of Weber et al. (2013Db), a distinct peak of ampli-
fication occurs at St = 0.3. For the larger integral scale turbulence the am-
plification is approximately 1.8, an increase from 0.17% impaction to 0.31%
impaction. This peak can be attributed to the change in impaction mech-
anism, from boundary stopping to boundary interception, near this Stokes
number. When particles are affected by the turbulence, they experience a
change in their effective Stokes number. A small increase (decrease) in ve-
locity will give a slightly higher (lower) Stokes number. If we take Stpear to
be the St where the impaction mechanism changes (see Sec. 4.2) and con-
sider the laminar impaction curves in Fig. 4, a particle with Stokes number
Stpea + Age will have a smaller chance to impact if Ag; < 0 (boundary
interception dominating), but a much higher change to impact if Ag, > 0
(boundary stopping dominating). With the mean of Ag,; being zero, this will
result in an average increase in impaction efficiency near St,e.x. Note that
without including the boundary interception mechanism in the simulations
(as in Weber et al., 2013b) the amplification Ry — oo as St — Stas, and
the distinct amplification peak will not be observable.

The results for Re = 400 (see Fig. 6(b)), are similar to those for the lower
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Figure 6: Predicted and observed results for amplification factor of impaction efficiencies
resulting from turbulence of different integral scales interacting with particles in the flow.

Reynolds number. Again, the amplification is greatest for particles with
Stokes numbers < 0.3, and there is a distinct peak in Ry at St = 0.3. Yet, a
few differences between the results at Re = 100 and Re = 400 can be noted:
the turbulence gave rise to a larger amplification effect in the latter case,
and the difference between the effect from the two turbulence realizations
is smaller. Neither of these findings are very surprising, if one considers
that the intensity of the turbulence decayed slower in the flow domain when
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the Reynolds number was increased. In addition to these aspects, some
amplification of the impact of larger particles is observed at Re = 400. This
effect (Ry = 1.02-1.06 for St > 0.5, decreasing with increasing St) is only
seen for the highest intensity case (A = 2.7D). In a study by Homann et al.
(2016), the amplification of particle impaction on a sphere in a turbulent
flow converged to unity as a power law of St (decreasing with increased St).
This trend was most clear for very strong turbulent fluctuations (7; = 0.60
and T; = 1.18). A similar relationship can be investigated for impaction on
a cylinder, but higher intensity turbulence than used in the present study is
required before conclusions can be drawn. Note that impaction by boundary
interception was not included in the study by Homann et al. (2016), and
including such a mechanism may affect a power law trend.

The results at Re = 100 showed agreement with the CFD-study by Weber
et al. (2013b) in terms of a cut-off Stokes number above which the turbulence
played a minor role in terms of amplifying particle impaction. Weber et al.
(2013b) did not report a critical Stokes number for Re = 400, but St can
be approximated to 0.25 for Re = 400, by interpolating from their reported
critical Stokes numbers. Using this value as a cut-off Stokes number is,
however, not consistent with our observations of effects of the free-stream
turbulence for Re = 400. On the contrary, the peak in turbulence effect on
impaction is found at the same Stokes number for Re = 400 as for Re = 100,
which is above the approximated St for Re = 400. The critical Stokes
number as defined by Weber et al. (2013b) was intended as a limit for when
zero-sized particles impact (St > Stqi) or do not impact (St < Stei) the
cylinder in a laminar free-stream flow. From our simulations it appears that
this critical Stokes number is related to a peak amplification, when boundary
interception (particles with finite radii) is included. The St = 0.3 particles
in the Re = 400 flow are expected to be near this peak Stokes number.
Hence, a significant amplification at St = 0.3 is not surprising, and an even
larger amplification is expected if particles with St = Stpeax Were considered.
Investigating this would require, first, a determination of Stcax.

4.2. Predictions of free-stream turbulence effects on particle impaction

In all simulations, the integral scale of the free-stream turbulence was
of the same order of magnitude as the cylinder diameter. The free-stream
turbulence is such that St. = 7,/7. < 1, hence, the particles should be

expected to be convected by the larger turbulent eddies if the flow domain
was free of any obstacles.
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To be able to predict effects of the turbulence on the particle impaction,
data from the turbulence-free simulations was used to compute the unknowns
n(St) and 7" (St) in Eq. (19). Flow data from simulations with a turbulent
free-stream decaying in a cylinder-free domain was used to approximate og;.
In the following we explain how this was done in practice.

First, the cfit-tool with smoothing splines (for Re = 100 results) and ra-
tional fractions (for Re = 400 results) in MATLAB (software version MAT-
LAB, 2016) was used to fit curves to the impaction data computed for flow
with a laminar free-stream. This yielded expressions for n(St) in the entire
Stokes number range covered by the sample of particle sizes. Different curve
fitting was used for the two data sets, as this yielded the best possible fit for
each set. This fitting was done in logarithmic space, hence, exponentials of
the fitted results are the impaction efficiencies (displayed in Fig. 4). From a
fitted function f(log(St)) = log(n(St)), second derivatives were found ana-
lytically by:
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Finally, the variance of the upstream velocity field, necessary to compute
os: by Eq. (16), was needed. Since the Reynolds numbers were moderate,
the turbulence decayed quite rapidly. Hence, the variance of the velocity
depended strongly on where in the flow domain the velocity was measured.
Since we are interested in the stochastic property of the velocity due to
the turbulence only, the variance was computed in a flow domain without a
cylinder present. To obtain relevant values for the computations, the variance
was averaged at each grid point in time and moving average were computed
in the streamwise direction. The moving averages were computed over a 0.5D
thick slab in the streamwise direction, starting a distance 0.5D downstream
of the inlet, and continuing to where the center of the cylinder would be
positioned if the cylinder was present. Mean, maximum and minimum values
of the moving averages were found and used as prediction and prediction
bounds of Var(U).

The amplification factors predicted by inserting the computed n(St),
7"(St) and og; in Eq. (19) can be seen as the colored areas in Fig. 6. Quite
large error bounds are used, due to the way the variance was computed (as

20



noted in the previous paragraph). The predictions fit well with the DNS
impaction results. In particular, the strong amplification of the impaction
efficiencies close to St = 0.3 is predicted by the statistical analysis. From
Eq. (19) the observed amplification of particle impaction is not surprising
for the Stokes numbers where the impaction curves are concave up. Haugen
and Kragset (2010) showed that the impaction efficiency is close to linear in
the boundary interception mode. Hence, the second derivative of 7(St) with
respect to Stokes number will be approximately zero in this region. Based
on the expression for predicted impaction we would therefore not expect a
significant, effect of turbulence on inertial impaction in the boundary inter-
ception regime (but a strong effect in the region where impaction mechanism
changes from boundary stopping to boundary interception).

The predictions (Fig. 6) show that the amplification is greatest for par-
ticles with St = 0.33 for Re = 100 and St = 0.29 for Re = 400. We
identify these Stokes numbers as measures for St for the particle sizes
used in the present cases. Note that Stpeax is close to, but somewhat larger
than, the critical Stokes numbers for its respective Reynolds number. This
is in accordance with the suggested explanation that the boundary intercep-
tion becomes the dominant impaction mechanism at Stpeax. With zero-sized
particles, n(St) — 0 as St — Stui. With finite-sized particles, n(St) de-
creases towards zero in the same way, when the Stokes number is reduced
in the boundary stopping impaction regime. The trend is interrupted for
St = Stpeax > Steit, for which a significant amount of particles impact by
boundary interception. Boundary interception is dependent on the particle
radii, and, hence, so is Stpeax. Consider, e.g. particles with half the density
pp of the particles in the present study, with all other parameters (except
size) unchanged. The particles will have a 40% larger radius than particles
in the present study (see Eq. (11)). Consequently, impaction by boundary
interception is more likely to occur, and a larger St,cax is expected.

For the larger particles (St 2 0.5) the predictions by Eq. (19) show a
convergence to unity from below (impaction curve 7(St) is concave down,
yielding 7”(St) < 0). The results from turbulence simulations yielded n(St >
0.5) ~ 1, approached from below, for A = 0.8D turbulence for both Reynolds
numbers. A similar trend is found for A = 2.7D turbulence for Re = 100,
yet here approximately 3%—1% decrease (R ~ 0.97-0.99) was measured for
St = 0.6-10 (Ry closer to 1 for higher Stokes numbers). Only with the large
scale turbulence for Re = 400 was the trend R; — 1 from below contra-
dicted. As mentioned in Sec. 4.1, amplification of 2%—6% for St = 0.5-10
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(smaller amplification for higher Stokes numbers) was observed for this case.
This contradicts the predictions by Eq. (19), yet is in accordance with ob-
servations by Homann et al. (2016) that found increased impaction (on a
sphere) for all St when the free-stream was turbulent. Nevertheless, we have
seen that the predictive expression fits well with our data for St < 0.5. The
inability to predict amplification of impaction at higher Stokes numbers for
Re = 400 and A = 2.7D may be due to assumptions made when deriving
Eq. (19) being invalid for such cases. One possibility is that the preferential
concentration of these particles in low vorticity zones affected the velocity
fluctuations experienced by the particles. Although the velocity fluctuations
of the flow field were symmetric (yielding F(Ag;) = 0), preferential concen-
tration may have lead particles to experience a non-symmetric velocity field.
Consequently, the odd derivatives of n(St) in (Eq. (18)) should not cancel
in the Taylor expansion of 1(St.g). Note also, that the higher order terms
in the Taylor expansion cannot be neglected if large particles are affected
by turbulence with very high intensity, since this may yield og; > 1. Con-
sider e.g., that turbulence with intensity decaying such that Var(U)/UZ > 1
yields og; > 1 for St > 1. This was not the case here, but should be consid-
ered by other researchers who would like to use Eq. (19) to predict effects of
turbulence on particle impaction.

5. Conclusion

The effect of free-stream turbulence on inertial particle impaction for a
large range of Stokes numbers has been investigate by DNS. The following
can been concluded from the study:

(a) The effect that free-stream turbulence has on the impaction rate of
particles on a cylinder depends largely on the particle Stokes number.
There is a peak Stokes number for which the largest amplification of
particle impaction on the cylinder occurs. For the sample of Stokes
numbers used in the present study, St = 0.3 was closest to the peak
Stokes number, in both Re = 100 and Re = 400 flow. The relative in-
crease in particle impaction decreases fast when the difference between
a particle’s Stokes number and the peak Stokes number increases.

(b) The peak Stokes number is related to where the impaction mechanism
changes from being dominated by boundary stopping (St > Stpeax)
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to boundary interception (St < Stpeax). At which Stokes number im-
paction by boundary interception becomes the dominating impaction
mechanism depends on the size of the particles for a given Stokes num-
ber. Hence, Stpeax is not a fixed value depending only on St. The value
will depend on the parameters that make up the Stokes number.

The effect of turbulence on particle impaction is also dependent on the
Reynolds number of the flow, and the intensity and integral scale of
the turbulence. The Reynolds number and the integral scale of the
turbulence determine how fast the intensity of the turbulence decays in
the flow domain. Higher Reynolds number and larger integral scale (i.e.,
higher turbulence intensity) yields a larger amplification of impaction.
In the present study, the Reynolds number and integral scale effects
cannot be distinguished from the turbulence intensity effects. Hence the
study is inconclusive in regards to how these parameters individually
will effect the amplification of impaction.

Using St.is as a measure of for which particles with St < St ex-
perience the largest effects of the free-stream turbulence on impaction
is not appropriate when boundary interception is included as an im-
paction mechanism. For finite-sized particles, the peak Stokes number,
where the maximum effect of the turbulence on particle impaction is
found, will always be larger than St...

A quite simple expression for the expected turbulence effects on im-
paction was derived:

3
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E(n(Ster)) = n(St) + = —0%.

Comparison of predicted effects from this expression with DNS results
was favorable, in particular in the lower Stokes number region.

Based on our conclusions, we suggest three topics of further research.
Firstly, the larges impaction was observed at St = 0.3. This is slightly below
the predicted peak for Re = 100 and slightly above for Re = 400. Increasing
the St-resolution in this region, that is, performing additional simulations
with a large number of particles distributed among Stokes numbers ranging
from 0.2 to 0.4 could to a greater extent pinpoint a the Stokes number where
the maximum turbulence effect on impaction occurs. This would be useful in
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a further validation of the model for predicting particle impaction in a turbu-
lent flow. This would also increase the accuracy of the fitted laminar 1y (St)
curves, giving better predictions based on expectation values. Secondly, the
Reynolds number should be increased both to see if the Stokes number of the
peak is shifted, and to further investigate the effect of the turbulence integral
scale when separated from intensity. Along with this, the inlet turbulence
intensity should be varied for a fixed integral scale, such that distinct effects
of T} can be identified. Thirdly, extending this study to much smaller particle
sizes would make it possible to consider if effect of turbulence diminishes for
very small particles and, further, to explore turbulence effects on back-side
impaction. The back-side impaction phenomenon has previously been found
by Haugen and Kragset (2010) to occur for small particles (St < 0.13), for
Re > 400. For very small particles effects of thermophoresis should be taken
into account, as recent studies (Beckmann et al., 2016; Garcia Pérez et al.,
2016) have found that such mechanisms to be very important for particle
transport and deposition of small particles.
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Abstract

An overset grid method was used to investigate the interaction between a
particle-laden flow and a circular cylinder. The overset grid method is imple-
mented in the Pencil Code, a high-order finite-difference code for compress-
ible flow simulation. High-order summation-by-part operators were used at
the cylinder boundary, and both bi-linear Lagrangian and bi-quadratic spline
interpolation was used to communicate between the background grid and the
body-conformal cylindrical grid. The performance of the overset grid method
was assessed to benchmark cases of steady and unsteady flows past a cylinder.
For steady flow at low Reynolds number, high-order accuracy was achieved
for velocity components. Results for flow in the vortex shedding regime
showed good agreement to the literature. The method was also applied to
particle-laden flow simulations, where spherical point particles were inserted
upstream of the cylinder. These inertial particles were convected towards
and (possibly) past the cylinder. The simulations reproduced data from the
literature at a significantly reduced cost, revealing that the previously pub-
lished DNS data is less accurate than assumed for particles with very small
Stokes numbers.
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1. Introduction

A common flow problem in numerical simulations is flow past a bluff body.
Obstructions in the flow include (but are not limited to) spheres, flat plates,
circular, rectangular or elliptical cylinders, triangles, spheroids, and complex
geometries made out of a combination of these shapes. Particle-laden flows
interacting with such obstacles are important for a range of applications.
Whether the goal is to maximize the particle extraction from the flow, as for
filter applications, or to minimize particle attachment on the object to avoid
an insulating layer, as for biomass boilers, understanding the mechanics of
inertial particles helps improve design, and hence, the efficiency of said ap-
plications. Accurate prediction of particle behavior in the vicinity of bluff
bodies requires highly accurate boundary layer representation within numer-
ical simulations. Finding the numerical method best suited to this task is
not trivial, and can have a huge impact on both the efficiency and accuracy
of simulations.

1.1. Representing solid objects in the flow

For generic shapes (cylinders, spheres, plates, etc.) body-fitted structured
meshes are commonly used to accurately resolve the solid boundary. These
methods use grids that conform to the solid (or solids) immersed in the
flow and to other physical boundaries of the domain (inlet/outlet, walls,
etc.). Depending on the domain geometry, this may require some deformation
of the grid to conform to the boundaries, in addition to the mapping of
the flow domain onto a simple computational domain. The result may lead
to unnecessary local variations in the grid and rather time consuming grid
generation [1]. Alternatively, unstructured meshes can be applied to resolve
the solid boundaries in the flow. Unstructured meshes provide the highest
flexibility in adapting a mesh to the flow problem, and are a good alternative
for complex geometries when finite-volume or finite-element formulations of
the governing equations are used [2]. Among the disadvantages of such grids
are much larger storage requirements [3] and the need for intricate mesh
generation techniques [4].

An alternative to body-fitted grids are non-conforming (typically Carte-
sian) meshes, where a solid in the flow is represented by a change in the fluid
equations in the vicinity of the solid boundary. One such method, which
has gained vast popularity over the last decades, is the immersed boundary
method (IBM). This method (or rather, this class of methods) was originally



developed to model flow around heart valves [5] by allowing for the repre-
sentation of bluff bodies in the flow without using a body-conformal grid. A
simple Cartesian grid can be used, where the boundary conditions (the sharp
interface) of the bluff body are incorporated into the solver by a modification
of the equations in the vicinity of the boundary (see review article by Mittal
& Taccarino [6] and references therein for details). This makes IBMs very
flexible for representing bluff bodies, and particularly well-suited to com-
plex geometries, where the use of body-fitted structured meshes is limited.
A caveat to the IBM is the difficulty in achieving high-order accuracy near
boundaries that do not conform to physical boundaries. For complex geome-
tries this may be regarded as a necessary loss in order to be able to represent
the boundary. For flow past simple geometric, bodies other methods may be
more suitable, especially when the accuracy in the vicinity of the surface is
a major concern.

Roughly ten years after the development of the IBM, a method of multiple
grids overset on top of one another was proposed to represent solids in a flow
(see [7, 8, 9]). Overset grids, or Chimera methods, employ body-conformal
grids at the bluff bodies, but the body-conformal grids do not extend to the
domain boundaries. Instead, a non-conforming background grid (typically
uniform Cartesian) is used, and updated flow information within overlapping
grid regions is communicated between grids at every time step. In this way,
the flow simulation is split into multiple sub-simulations, one for each grid,
and the boundaries of one grid are updated with information from the other
grids. The background grid is used to compute the general flow field outside
the smaller body-fitted grids, and the communication between grids is done
through interpolation.

Overset grid methods have the advantage of being highly accurate at the
solid-fluid interface. This is due to the use of body-fitted grids in these re-
gions, and the flexibility in grid stretching made possible when several grids
are used. At the same time, no grid deformation is necessary to conform to
domain boundaries, due to the use of an appropriate non-conformal back-
ground grid. If the domain is circular, a cylindrical grid can be used as a
background grid, if rectangular, a Cartesian grid, etc.

The communication between the grids is the limiting factor in terms of
the accuracy of overset grid methods. In general, the interpolation of flow
variables is detrimental to mass conservation (although conservative, mass
correcting overset grid methods do exist for finite-volume codes, see e.g.
[10, 11]). Using high-order interpolation between grids have proved beneficial
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in regards to the overall accuracy and stability of the overset grid method for
both finite-difference and finite-volume implementations [12, 13, 14]. While
advantageous in terms of accuracy, high-order interpolation techniques have
the disadvantage of increases in complexity, inter-processor communication
and floating-point operations, when compared to low-order interpolation
schemes. Furthermore, straightforward extension to high-order interpola-
tion, typically from second-order to fourth-order Lagrangian interpolation,
does not guarantee a better solution. Possible overshoots in the interpolation
polynomials may have a devastating impact on the interpolation accuracy.
The applied interpolation scheme should therefore be evaluated for the spe-
cific flow problem at hand. For overset grid implementations, several interpo-
lation schemes are available. In this study two such schemes are compared:
bi-linear Lagrangian interpolation and bi-quadratic spline interpolation. To-
gether with high-order low-pass filtering, the resulting computations were
both stable and accurate. This topic is further discussed in Section 2.

If several body-fitted grids overlap, the overset grid computations become
increasingly difficult, particularly in regards to the communication between
the different grids. For the purposes of this paper, the discussion is limited
to a single body-fitted grid on top of a Cartesian background grid. For more
general discussion on overset grids, see [15] or [16].

1.2. Particle impaction

When considering particle deposition on a surface, two mechanisms are
required for a particle to deposit. The particle must first impact the surface,
that is, it must physically contact the surface, and then it must adhere to
the surface. Only the first of these two mechanisms will be the focus of this
study. Hence, all particles that come into contact with the bluff body are
considered to have been absorbed by it. Further, only inertial impaction is
considered. Any other particle impaction mechanisms including Brownian
motion, thermophoresis and turbulent diffusion are omitted. Note that this
is not an acceptable omission in non-isothermal flows, where the effects of
temperature will be large on small particles (see [17, 18]).

The impaction efficiency 7 = Nipp/Nins i @ measure of the cylindrical
object’s ability to capture the particles that are initially incident on the
cylinder. The number of impacting particles is given by Njp,, while Ny, is
the count of particles with a center of mass that is initially moving in the
direction of the solid object. Note that following this convention may lead
to n > 1, even if no forces act on the particles, since a particle may follow a
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path close enough to be intercepted by the object, due to its finite size, even
though the center of mass does not hit the object.

A fluid flow will be deflected by the object, and particles in the flow will
experience a drag force. This force will accelerate the particles along the fluid
trajectory, leading particles away from the bluff body. The particle Stokes
number, St = 7,/7s, where 7, and 7y are particle and fluid time scales, respec-
tively (details in Section 4), can be considered a measure of particle inertia.
Hence, particles with a small Stokes number follow the flow to a larger extent
than particles with a large Stokes number. By using potential flow theory to
compute the flow past a circular cylinder, Israel & Rosner [19] determined
a relation for the impaction efficiency as a function of the Stokes number.
The predictions by Israel & Rosner are inaccurate in predicting particle im-
pactions for flows where the viscous boundary layer of the cylinder plays an
significant role. This is because potential flow theory assumes inviscid flow.
In particular, this theory is insufficient at predicting particle impactions for
particles with small Stokes numbers, and for moderate Reynolds number
flows. Here, the Reynolds number is defined as Re = UyD/v, where Uy is
the mean flow velocity, D is the diameter of a cylinder (the bluff body in
the flow) and v is the kinematic viscosity. Haugen & Kragset [20] performed
simulations using the Pencil Code to compute inertial particle impaction on
a cylinder in a crossflow for different Stokes and Reynolds numbers. Later,
Haugen et al. [21] performed a similar study on a flow with multiple cylin-
ders, in order to emulate impaction on a super-heater tube bundle. The
impaction efficiencies obtained by Haugen & Kragset [20] have been used as
benchmarking results, but were limited to moderate Reynolds numbers and
two-dimensional flows. Part of the reason for this limitation is the use of
an immersed boundary method that requires a very fine grid to achieve the
required accuracy.

1.8. Present

The purpose of this paper is to introduce an overset grid method applica-
ble to compressible particle-laden flows past a circular cylinder, and to assess
its performance in benchmarking cases and a true particle-laden flow simu-
lation. The method has been implemented in the open source compressible
flow solver known as the Pencil Code [22, 23], with the aim to improve the
accuracy in the vicinity of the cylinder and to reduce the computational cost
of particle-laden flow simulations.



The structure of the paper as follows: In Section 2 the equations governing
the flow and the bluff body representation are described. An assessment of
the accuracy of the method for steady and unsteady flow past a cylinder is
given in Section 3. In Section 4 the capabilities of the overset grid method
are demonstrated by simulating particle-laden flows interacting with a bluff
body at a moderate Reynolds number. The results and the computational
costs are compared with those of Haugen & Kragset [20], before concluding
remarks are given in Section 5.

2. Methodology

2.1. Governing equations

The governing equations of the flow are the continuity equation:

and the momentum equation:
Du
P = =Vp+ V- (2uS) , (2)

where p, t, u and p are the density, time, velocity vector and pressure,
respectively, and g = pv is the dynamic viscosity. The compressible strain
rate tensor S is given by:

= % (Vu + (Vu)T) I (;V : u> : (3)

where I is the identity matrix. The pressure is computed using the isothermal
ideal gas law, p = ¢2p, where c; is the speed of sound. The flow is isothermal
and weakly compressible, with a Mach number of ~ 0.1 for all simulations.
With a constant speed of sound (for the isothermal case) and a constant
kinematic viscosity, the momentum equation to be solved on the overset
grids is:

Du 9 9 1

m——cSV(lnp)+V<V u+3V(V-u)+2S-V(lnp)>. (4)
The governing equations were discretized with sixth-order finite-differences
in space and a third-order memory efficient Runge-Kutta scheme in time [24].
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The flow was simulated on a rectangular domain with an inlet at the bottom
and flow in the vertical direction. The circular cylinder was situated in the
center of the domain, with the following boundary conditions: no-slip and im-
permeability for velocity, and zero gradient in the radial direction for the den-
sity. The latter condition was derived from the ideal gas law and the bound-
ary layer approximation (g—fl = 0, where n is the wall normal direction) for
an isothermal flow. Navier-Stokes characteristic boundary conditions were
used both at the inlet and at the outlet of the flow domain. This boundary
condition is a formulation that makes use of one-dimensional characteris-
tic wave relations to allow acoustic waves to pass through the boundaries

[25, 26]. The remaining domain boundaries were periodic.

2.2. Overset grids

To resolve the flow domain using an overset grid method, a cylindrical
coordinate grid was body-fitted to the cylinder, and a uniform Cartesian
grid was used as the background grid (see Fig. 1a). The cylindrical grid was
streched in the radial direction. In the region where fluid data is communi-
cated between grids, it is beneficial that the grids have similar spacing. Grid
stretching enables similar grid spacing in the interpolation region and a much
finer grid near the cylinder surface.

The compressibility of the flow lead to a strict stability limit for the
Runge-Kutta method, imposing a very small time step in the simulations.
Because the overset grids is effectively solving two different flow problems,
coupled only by the communication between the grids, there us flexibility
in the choice of time step. Choosing a time step on the background grid
that is small enough to guarantee stability for the Cartesian grid spacing,
and choosing a smaller time step on the cylindrical grid reduces the overall
computational cost significantly. The cylindrical grid time step must be a
multiple of the background grid time step to ensure that the computations
on each grid are synchronized. An implicit solver may be beneficial, if the
grid spacing near the cylinder is several orders of magnitude smaller than
that of the background grid, but this is beyond the scope of this study.

The communication between the grids in the overset grid simulation was
completed in two stages for each time step of the background grid. At each
stage of the communication, the required flow properties were interpolated
from donor-points to fringe-points. Each grid requires a zone of fringe-points
at least three points deep, such that the seven point central difference stencil
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Figure 1: Overset grid method: (a) Cylinder grid on top of background grid (fringe-points
of cylinder grid and background grid points within cylinder grid radius not shown). (b)
Communication between grids, interpolation from Cartesian donor-points to cylindrical
fringe-points. (c) Communication between grids, interpolation from cylindrical donor-
points to Cartesian fringe-points. Four donor-points (e) surround each fringe-point (¢)
in bi-linear interpolation. Dashed lines used where variables are not computed by finite-
differences (fringe-points and hole-points).



could be used without any special handling of points adjacent to the fringe-
points. For a curvilinear grid, the fringe-points were simply the three outer
points at each radial grid line (see Fig. 1b). For the Cartesian grid, the fringe-
points must be identified, typically during pre-processing, in order to include
all grid points within a fixed area in the region covered by both the Cartesian
and the cylindrical grid. This is set by an inner and outer radius defining the
interpolation region, see red lines enclosing fringe-points on the Cartesian
grid in Fig. lc. Cartesian grid points that are closer to the solid than the
inner radius of the fringe-point zone (or inside the solid), are hole-points.
The hole-points are not used in the computations.

In the overset grid method implemented in the Pencil Code, there is no
overlap between the two interpolation regions of Figs. 1b and 1c. That is, no
fringe-points are used as donor points. Hence, the interpolation is explicit,
not implicit [16]. Note that if the bluff body enclosed by the body-fitted
grid was moving, the cost of inter-grid communication would be significantly
increased due to the cost related to identifying new fringe and donor-points
on the background grid at each new position of the bluff body.

At present, two types of interpolation are implemented for overset grid
communication in the Pencil Code: bi-linear Lagrangian interpolation and
bi-quadratic spline interpolation. Both methods have the advantage of avoid-
ing oscillations in the interpolation interval, which is a common problem for
high-order interpolation. The Lagrangian interpolation is a second-order ac-
curate scheme, while the spline interpolation is third-order accurate. The
illustration of donor-points and fringe-points in Figs. 1b and 1c is for La-
grangian interpolation, where each fringe-point on one grid is interpolated
from the 2 x 2 surrounding donor-points of the other grid. For spline inter-
polation, a zone of the 3 x 3 closest grid points are used as donor-points for
interpolation of each fringe-point. Note that the interpolation is bi-linear or
bi-quadratic in both two- and three-dimensions. This is due to the Carte-
sian and cylindrical grid having a shared z-plane, hence no interpolation is
required in the z-direction.

At the solid-fluid interface, summation-by-parts finite-difference opera-
tors are used to enhance stability for unsteady flow simulations (an unsteady
wake develops for Re > 47). These operators are third-order accurate for the
sixth-order centered finite-difference method. Details on these operators can
be found in [27] (first derivatives) and [28] (second derivatives).

The centered finite-difference schemes are non-dissipative, which can be
detrimental due to the potential growth of high-frequency modes, leading
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to numerical instability. To some extent, the summation-by-parts boundary
conditions suppress such instabilities, but are not sufficient to suppress all os-
cillations in the solution on the curvilinear stretched grid. In particular, such
oscillations are prominent in the density field. The detrimental effect of the
high-frequency modes increases as the grid spacing decreases, which may lead
to diverging solutions as the grid is refined. To suppress the high-frequency
modes, a high-order low-pass filter is used on the curvilinear portion of the
overset grid. The filter is a 10th order Padé filter, with boundary stencils of
8th and 6th order. On the interior of the domain, the filter is given by:

N

ayi1 + i+ aydip = Z %(ﬁbwn + Gin) (5)

n=0

where ¢, and ¢ are components k of the filtered and unfiltered solution
vectors, respectively, oy is a free parameter (Jay| < 0.5) and «, are fixed
parameters dependent only on ay [29]. Boundary stencils can be found in
Gaitonde and Visbal [30]. The Padé filter is implicit, and requires the solution
of a tri-diagonal linear system at grid points in the radial direction, and a
cyclic tri-diagonal system at every grid point in the direction tangential to the
surface. The free parameter ay was set to 0.1, where filtering the solution
once per Cartesian time step was found to be sufficient for a stable and
accurate solution.

3. Performance

3.1. Assessment of accuracy

The spatial accuracy of the overset grid method was examined by sim-
ulating a steady flow past a circular cylinder at a Reynolds number of 20.
A domain of size L, x L, = 10D x 10D was used. The diameter of the
curvilinear, body-fitted grid (henceforth called the cylinder grid) was three
times the cylinder diameter.

An indicative measure of the accuracy of the method can be found by
computing solutions on several grid refinement levels, and using the finest
grid as the “correct solution” when computing two-norm errors. The grids
used in this accuracy assessment are listed in Tab. 1. An odd number of grid
points was used in the directions that were not periodic, in order to have
grid points that are aligned at each refinement level. A fixed (dimensionless)
time step At = 0.25 x 107° was used for the Cartesian grid computations
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Table 1: Grid refinement levels used in the assessment of accuracy of the overset grid
method.

Refinement  Cylinder grid Cartesian grid

level N, X Ny N, x N,
0 17 x 80 80 x 81
1 33 x 160 160 x 161
2 65 x 320 320 x 321
3 129 x 640 640 x 641

at all refinement levels. The small time step ensured that there was no
violation of diffusive or advective time step restrictions on any of the grids.
These restrictions are AT < C,Ax2,,/v and A1 < CuAxmin/ (Ju| + cs),
respectively, where A7 is the dimensional time step, AXm is the smallest
grid spacing in any direction, and C, and C,, are the diffusive and advective
Courant numbers, respectively.

Hyperbolic sine functions were used for the stretching in the radial direc-
tion. The grid stretching parameters were set such that the ratio between
the grid spacing normal and tangential to the surface was approximately one,
both in the vicinity of the solid surface and in the interpolation region in the
outer part of the cylinder grid. Furthermore, the number of grid points in
the Cartesian and cylindrical grids were chosen in order to have similar grid
spacings in the region of inter-grid interpolation. The resulting local time
step on the cylindrical grid was At. = 0.2At.

The main objective of the method, is to compute a very accurate bound-
ary layer around the cylinder. This is crucial for the application to particle
impaction simulations in Section 4 and in future studies. The Lo-error norms
of flow variables are therefore considered along strips tangential to the cylin-
der surface as close as possible to the surface, in order to get an indication of
the accuracy of the scheme in the boundary layer. Figure 2 depicts Ly-error
norms of the density and the normal and tangential velocity components
(with respect to the cylinder surface), computed with the two different in-
terpolation methods. The norms were computed along a strip around the
cylinder, at the grid point closest the cylinder for the refinement level 0 (this
corresponds to the 2nd point from the cylinder for refinement level 1, 4th for
level 2, etc.). Note that the computations with spline interpolation did not
fully converge to a stable solution at the coarsest grid level, as indicated by
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Figure 2: Ly-error norms of w,, ug and p at varying refinement levels at the grid point
closest to the cylinder surface (for the coarsest grid). Results are for the computations
with bi-linear Lagrangian interpolation (LI) and bi-quadratic spline interpolation (SI),
with Az (non-dimensional) grid spacing on the Cartesian grid.

the dashed lines between the first refinement results in Fig. 2.

For both interpolation methods computation of the density was third-
order, the radial velocity component was between third- and fourth-order and
the tangiantal velocity component was between second- and third-order accu-
rate, at the grid point closest to the surface on the coarsest grid. The results
suggest that the difference in accuracy between the interpolation methods is
negligible in the immediate vicinity of the cylinder.

For a more detailed picture of the formal order of accuracy of the overset
grid method, consider Fig. 3. This figure depicts the formal order of accuracy
P, of the density and velocity components, computed along strips at increas-
ing distance from the cylinder boundary (cylinder boundary at r, = 0.5).
The computations are based on the assumption that the Lo-error norm on a
grid with grid spacing Az can be expressed as Ly(Az) ~ AaP, such that the
order of accuracy P can be computed by:

_ log(Ly(Ax)/Ly(Az/2))
log 2 '

P (6)
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Figure 3: Formal order of accuracy of velocity components computed along strips tan-
gential to the cylinder surface at non-dimensional radial position r, for upper refinement
levels for flow with Re = 20 with Lagrangian interpolation (upper) and spline interpolation
(lower).

In principle, the spline interpolation scheme is third-order accurate while the
Lagrangian interpolation a second-order accurate method. The effect of using
the different methods of interpolation can be seen in Fig. 3. Some effect of
the interpolation is seen, when considering the entire flow domain considered
by the cylindrical grid. The difference is, however, much smaller than the
difference in accuracy between the two interpolation schemes. The difference
in order of accuracy of the radial velocity computations is 0.02—0.56, for which
spline interpolation yielded the highest order (median P = 2.49 with spline
interpolation, P = 2.42 with Lagrangian interpolation). A similar difference
can be seen for the density. For the tangential velocity, on the other hand,
there is no obvious best method. In the vicinity of the cylinder surface
the difference between the Lagrangian and spline interpolation is negligible.
Notice that the radial velocity component was computed with a very high
order of accuracy, P = 5 in this region. This is significantly more accurate
than the more conservative suggestion of radial velocity accuracy between
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third- and fourth-order, seen in Fig. 2 (the results in Fig. 2 correspond to
the second point from the left in Fig. 3).

The consideration of formal order of accuracy shows that the overset grid
method is a high-order method (P > 2). No obvious distinction among the
two interpolation schemes was found by this analysis, although the spline
interpolation appeared to have a marginally higher accuracy for the density
and radial velocity component.

3.2. Unsteady flow

The Ls-error norms are suggestive of the formal accuracy of the numerical
method, but do not reveal the in-use accuracy of the method for simulations
in the unsteady flow regime. This must be determined, before arriving at a
full-blown simulation of a particle-laden flow interacting with a cylinder in
this flow regime.

A grid refinement study was performed for Re = 100, where unsteady
vortex shedding developed in the cylinder wake. A domain with L, x L, =
10D x 20D was used, with the cylinder in the center of the domain. The
resulting mean drag coefficient (Cp), root-mean-square lift coefficient (C7)
and Strouhal number (Str) were computed. The drag and lift coefficients
were computed using the pressure and shear forces on the cylinder, Fj, and
F, respectively, as given by:

Ny
Fy=— [1], aA~ 803 gt ). g
=1
No ou
F - dA ~ Buhr, A0 w0) 5| 8
/U|Tc v ;p(r ) or (re,0:) ( )

where h is the height of the cylinder and o is the shear stress. With flow in
the y-direction, the drag and lift forces, Fp and Fp, were found by taking
the sum of the pressure and shear forces in y- and x-direction, respectively.
These forces can be used to calculate the drag and lift coefficients as follows:

Fp
Cp= "D 9
b %,OOU(?A7 (9)
Fr,
Cp — "L 10
L %poUgA’ ( )
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Table 2: Grid refinement levels used in the grid refinement study for flow past a cylinder at
Re = 100 with two differently sized cylindrical grids. Grid spacing Ar non-dimensionalized
by the cylinder diameter.

Refinement  Ar,,;, Teg = 3¢ Teg = OTe
level x1072 | N.xNy NyxN, | N,xNg N,xN,
0 4.1 16 x 80 80 x 160 24 x 80 50 x 100
1 2.7 24 x 120 120 x 240 | 36 x 120 76 x 152
2 2.0 32 x 160 160 x 320 | 48 x 160 100 x 200
3 1.6 40 x 200 200 x 400 | 60 x 200 128 x 256
4 1.3 48 x 240 240 x 480 | 72 x 240 150 x 300
5 0.97 | 64x320 320 x 640 | 96 x 320 200 x 400
6 0.77 | 80 x 400 400 x 800 | 120 x 400 256 x 512
7 0.64 | 96 x 480 480 x 960 | 144 x 480 306 x 612
8 0.48 | 128 x 640 640 x 1280 | 192 x 640 408 x 816

where pg and Uy are free-stream values of the density and velocity, respec-
tively, and A = 2hr, is the projected frontal area of the cylinder. The
Strouhal number is simply the shedding frequency, non-dimensionalized by
the free-stream velocity and cylinder diameter.

A grid refinement study of the unsteady flow was performed with both
Lagrangian and spline interpolation on two differently sized overset grids.
One had a cylindrical grid with diameter 3D (the same size that was used in
the assessment of accuracy for the Re = 20). The other had a size 5D. Hence,
there was a factor two difference in the radial length (L, = rey — 7., where
Teg is the outer cylinder grid radius) of the two cylindrical grids. At each
refinement level, the smallest spacing in the radial direction was the same for
the two different overset grids, and the stretching properties were the same
as that in the Re = 20 flow simulations (approximately quadratic cells in
the vicinity of the surface and the interpolation region, and approximately
equal grid spacing on the Cartesian and curvilinear grid in the interpolation
region). Hence, the outer grid spacing on the larger cylindrical grid was
larger than the outer grid spacing of the smaller cylindrical grid. Thus, a
coarser Cartesian grid could used for the overset grid with the larger cylinder
grid. This, in turn, allowed for a larger time step on the background grid,
but required more sub-cycles on the cylindrical grid for each Cartesian time
step. Details on the grids used in this refinement study are listed in Tab. 2.
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Figure 4: Normalized values for mean drag coefficient (Cp), rms-lift coefficient (C7 ) and
Strouhal number (Str) for Re = 100 computed at different refinement levels (see Tab. 2)
for overset grids with two sizes of radii for the body-fitted cylindrical grid, r.,. Results
are given for computations with Lagrangian interpolation (upper) and spline interpolation
(lower).

Results for the grid refinement at Re = 100 can be seen in Fig. 4 and
Tab. 3. In Fig. 4, the dimensionless drag and lift coefficients, and the Strouhal
number have been normalized by the result computed at the finest grid.
Hence, the plots depict the relative deviation from the result at grid refine-
ment level eight from Tab. 2. The values of the coefficients computed at this
refinement level, for each of the four cases, are given in Tab. 3.

The dimensionless numbers converged quite rapidly for all of the tested
cases. The best performance for grid independency was achieved with La-
grangian interpolation. Yet, even the poorest result, the computation of
the rms-lift coefficient at the smaller of the two cylindrical grids with spline
interpolation deviated less than 0.5% from the finest grid result, for grid re-
finement level > 4. Some deviation is also seen in the lift coefficient of results
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Table 3: Mean drag coefficient (Cp), rms-lift coefficient (C}) and Strouhal number (Str)
for Re = 100 computed at a domain L, x L, = 10D x 20D with two different overset grids.
The resolution is given by the finest refinement levels in Tab. 2, and both Lagrangian (LI)
and spline interpolation (SI) cases are considered.

Teg = 3¢ Teg = OT¢
Coefficient LI SI LI SI
Ch 1.460 1.458 | 1.461 1.461

. 0.2509 0.2450 | 0.2527 0.2522
Str 0.1763 0.1762 | 0.1763 0.1763

computed on the large cylindrical grid with spline interpolation (less than
0.24% for refinement level > 4). For the cases where Lagrangian interpo-
lation was used for inter-grid communication, the deviation from results at
refinement levels four to seven from the finest grid result is less than 0.15%
for all coefficients. (if only drag and Strouhal number are considered, the
deviation is less than 0.064% for these cases).

The difference between results obtained with quadratic spline and linear
Lagrangian interpolation was particularly clear for the smaller cylinder grid.
With a larger grid, it is not surprising that the effects from interpolation were
reduced. Nevertheless, the best results on the larger grid were also achieved
with Lagrangian interpolation. For the steady flow simulations the spline
interpolation yielded results with somewhat higher order of accuracy. The
sub-par performance of this interpolation for unsteady simulations may be
due to the overshoots in this non-linear interpolation, or perhaps, a larger
mass loss during interpolation. No further speculation is conducted here, but
note that the Lagrangian interpolation outperformed the spline interpolation
for simulations of unsteady flow.

By considering the grid independent solutions in Tab. 3, used to nor-
malize the grid refinement results, two particular factors could be noted.
Firstly, by comparing the results for the two different interpolation schemes
on the domain where the cylindrical grid has r., = 5r,, it is evident that the
computed drag, lift and Strouhal number were independent of the inter-grid
communication. This in contrast to the r,; = 3r. results, but in accordance
with an intuitive understanding of the problem: the farther away from the
cylinder boundary the interpolation is performed, the less it affects compu-
tation of quantities at the boundary. Note, however, that even though the
drag and lift forces were computed at the boundary, these coefficients were

17



also dependent on the flow upstream and downstream of the cylinder. The
results therefore suggest that the flow surrounding the cylinder was negligi-
bly impacted by interpolation method selected when the larger r., was used
for the cylinder grid.

By comparing the results for Cp and C} on the differently sized cylinder
grids, computed with Lagrangian interpolation, the dependency on cylinder
grid size was found to be small. There was a small difference in the computed
lift coefficient (somewhat higher for the larger cylinder grid). Although the
results are grid independent, neither of the values are quantitatively accurate
for the drag or lift of a cylinder in a cross flow at Re = 100. The small
difference in computed lift may be due to blockage effects or interpolation
errors propagating across periodic boundaries.

To confirm that the grid independent solutions yielded accurate flow pre-
dictions a simulation was also conducted on a large domain, L, X L, =
50D x 50D, for the two different grid sizes used above. Since Lagrangian
interpolation had the best performance for the unsteady flow simulations,
only this interpolation procedure was used. The grid spacing corresponding
to grid refinement level five in Tab. 2 was used on the large square domain.
The computed flow quantities showed good agreement with previous studies
performed on similar domain sizes (see Tab. 4). Note that for the simulations
on a large square domain there was a negligible difference between the results
from the different overset grid simulations. Because a smaller domain was
used in the next section (with width 6D), the smallest cylinder grid (with
Teg = 31¢) was selected. Using a larger cylinder grid will reduce the total num-
ber of grid points in the simulations, which is a major advantage on large
domains. On small flow domains, overset grids with interpolation regions
very close to each side of the periodic boundary should not be used, as this
may cause spurious interpolation errors to propagate across the boundary.

4. Particle deposition on a circular cylinder in a laminar cross flow

Direct numerical simulations with a large number of particles suspended
in the flow have been performed to assess the performance of overset grids
on a more complex and demanding simulation than the simple flow past a
cylinder at low Reynolds numbers.

The particle deposition simulations are based on the study by Haugen
& Kragset [20], where particle-laden flow simulations were performed over a
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Table 4: Comparison with previous studies. The studies were performed on domains
with streamwise length 60 < L,/D < 100 and spanwise length 40 < L,/D < 100, and
the present study has L, = L, = 50D. Results from the present study are for domains
covered by two differently sized overset grids, with inter-grid interpolation performed by
bi-linear Lagrangian interpolation. The asterisk on some values of C, denotes where only
the amplitude of the lift was given. The asterisk mark a lift amplitude scaled by 1/v/2 to
get the root-mean-square lift coefficient, a valid scaling for the sinusoidal-like lift coefficient
(with mean value zero).

Cp ) St
Li et al. [31] 1.336 — 0.164
Posdziech & Grundmann [32] 1.350 0.234%) 0.167
Pan [33] .32 0.23%)  0.16
Qu et. al. [34] 1.326 0.219  0.166
Present, rq, = 3r. 1.346 0.235 0.166
Present, rq, = 5rc 1.346 0.234 0.166

range of Reynolds numbers on a moderately sized flow domain (6D x 12D).
The analysis is not repeated here, but a brief introduction to the method used
for particle representation and deposition will be presented. The particle-
laden flow simulations were performed on a domain exactly the same size as
in Haugen & Kragset[20], with Reynolds number 100.

4.1. Particle equations

The particles are tracked using a Lagrangian formalism, where the particle
velocity and position are described by:

d’Up FDp

—_bp 11
dt my (11)
dx
—dt” =v,, (12)

where v, x, and m,, are the velocity, center of mass position and mass of
the particle, respectively. The force F'p, acting upon a spherical particle is
the drag force:

1
Fp,= fﬁCD,pAp lu — v, (u—v,), (13)
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where A, = Wd% /4 is the cross sectional area of the particle and

Co=1+ Z—A (1.257 + 0.4e(TH1/20)) (14)
P
is the Stokes-Cunningham factor (with parameters set for air) for a particle
with diameter d,. The mean free path A = 67nm accounts for the fact that
for very small particles, the surrounding medium can no longer be regarded
as a continuum but rather as distinct particles. The particle drag coefficient
is given by:

24
Cpyp =5 (14 0.15Re)™7) (15)

P

for particle Reynolds number Re, = d, |v, —u| /v < 1000. With this, the
particle drag force can be re-written as

m
Fp,= —* (u—vp), (16)
Tp

where
Sd>C,
T — —————————
PU8v(1 + f)
is the particle response time, with f, = 0.15Re)%" and S = p,/p. Note that
this is Stokes drag in the limit C, = 1 and f. = 0. Using the convention of
[20], the Stokes number (St = 7,/7¢) is defined with a fluid time scale:

(17)

D

Tf:T(]O

(18)

The fluid velocity was interpolated from surrounding grid points by bi-
linear interpolation on the Cartesian grid and bi-quadratic interpolation on
the curvilinear grid. The order of the interpolation is higher on the curvi-
linear grid as the velocity components (the radial, in particular) are close
to quadratic near the cylinder surface. For three-dimensional simulations,
linear interpolation is used for the velocity component along the z-direction
(the cylinder’s spanwise direction) on all grids.

For particles very close to the cylinder surface, special handling was used
to interpolate the radial component of the fluid velocity. Very close to the
cylinder refers to within one grid point from the surface, or alternatively,
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(a) St =0.1 (b) St=1.0 (c) St=10

Figure 5: Particle-laden flow interacting with a circular cylinder at Re = 100. An unhin-
dered particle will cross the flow domain, from the inlet (bottom) to the outlet (top) in
approximately two shedding periods at this Reynolds number. Contours of the streamwise
velocity component make up the background.

within the pre-calculated momentum thickness of the boundary layer. The
special handling in use for particles at such positions was a quadratic inter-
polation that guarantees no overshoots. Since all velocities are zero at the
surface, this was achieved by:

Urp = Uig (5Tp/57'g)2 ) (19)

where u,, and u,, are radial velocity components at the position of the
particle and at the position of the interception between a surface normal and
the first grid line away from the surface, respectively. The distances d,, and
d4 are from the surface to the particle and to said grid line, respectively.

4.2. Particle impaction

After the flow developed into periodic vortex shedding, particles were in-
serted continuously at the inlet. The particles were inserted randomly, as a
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Figure 6: Front side impaction efficiency (ny) as a function of Stokes number (St) for
Reynolds number 100. Present results compared to a previous study by Haugen & Kragset
20]

homogeneous distribution over a rectangular cross-section encompassing par-
ticle trajectories that could impact the cylinder. From here the particles were
convected downstream, and removed from the flow either by impacting the
cylinder or by reaching the outlet (see Fig. 5). An impaction was registered
(and the particle removed) if the distance between the cylinder surface and
the particle’s center of mass was less than or equal to d,/2. Every particle
impaction simulation was run until all particles were removed from the flow.
In total 1.1 x 107 particles were inserted, with Stokes numbers of 0.01-10,
and a progressive particle distribution with respect to particle radius.

The impaction efficiency (7 = Nimp/Nins) can be split into front (ny) and
back side impaction (7). At the low Reynolds number flow in this study,
backside impaction rarely occurred so and front side impaction was the focus.
Figure 6 depicts the particle front side impaction, compared to literature
results. The results were computed with grid spacing defined as refinement
level four in Tab. 2, for the r,, = 3r, case with Lagrangian interpolation.
With the L, x L, = 6D x 12D domain a grid (N, x Np) + (N, x N,)) =
(48 x 240) 4 (144 x 288) was used. The results from Haugen & Kragset [20]
were computed on an equidistant grid with 512 x 1024 grid points, using an
immersed boundary method to resolve the cylinder surface.
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The particle impaction results from this study agree very well with the
results from the literature, even though the results of the present study were
computed on a grid with only 10.1% as many grid points as used by Haugen
& Kragset [20]. An additional efficiency improvement was achieved, due
to using a time step that was 3.5 times larger. This was possible because
of the time step’s proportionality to the grid spacing and the local time
step restrictions, though some extra work was necessary at each time step
(computation on two grids, communication of data, filtering on cylinder grid,
etc.). Note that for very small particles, the time step can also be restricted
by the particle time scale; that is, the time step must be small enough to
resolve the time-dependent particle equations. Particles are updated only at
the Cartesian time step.

4.8. Investigating the accuracy of the computed impaction efficiencies

The coarseness of the grid used in the computation of particle impaction
efficiencies allow for the assessment of the assumptions that must be made
in order to regard these impaction results as quantitatively accurate. The
assumptions are, firstly, that blockage effects from the limited domain (with
L, x L, = 6D x12D) have a negligible impact on the particle impaction. Sec-
ondly, it was assumed that the coarsest resolution where grid independency
of drag and lift coefficients was reached was sufficiently fine for the particle
simulations, i.e., that that the transport of the particles was dependent on
an accurate flow field only.

A critical assessment of these assumptions led to the expectation of a
higher impaction result for particles on a domain where the blockage effect
is large, due to a squeezing of the flow field and, consequently, less particles
being directed away from the cylinder. In particular, this is expected to af-
fect particles that follow the flow to a large extent, i.e. particles with small
Stokes numbers. Further, the flow velocities at particle positions are not
only dependent on an accurately computed flow field, but also on accurate
interpolation. The latter aspect can be very sensitive to grid spacing, even
if the flow is resolved accurately. Haugen & Kragset [20] used linear interpo-
lation to compute flow velocity at particle positions, except within the grid
point closest to the surface, where an expression similar to that of Eq. 19 was
used. Linear interpolation of velocities that are proportional to —(6r)? (as
the upstream flow field at the centerline through the cylinder is) will lead to a
systematic over-estimation. Hence, an over-prediction in particle impaction
can be expected from their results. What is important to determine in this
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Figure 7: Front side impaction efficiency (ny) as a function of Stokes number (St) for
Reynolds number 100 for different domain sizes (left) and grid resolutions (right).

respect, is how large this possible over-prediction is, and for what particle
sizes it occurs.

To investigate the accuracy of the computed impaction efficiencies particle-
laden flow simulations were conducted at a larger domain size, L, x L, =
10D x 20D, as used in the grid independence study of Section 3.2. For this
larger domain several refined grids were used. These utilized refinement lev-
els 4-7 in Tab. 2, with r.,, = 3r.. Thus, from 48 (coarsest) to 96 (finest)
grid points were used in the radial direction on the cylindrical grid, and the
background grid was refined accordingly. The number of inserted particles
was 1.1 x 107, where 7 x 105 were particles with St < 0.1. The results are
seen in Fig. 7.

Very few of the smallest particles deposit on the cylinder. To get enough
particle impaction at the smallest Stokes numbers for reliable statistics, par-
ticles with St < 0.1 were only inserted over a region covering one tenth of
the cylinder’s projected area, at its centerline. The inserted particle count
was scaled correspondingly (multiplied by ten) during post-processing. No
small Stokes number particles inserted outside the insertion area would be
expected to hit the cylinder. To confirm this, a simulation was conducted
with particles with St = 0.05 and 0.1, inserted over the whole projected
cylinder area. The results are included as black circles (o) in Fig. 7. The dif-
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ference of impaction efficiency among particles inserted by the two different
methods was negligible.

From Fig. 7 it is clear that the blockage effect from the limited domain size
had a significant effect on the particle impaction efficiencies. For St < 0.5 this
effect was larger than 10%, and increased as the Stokes number decreased.
The largest difference in impaction efficiencies was seen at St = 0.01, where
2.7 times more impaction occurred for the smallest domain size. The resolu-
tion played a smaller, but not insignificant, role in the impaction efficiencies.
Increasing from the coarsest grid, with N, = 48, to N, = 64, noticeably
reduced the impaction efficiencies. The reduction was more than 10% for
St < 0.3. A further refinement of the grid had a small effect, which was
negligible for N, > 80. Comparing the results from the larger domain with
N, = 80 to those by Haugen & Kragset [20] suggests that Haugen & Kragset
found a qualitatively correct result, but have somewhat quantitatively over-
predicted the particle impaction, in particular in the boundary interception
region (where St < 0.3). For the smallest Stokes number (St = 0.01) the
over-prediction is of approximately a factor 6.3. At St = 0.1 this factor is
2.8. The previously published results agree with the new results for St > 0.5.

5. Concluding remarks

In this work, a high-order overset grid method has been presented. The
method uses high-order finite-difference discretization to solve the compress-
ible Navier-Stokes equations on several grids, and communicates necessary
flow data between the grids by linear or quadratic interpolation. Unique to
the overset grid implementation described here, is the use of local time step
restriction and summation-by-parts finite-difference operators. The relaxed
time stepping restriction on the coarser grid is very efficient for a weakly
compressible flow, while the summation-by-parts operators enhance numeri-
cal stability together with the use of Padé filtering. The purpose of developing
the method was to compute particle impaction on a cylinder in a cross flow,
and for this purpose a body-fitted cylindrical grid is an appropriate choice
to resolve the boundary layer around the cylinder with high accuracy.

An investigation of the formal order of accuracy of the overset grid im-
plementation revealed that high-order accuracy was indeed reached. Flow
variables where computed with median order P = 2.5, regardless of the use
of bi-linear interpolation or bi-quadratic interpolation for communication.
Near the surface, the radial velocity component reached an accuracy of fifth-
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order. For unsteady flow, the method converged rapidly to grid independent
solutions for the essential flow variables (drag, lift and Strouhal number).
For these computations, using bi-linear interpolation was beneficial, yielding
the most rapid convergence to grid independent solutions as the grid was
refined. Using a larger cylindrical grid, with a radius five times as large as
the cylinder radius, decreased the effect of the inter-grid interpolation.

When applied to the problem of inertial particles impacting on a cylinder,
impaction efficiencies of previously published results were reproduced at a
significantly reduced computational cost. A coarser background grid was
utilized to resolve the flow, which yielded both a much smaller number of
grid points (90% reduction in 2D) and the possibility of using a larger time
step.

A critical assessment of the particle impaction results revealed that the
limited domain size had a significant impact on particle impaction, particu-
larly for the smaller Stokes numbers. Further, although the flow was deemed
grid independent, using a finer grid, and thus a more accurate interpolation
of flow velocity, reduced the number of particles that hit the cylinder. The
resulting impaction curves suggested that particle impaction has been over-
estimated in the previous studies, in particular for very light particles where
impaction occurs by boundary interception.

The overset grid method implementation in the Pencil Code is now ready
for three-dimensional simulations, and DNS studies of particle impactions
on a cylinder with Reynolds number for real-world application (a factor 10-
20 larger than the investigation here, for industrial boilers) is within reach.
However, even with the highly accurate and efficient method presented here,
increasing the Reynolds number and computing three-dimensional flow will
be computationally costly. The magnitude of the Reynolds numbers that can
be considered will largely depend on the Stokes numbers of the particles, and
the acceptable accuracy when particle impaction efficiencies are computed.
If the focus is not just qualitative trends, but quantitatively accurate results,
a careful assessment of grid independence is recommended (not just for flow
variables, but for the particle impaction itself), and great care is required
when selecting the domain size and setting up the simulations.
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Two methods for solid body representation in flow simulations avail- Received 3 April 2018
able in the Pencil Code are the immersed boundary method and Accepted 20 June 2018
overset grids. These methods are quite different in terms of com-

. iR R KEYWORDS
putational cost, flexibility and numerical accuracy. We present here Pencil code: immersed

an investigation of the use of the different methods with the pur- boundary method; overset
pose of assessing their strengths and weaknesses. At present, the grids; compressible fluid
overset grid method in the Pencil Code can only be used for repre- dynamics; complex

senting cylinders in the flow. For this task, it surpasses the immersed geometries
boundary method in yielding highly accurate solutions at moder-

ate computational costs. This is partly due to local grid stretching

and a body-conformal grid, and partly due to the possibility of work-

ing with local time step restrictions on different grids. The immersed

boundary method makes up the lack of computational efficiency

with flexibility in regard to application to complex geometries, due

to a recent extension of the method that allows our implementation

of it to represent arbitrarily shaped objects in the flow.

1. Introduction

Fluid flow in a domain that contains an immersed solid object is a common case in compu-
tational fluid dynamics. Obstructions in the flow include (but are not limited to) cylinders,
spheres, flat plates, rectangular or elliptical cylinders and spheroids, triangles, and complex
geometries made out of a combination of these. Finding a method to represent such objects
in the best possible way in simulations is not a trivial task, and the method used is often
chosen specifically to the problem at hand.

For many generic shapes, such as cylinders, spheres and plates, body-fitted structured
meshes are commonly used to represent the object(s) in the flow. Body-fitted structured
meshes conform to the object(s) in the flow domain and to the domain’s other physical
boundaries (inlet, outlet, walls, etc.). Depending on the flow domain and object in the
flow, this may require a deformation of the grid to conform to domain boundaries, in
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addition to the mapping procedures to map the grid in the flow domain to a simple compu-
tational domain. This may result in a grid with unnecessary local variations of the grid (e.g.
a grid that is denser than necessary in certain areas of the domain) and time-consuming
grid generation (Versteeg and Malalasekera 2007). A popular alternative to such meshes,
particularly when the shape of the flow domain or objects in the flow domain is more com-
plex, is unstructured meshes. Unstructured meshes provide the highest flexibility in grid
adaptation to a particular flow geometry and is a good alternative for complex geome-
tries when finite-volume or finite-element formulations of the governing equations are
used (Mavriplis 1997). Disadvantages of such grids are much larger storage requirements
than for structured grids (Tannehill et al. 1997), the need for intricate mesh generation
techniques (Owen 1998) and the difficulty in achieving high order of accuracy.

By other choices of grid methods, the object(s) in the flow and the flow domain can be
represented without the grid conforming to the object(s). Typically this is done by using
a Cartesian grid, with a modification in either the flow equations or the grid cells in the
immediate vicinity of the solid object(s). Popular methods of this type include immersed
boundary methods (IBMs) (Peskin 1972, 2002; Mittal and Iaccarino 2005) and cut-cell
methods (Quirk 1994; Causon et al. 2000; Schneiders et al. 2013). These methods differ
in that the IBM uses a Cartesian grid in the entire flow domain, while in cut-cell methods
grid cells are “cut” near the objects or domain boundaries that do not conform to the grids,
and the flow equations are solved on the new, modified cells (Ingram et al. 2003). Due to
this cell cutting, care must be taken such that the cut cells do not become too small, since
this may be a potential source of numerical instabilities.

For the IBM, rather than modifying the grid cells near the solid object, the boundary
conditions on the solid are imposed directly in the flow equations. This is done either by a
continuous or a discrete forcing technique. In both cases a body-force, present due to non-
conforming boundaries in the flow, is introduced in the Navier-Stokes equations. This is
done either before discretisation (continuous forcing) or after (discrete forcing) (Mittal
and Taccarino 2005). The latter of these is the preferred method for IBM used to represent
rigid boundaries. One development of the discrete forcing method is to treat the immersed
boundary as a sharp interface and to impose the boundary conditions directly. This is
done by using a combination of ghost-points inside the solid and mirror/image-points in
the flow domain (set by interpolation) to reconstruct the solid (Tseng and Ferziger 2003;
Berthelsen and Faltinsen 2008). An advantage with this approach is that the boundary con-
ditions are handled without any added force in the flow equations, hence, the method can
easily be implemented in an existing flow solver. The disadvantage is the accuracy reduc-
tion in the vicinity of the surface, although recent developments show that some of the
challenges related to high-order accurate reconstructions of velocities near the surface can
be overcome (Seo and Mittal 2011; Xia et al. 2014). Furthermore, finite-difference IBMs
are, in general, not mass conserving. Finite-volume approaches with cut-cell methodology
are appropriate if mass and momentum conservation need to be guaranteed (Mittal and
Taccarino 2005).

About 10 years after the emergence of the first IBM, a new method was proposed to
represent solids in the flow by using several grids overset one another (Steger et al. 1983;
Benek et al. 1985). Such overset grid methods (often called Chimera methods) employ
body-conformal grids at the boundaries of objects in the flow, but the grids do not extend
to the physical boundaries of the domain. Rather, a background grid (typically uniform
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Cartesian) is used, and updated flow information of overlapping grid regions is commu-
nicated between grids at every time step. Note that special overset grid methods without
background grids exist, like yin-yang grids where two identical component grids are used
to cover a spherical surface, thus avoiding very small grid cells close to poles of the spherical
geometry (Kageyama and Sato 2004).

The flow domain resolved with overset grids may contain a single grid overlapping
another, or several grids overlapping necessitating a priority of communication and com-
putation of solutions of the different grids (Steger and Benek 1987; Chesshire and Hen-
shaw 1990). For complex configurations, this may require extensive preprocessing for
fixed objects (Rogers et al. 2003) or intricate grid handling at run time for moving bodies
(Noack 2005). Overset grid methods are, in general, not mass conserving, since interpo-
lation is necessary between grids overset one another (although exceptions do exist, for
finite-volume implementations of overset grids, see Part-Enander and Sjogreen 1994 and
Zang and Street 1995). The interpolation is done from donor-points on one grid to fringe-
points on another. Many different interpolation procedures have been explored for this
purpose, and several studies have found that using high-order interpolation between grids
is beneficial in regard to the overall accuracy and stability of flow computations (Sherer
and Scott 2005; Chicheportiche and Gloerfelt 2012; Volkner et al. 2017).

In the high-order compressible flow solver known as the Pencil Code (The Pencil
Code 2018), solid objects in the flow can be represented by different schemes. This makes
it possible to compare different surface representations not only for the same flow prob-
lems, but for simulations where the same finite-difference discretisation, time integration,
communication procedures, etc., are used. The purpose of this paper is to perform such
a comparison for solids represented by a ghost-points IBM and overset grids. The per-
formance of these surface representations is assessed in terms of computational cost and
accuracy for a common benchmarking case. The flow case used is the frequently appear-
ing fluid mechanics problem of flow past a circular cylinder. Furthermore, we wish to shed
light on an advantage of the IBM implementation in the Pencil Code by simulating flow
past a complex geometry. The complex geometry used as an example case is a combination
of a semi-circular and a semi-elliptical cylinder.

The structure of the paper is as follows. In section 2, the governing flow equations and
the two methods for solid object representation are described, with details on their imple-
mentation in the Pencil Code included. Performance of the different methods for the flow
past a cylinder in both the steady regime and the unsteady vortex shedding regime is com-
pared in section 3. Following this, we elaborate on the extension of the IBM to complex
geometries in section 4, before concluding remarks are made in section 5.

2. Methodology
2.1. Governing equations

The governing equations of the flow are the continuity equation

Dp
—— 4+ pVu=0, 1
Dt+p u (1)
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and the momentum equation

Du
— =—-Vp+Vu=0, 2
P D p )
where p, t, u, p and p are the density, time, velocity vector, pressure and dynamic viscosity
(i = pv, with kinematic viscosity v), respectively, and
D

9
%4y 3
Dr g M ®)

is the material derivative operator. The compressible rate of strain tensor § is given by
S=1(Vu+ (V") —I1iV-w), (4)

where I is the identity matrix. The pressure is computed by the isothermal ideal gas law,
p = c2p, where ¢ is the speed of sound. With a constant speed of sound (for the isothermal
case) and a constant kinematic viscosity, the momentum equation (2) can be rewritten as

bu _  2yq Viu+ lv(v 28V (1l 5
D=6 (Inp) +v(Vu+ 3V(V-u) +28-V(ln p)), (5)

which is the form solved in the computations performed in this study.

2.2. Numerical methods

The governing equations (1) and (5) are discretised with sixth-order finite differences in
space and a third-order memory efficient Runge-Kutta scheme in time (Williamson 1980).
Many different types of domain and enforcements of boundary conditions are available
in the Pencil Code. For simplicity, we consider a domain with a uniform mean flow, using
Navier-Stokes characteristic boundary conditions (NSCBC) on both the inlet and outlet
of the flow domain, and periodic boundary conditions in all other directions. The NSCBC
is a formulation developed by Poinsot and Lele (1992) that makes use of one-dimensional
characteristic wave relations to allow acoustic waves to pass through the boundaries.

We place an object in the flow domain by representing it with one of the two available
methods in the Pencil Code. The grids used in each of the methods are quite different. An
illustration of the grids for IBM and overset grid representation of a circular solid can be
seen in figure 1. For both methods of solid body representation, we use boundary condi-
tions of no-slip and impermeability for velocity components, and zero gradient for density
in the direction normal to the surface, on the solid’s surface. The latter condition can be
derived from the ideal gas law and the boundary layer approximation for pressure normal
to the boundary (dp/dr = 0, White 2006). In the remainder of this section, details of how
the different boundary representations are implemented in the Pencil Code are given.

2.2.1. Ghost-zone immersed boundary method

In the illustration of a circular object in a flow domain represented by an IBM (figure 1a),
the intersections of solid grid lines represent fluid-points, where the governing equations
are solved, while the intersection points of dashed grid lines are grid points inside an
immersed solid (solid-points). At the solid-points, the governing equations are not solved.
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(a) IBM (b) Overset grid

Figure 1. Solid object representation on a uniform Cartesian grid, by either an immersed boundary
method or an overset grid approach. Principle illustration of mesh in each of the cases. (a) IBM and
(b)overset grid.

Rather, some points are used as ghost-points for the fluid solver and some are unused
points. As mentioned, the boundary conditions of a solid object may be imposed directly
on the flow variables by the ghost-point immersed boundary method. The IBM in the Pen-
cil Code is such a ghost-point method. An uncommon feature of the IBM implementation
in the Pencil Code is that a several points deep ghost-zone is used rather than a single strip
of ghost-points inside the solid object. This ensures that the sixth-order finite-difference
stencils can be used without any modifications in the vicinity of a solid object. The overhead
related to computation of additional layers of ghost-points is negligible when compared to
the computational cost of the fluid solver itself.

As sixth-order central differencing is used, three points on each side of a grid point
are necessary to update the solution. This is illustrated in figure 2(a), where stencils of
fluid-points f1, f> and f3 will include grid points within the solid object to update the hor-
izontal gradients of the velocity components and density. Point f; will need information
from f,, f3 and g1, f» will need information from f}, g1 and g, etc. (in addition to informa-
tion from fluid-points to the left). The points in the ghost-zone, g1, g> and g3, are set using
corresponding mirror-points my, m, and ms, respectively. With no-slip and impermeabil-
ity for velocity and zero gradient for density, the relationship between a ghost point g and
mirror-point m is simply

u(g) = —u(m), p(g) = p(m). (6a,b)

Note that a second-order accurate method to set the Neumann boundary condition has
recently been implemented, but will not be described here. Details, and testing of different
boundary conditions, can be found in Luo et al. (2016).

In general, the mirror-points do not coincide with grid points or grid lines, and need
therefore to be interpolated from surrounding points. This is done by bilinear Lagrangian
interpolation in 2D and trilinear Lagrangian interpolation in 3D. For mirror-points close
to the surface, one or more of the surrounding grid points may be inside the solid object
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(b) (©)

Figure 2. Immersed boundary method. (a) A zone of ghost-points (g;; e) is used when computing fluid-
points (f;; #). Ghost points are set from corresponding mirror/image-points in the flow domain (m;; H)
found along lines orthogonal to the solid surface. The mirror-points are interpolated from surrounding
fluid-points. (b) If a mirror-point is too close to the surface to be surrounded only by fluid-points, the val-
ues at the points where the orthogonal line intercepts the surface () and the first grid line (¢) are used
in interpolation. (c) A fluid-point (f.; ®) very close to the surface is set by direct interpolation along the
surface normal points by using values at the interception with the surface (O) and the closest grid line
(©). The interpolation point at the intersection with the closest grid line in (b) and (c) is set by interpo-
lation from the closest fluid-points along the grid line (#). (a) Ghost-zone immersed boundary method,
(b)mirror-point close to surface and (c)fluid-point close to surface.
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(see figure 2 b). Rather than using four surrounding fluid-points, these mirror-points are
set by interpolation using the boundary intercept point (that is, the point where the surface
normal through the ghost point intercepts the solid’s boundary) and the point where the
surface normal intercepts the first grid line outside the solid. Data is first interpolated to
the interception point of the surface normal with the first grid line from neighbouring
fluid-points (e in figure 2b) by linear Lagrangian interpolation. The velocity components
normal to the surface are expected to scale as Ar?> when approaching the surface, where
Ar is the distance from the boundary. To interpolate velocity in a mirror-point near the
surface, the velocity is decomposed into cylindrical components, and the radial component
is computed by

Arm \2
Ur,m = Ur,GI ( m) > (6)

A?‘G[

where u, gy is the radial velocity at the grid line interception point, and Ar,, and Argy
are the distances from the mirror-point and grid line interception point to the bound-
ary interception point, respectively. Remaining velocity components are obtained by linear
interpolation. No special handling is used for density.

Special handling is used for fluid-points very close to the surface of an object. This is
done to avoid spurious errors due to de-localisation dependencies in the finite-difference
stencils, a detrimental effect that occurs when flow variables quite far from a grid point
is indirectly used in the update of said grid point. To see this, consider in figure 2(a) that
the horizontal velocity component of grid points surrounding m3 will affect f3, since g3
is set by m3. Rather than computing flow variables in a fluid-point close to the surface in
the usual way, by using the finite-difference stencils, they are set directly by interpolation,
as seen in figure 2(c). The interpolation procedure for these grid points is the same as for
mirror-points very close to the boundary, as described earlier. Note that this type of special
handling is only possible for variables with a Dirichlet boundary condition on the surface.

An alternative to setting mirror-point positions using surface normals is to use mirror-
points along grid lines. This simplifies interpolation (making all interpolation one-
dimensional, along grid lines) and has proven promising in reducing the errors due to
de-localisation dependencies. In such an approach, a ghost point can have several values
for each flow variable that has a Dirichlet boundary condition, one used in horizontal and
one in vertical finite-difference stencils (as would be the case for g1, g» and g in figure 2a).
Flow variables with Neumann boundary conditions are set from mirror-points along sur-
face normals as in the method described earlier. In this study, we will stick to the more
mature method of using mirror-points from surface normals. Details on the alternative
grid-line ghost-zone IBM can be found in Aarnes et al. (2018b).

2.2.2. Local-time restricted overset grids

Unlike the representation of solid bodies with most methods (IBM, body-fitted structured
or unstructured grids), codes using overset grids require splitting of the flow solver, as one
solver is needed for each grid. We limit this study to a single grid on top of a background
grid, for a more general discussion see Chesshire and Henshaw (1990) or Meakin (1995).
Yin-yang grids are not considered (although a yin-yang grid implementation exists in the
Pencil Code).
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For a flow with a solid object represented using a body-confined grid over a Cartesian
background grid, the governing equations are, in principle, solved for two different flow
domains, one with and one without a solid object present in the flow. At least one boundary
in each domain is set by interpolating flow variables from another grid, and in this way
the presence of the solid affects the flow on all grids. Admittedly, this makes overset grids
somewhat more unwieldy than IBMs.

To consider this more systematically, let us regard a fluid time step as split into four
parts: (1) solution of the governing equations on the background grid, (2) communication
of data from the background grid to the body-fitted grid, (3) solution of the governing
equations on the body-fitted grid, (4) communication of data from the body-fitted grid to
the background grid. The solution step on the body-fitted grid requires the implementation
of a Navier—Stokes solver applicable to the type of grid that is used to resolve the bluff body’s
boundary. For our case of a cylinder in a cross flow, a Navier-Stokes solver applicable to
cylindrical coordinates is necessary.

In the illustration of the mesh used in the (cylindrical) overset grid method (figure 1
b), there are no grid points inside the circular object. Strictly speaking, the background
Cartesian grid is present in the entire domain (also inside the limits of the curvilinear mesh
and inside the solid object), but only few points inside the curvilinear mesh are used, and
not a single Cartesian grid point inside the solid is (or should ever be) used.

The points of the background grid that are in use inside the curvilinear mesh are mostly
fringe-points. Fringe-points are fluid-points set by interpolation from nearby donor-points
on the overlapping grid, rather than computed using discretisation of the governing equa-
tions. Donor-points are computed in the same way as an ordinary fluid-point, unless
the interpolation is implicit, meaning that a fringe-point may be used as a donor-point
(Chesshire and Henshaw 1990), which is not the case here. A third class of points found
on overset grids are hole-points. These are unused grid points, typically found outside of
the fringe of a grid (like Cartesian grid points far inside the curvilinear grid). Fringe-,
donor- and hole-points on an overset grid generated to represent a circular object are seen
in figure 3.

During the first stage of the inter-grid communication, data is sent to the outermost grid
points of the body-fitted grid (figure 3 a). At the second stage, data is sent back to Cartesian
fringe-points (figure 3b). The fringe-points on the Cartesian grid are identified during pre-
processing, where points within a distance from the solid, illustrated by red circular curves
in figure 3(b), are selected.

For moving objects, fringe-point locations on the background grid must be re-calculated
every time step. A several layers thick zone of fringe-points is used on both grids to enable
the use of the sixth-order centred stencils at the outer edges of each grid, equivalent to the
use of a ghost-zone for the IBM.

In the illustration in figure 3, each fringe-point is surrounded by four donor-points,
as necessary in bilinear Lagrangian interpolation. If higher order interpolation is desired
the amount of donor points for each fringe points must be increased accordingly. Such an
increase is straightforward for overset grids, unlike for immersed boundary methods where
more intricate interpolation stencils are needed for high-order interpolation to avoid using
grid points that are inside the bluff body. Note, however, that a straightforward extension
from second- to third-order interpolation (or higher) does not guarantee a better solution.
This is due to possible overshoots in the interpolation polynomials. High-order Lagrangian
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Figure 3. Overset grid method. Interpolation between grids, from donor-points () to fringe-points ().
The outer points on the curvilinear grid are by default set as fringe-points, while on the Cartesian grid a
zone of fringe-points are identified during pre-processing. Cartesian grid points closer to the solid than
the inner diameter setting the fringe-point zone are hole-points. Intersections of solid grid lines repre-
sent regular fluid-points where finite-difference stencils are used to update the flow variables. At dashed
cylindrical grid lines, all intersections are fringe-points. At dashed Cartesian grid lines, intersections may
be regular fluid-points, fringe-points or hole-points. Fringe-points are identified in-between the inner
and outer interpolation zone radius (red circular lines) set according to selected interpolation scheme.
Cartesian grid points closer to the solid than the inner interpolation radius are hole-points. (colour
online). (a) Interpolation: Cartesian to curvilinear grid and (b) Interpolation: Curvilinear to Cartesian grid.
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interpolation and quadratic splines are implemented for overset grid interpolation in the
Pencil Code. For simplicity, we will restrict ourselves to bilinear Lagrangian interpolation
here.

At the solid-fluid interface, we use summation-by-parts (SBP) finite-difference opera-
tors to enhance stability of the solution. This means modifying the finite-difference stencils
in the nine grid points closest to the surface (including the surface point) along each
radial grid line, to asymmetric stencils (one-sided at the surface). The order of accuracy
for the SBP operators are third order for a sixth-order finite-difference method. Details
on these operators can be found in Strand (1994) (first derivatives) and Mattsson and
Nordstrom (2004) (second derivatives).

A novel feature of the overset grid implementation in the Pencil Code is how the restric-
tions on the time step are handled. The advective and diffusive time step restrictions are
At < C,A sznin /v and At < CyA Xmin/(|1| + ¢5), respectively, where At is the time step,
A Xmin the smallest grid spacing in any direction, and C, and C,, are the diffusive and advec-
tive Courant numbers, respectively. For a weakly compressible flow, we typically require a
very short time step, increasingly so if grid stretching is used in order to have a fine grid in
the vicinity of the solid object. However, when overset grids are used these restrictions are
no longer global restrictions on the time step, but local. Hence, by performing several time
steps on the body-fitted grid for each time step on the background grid, the efficiency of
the code may be greatly improved. In particular, this allows for a very fine resolution close
to the surface (on the body-fitted grid) without using small time steps for flow far from the
surface (on the background grid).

For all the overset grid computations in the present study, the diameter of the cylindrical
grid is three times that of the solid cylinder it is fitted to. For a consideration of the extent of
the domain covered by the body-fitted grid, the reader is referred to Aarnes et al. (2018a).

2.2.3. Anoteon dissipation

The centred finite-difference schemes used for discretisation of the governing equations
are non-dissipative. This can cause problems due to the potential growth of high-frequency
modes, leading to numerical instability.

To some extent, the summation-by-parts boundary conditions suppress such instabili-
ties that are due to boundary conditions when overset grids are used, but these boundary
stencils are not sufficient to suppress all oscillations in the solution when grid stretching
is used on the curvilinear grid. Such oscillations are most prominent in the density field.
The detrimental effect of the high-frequency modes increases as the grid spacing decreases
and may lead to diverging solutions as the grid is refined. To suppress the high-frequency
modes, a high-order low-pass filter is used on the curvilinear part of the overset grid.
The filter is a 10th-order Padé filter, with boundary stencils of 8th and 6th orders. On the
interior of the domain, the filter is given by

N

oG it + i+ oy = Y S Gien + G, 7)

n=0

where ¢ and ¢y are components k of the filtered and unfiltered solution vectors, respec-
tively, oy is a free parameter (Jos| < 0.5) and o, are fixed parameters dependent only on
o (details in Visbal and Gaitonde 1999). Boundary stencils can be found in Gaitonde and
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Visbal (2000). The Padé filter is implicit and requires us to solve a tridiagonal linear system
at each grid point, in the radial direction and a cyclic tridiagonal system in the direction
tangential to the surface. The free parameter ay is set to 0.1. With such a small value for
af, filtering the solution once per Cartesian time step is found sufficient to get a stable and
accurate solution.

Alternatively, a sixth-order hyperdiffusion operator, which is already implemented in
the Pencil Code (see e.g. Haugen and Brandenburg 2006), could have been used to filter
the solution. The benefits of this approach are that the hyperdiffusion operator is explicit
and fast, and does not require extra communication between processors. It is, however,
expected to be less sharp than the 10th-order Padé filter, as Padé filters are known to
outperform explicit filtering schemes (Visbal and Gaitonde 1999, 2002).

When IBM is used rather than overset grids, some dissipation can be turned on by
using fifth-order upwinding for the advection operators of the density rather than central-
difference stencils (details in Dobler ef al. 2006). The problem of oscillations in the density
field is, however, much less prominent when a uniform Cartesian mesh is used, so while
Padé filtering is on by default when overset grids are used, a dissipative solution by
upwinding is optional for other simulations.

3. Simple geometry

In previous studies, the order of accuracy of the solid object representations described
above has been assessed for steady flow computation. Using a slightly modified handling
of Neumann boundary conditions, Luo et al. (2016) showed that, regardless of bound-
ary condition, the IBM implementation in the Pencil Code is second-order accurate in the
vicinity of a resolved circular boundary. For the same geometry, using overset grids, Aarnes
et al. (2018a) showed the order of accuracy in the vicinity of the solid differed for difter-
ent flow variables. The radial velocity component was computed with order of accuracy
between third- and fifth orders, while the accuracy of the tangential velocity and density
was between second- and third orders, when second-order Lagrangian interpolation was
used for communication between grids. Both the mentioned studies also demonstrated
that characteristic flow parameters, such as drag, lift and shedding frequency (for unsteady
flow), could be reproduced to good agreement with previous studies, with the respective
boundary representation in use.

We will not repeat an assessment of accuracy for steady flow computations here. Rather,
we investigate the boundary representations by a direct comparison for the case of flow
pasta circular cylinder in different shedding regimes. Two-dimensional flow past a circular
cylinder in the vortex shedding regime is a classical benchmarking case for fluid dynamic
simulations with a solid object present in the flow domain. We simulate such a flow with
Reynolds number 100, a Reynolds number where the von Kiarman vortex street can be
observed in the cylinder’s wake. The Reynolds number is defined as Re = Uy D/v, where
U is the incoming flow velocity and D is the diameter of the cylinder obstructing the
flow. In addition, we test each boundary representation for a steady flow (Re = 20) and
an unsteady flow with more chaotic tendencies (Re = 400). Note that three-dimensional
effects in the latter flow are suppressed as we restrict ourselves to a two-dimensional
domain. A rectangular domain with domain size L, x Ly = 10D x 20D is used, with a
body-fitted grid with diameter 3D used in the overset grid simulations. For overset grids,
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(a) (b)

Figure 4. Flow visualisation. Contours of instantaneous vorticity w, = [V x u], (normal to the view
plane) plotted for three different Reynolds numbers. Inflow at the top of plane. (a) Re = 20, (b) Re = 100
and (c) Re = 400. (Colour online).

grid stretching is used in the radial direction to obtain approximately quadratic cells at
the cylinder surface and in the region where the interpolation between the grids is per-
formed. In this region, the cells of both grids are similar in size. The inflow Mach number
(Ma = Ux/cs) is set to 0.1, and the Reynolds number is varied by adjusting the value of the
kinematic viscosity. The vorticity component normal to the xy-plane for the three different
Reynolds number flows with mean flow in the y-direction can be seen in figure 4.
Consider figure 5, depicting normalised deviations of mean drag coeflicient and root-
mean-square lift coefficient computed at different resolutions with the two methods for
Re = 100. For both cases, the results from the finest grid are used for normalisation.
Strouhal number (dimensionless shedding frequency) is not included in the figure, since
it is barely affected by the grid spacing and is therefore not a good measure of grid inde-
pendence. The number of grid points per diameter, on the Cartesian grid, is given on the
horizontal axis. Note that this might be somewhat misleading, as the overset grid uses two
grids to cover the flow domain. For the flow domain and grid sizes used in this study,
an overset grid simulation uses 10% more grid points than a corresponding IBM sim-
ulation when D/Ax of the two simulations is the same. No matter this difference, it is
clear that the overset grid method greatly outperforms the IBM with respect to the neces-
sary grid required to reach grid independency under the conditions of these simulations.
Using a background grid with D/Ax > 24, the deviation from results on a D/Ax = 64
grid is less than 0.16% for the overset grid. The results from the IBM calculations con-
verge much slower. To reach a comparable level of grid independence to that of the overset
grid with D/Ax = 24, a grid using IBM requires D/Ax > 112. Such a fine grid yields a
deviation of less than 0.1% in drag and 0.16% in lift, from the results at the finest grid
level (D/Ax = 128). If these grids (D/Ax = 24 for overset grids, D/Ax = 112 for IBM)
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Figure 5. Normalised values for mean drag coefficient (Cp) and root-mean-square lift coefficient (C[)
for flow with Re = 100 computed at grids with varying coarseness. The cylinder in the flow is represented
either by the immersed boundary method (IBM) or with overset grids (OG). (colour online).

are deemed sufficiently accurate resolutions for grid independent solutions for the differ-
ent solid object representations, the IBM requires 18.1 times as many grid points as the
overset grid method on the two-dimensional domain used in these simulations. In these
simulations, the advective restriction is more strict than the viscous restriction, hence, the
time step is proportional to the grid spacing. This means that there is a factor 4.7 difference
in time step between D/ Ax = 24 and D/ Ax = 112, that has an additional large impact on
the (in)efficiency of the IBM as compared to the overset grids.

For practical application, it may perhaps be excessive to require &~ 0.1% deviation for
results to be deemed grid independent. With a resolution D/Ax > 64 in the simulations
performed with IBM, there is less than 0.5% deviation in drag and less than 1% deviation
in lift. Choosing such a resolution will, in many cases, be an acceptable trade-off between
accuracy and efficiency. This reduces the difference between the overset grid and IBM
somewhat, although it warrants the use of a somewhat coarser grid for overset grid com-
putations as well. Note that in computing drag and lift forces on the cylinder represented
by the IBM, so-called force-points are used. The force-points are distributed uniformly
around the cylinder, and viscous and pressure forces are approximated at these points,
using data from surrounding grid points. Some of the oscillations in the computed mean
drag and root-mean-square lift coefficients seen in figure 5 may be due to a change in the
position of force-points when the grid is refined.

A relevant consideration when the different costs associated with overset grids and IBM
are compared is the computational cost of interpolation in the two different methods. With
equally spaced Cartesian grids, more fringe-points are interpolated with overset grids than
mirror-points interpolated with the ghost-point IBM method. This is due to overset grids
having two zones of interpolation (one for interpolation from Cartesian to cylindrical
and one for interpolation back to Cartesian), a larger circumference of the interpolation
regions (interpolation farther from the cylinder) and the need for a deeper ghost-zone on
the Cartesian grid in overset grids since no special handling for fluid-points close to the
fringe-point region is used. For the D/ Ax = 24 grid, the total number of fringe-points for
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Table 1. Comparison with data sets from previous studies for Re = 100.

[(Ly, + Ly,) x L,]/D? G of St
Kim etal. (2001) 70 x 100 133 0.22% 0.165
Pan (2006) 60 x 60 1.32 0.226®) 0.16
Haugen and Kragset (2010) 70 x 35 1.328 - 0.166
Park etal. (1998) (50 + 20) x 100, 133 0.235() 0.165
Shietal. (2004) 3000 1.318 - 0.164
Mittal (2005) 100 x 100 1.322 0.226 0.164
Stalberg et al. (2006) 160, O 1.32 0.233%% -
Lietal. (2009) 100 x 100 1336 - 0.164
Posdziech and Grundmann (2007) (20 4+ 50) x 400 1.350 0.234%) 0.167
Posdziech and Grundmann (2007) (4000 + 50) x 80000 1.312 0.224%) 0.163
Quetal. (2013) 60 x 60 1.326 0.2191 0.166
Quetal. (2013) 200 x 200 1.310 0.2151 0.165
Present, IBM 50 x 50 1.351 0.232 0.166
Present, overset grid 50 x 50 1.347 0.234 0.166

Asterisk denotes scaled values of C;. The non-rectangular grids are marked as circular inlet/C-type (1) or circular/O-grid (O).
Domains in which the cylinder is not centred have both upstream and downstream lengths given.

the overset grids is approximately 1600 (< 1.3% of total number of grid points). Note that
the fraction of fringe-points to grid points decreases as the grid spacing decreases (<0.65%
grid points are fringe-points when D/ Ax = 48). The number of mirror-points in an IBM
simulation with the same grid spacing is approximately 200. A fringe-point is updated only
once every Runge—Kutta time step, while mirror-points are updated every sub-time step.
Hence, approximately 2.5 times as much interpolation is performed when the solid is repre-
sented by overset grids rather than by IBM, if the same grid spacing is used in the different
solid object representations. As much finer grids are required with IBM than with overset
grids, the advantage of a smaller interpolation cost with IBM is lost.

To verify that the flow is computed accurately, the resolutions from the discussion
above (D/Ax = 24 for overset grids, D/Ax = 64 for IBM) are used in a simulation on
a large domain for each of the solid body representations. The domain size is set to
Ly = L, = 50D. The resulting mean drag, root-mean-square lift and Strouhal frequency
are compared to results reported from other studies in table 1. Domain sizes and types
are listed in the table, along with the most relevant flow coeflicients. Some of the listed
values for root-mean-square lift coefficients are scaled values, as only amplitude of the lift
coefficient was reported from these particular studies. A scaling factor of 1/+/2 has been
used (since the lift coeflicient is a smooth sinusoidal-like function with zero mean value),
and the scaled results are marked with a superscript (*). The studies in table 1 use a wide
range of numerical methods to compute the flow, including finite-volume, finite-difference,
finite-element, spectral element and lattice-Boltzmann methods. The top three studies in
table 1 use immersed boundary methods to represent the solid cylinder, while the remain-
ing studies (present IBM simulations excluded) use body-fitted methods. Only Haugen
and Kragset (2010) and Li ef al. (2009) simulate compressible flows (where the former of
these uses the Pencil Code with the IBM described here, but with different domain size
and resolution). Table 1 includes two results from each of the studies by Posdziech and
Grundmann (2007) and Qu et al. (2013) to include results from both comparable domain
sizes to the present study, and highly accurate results from very large domains. The present
results, both those computed with the IBM and the results from overset grid simulations,
agree well with the results found in the literature.
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Figure 6. Normalised values for mean drag coefficient (Cp) for flow with Re = 20, mean drag coefficient
and root-mean-square lift coefficient (C}) for flow with Re = 400. Results are computed at grids with
varying coarseness. The cylinder in the flow is represented either by the immersed boundary method
(IBM) or with overset grids (OG). (a) Re = 20 and (b) Re = 400. (Colour online).

Grid independence results for Re = 20 and Re = 400 are depicted in figure 6. The results
are similar to those obtained for Re = 100: there is a much more rapid convergence to grid
independent solutions with overset grids than with IBM. With overset grids, a background
grid with D/Ax > 32 yields less than 0.2% deviation in the drag and lift coefficients, at
Re = 400. This means using overset grids Ny x Ny + N, x Ny = 320 x 640 + 64 x 320.
With IBM, a grid with D/Ax > 128 is necessary to get comparable grid independence
(deviation less than 0.25% in drag and lift coefficients). That means using a 1280 x 2560
grid for this specific domain size, and a factor 4 larger time step than on the background
grid in the overset grid simulation. For the steady flow, the lift coefficient is not defined, and
for this reason we include only the drag coefficient in the grid independence comparison.
The results in figure 6(a) show that D/Ax = 12 is sufficient to obtain drag with less than
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0.4% deviation from the finest grid result for the overset grid computation. With IBM,
D/Ax = 32 is needed to get the deviation down to the same level.

From these tests, it is clear that in representing the simple geometry of a circular cylin-
der with the Pencil Code, the method of overset grids is far superior to the IBM in terms
of efficiency and accuracy. Not only is far less grid points required (and, consequently a
larger time step allowed) to reach a grid independent solution, there is also far less varia-
tion in the solution before grid independence is reached. With the IBM, we may have to
accept a deviation of, say, 1.0% in mean drag and root-mean-square lift coefficients from
one grid to a finer one. In the case of overset grids, on the other hand, a deviation one
order of magnitude smaller than this can be achieved at reasonable computational costs.
As mentioned, however, some of the variation seen in the IBM results may be attributed
to the way the coeflicients themselves, and not the flow, are computed. The positioning of
force-points where drag and lift are computed is affected by the choice of resolution, but
has no influence on the solution of the flow equations.

That being said, we should now address the limitations of the overset grid method.
In short, the problem of adaptability to different geometries is a major drawback of this
method. Even an extension from a 3D cylinder to a sphere would require a completely new
grid handling, with updates needed all the way down to the level of finite-differences in the
code. For more complex shapes, where an analytic transformation from Cartesian space
to the fitted grid coordinates is not available, this will become increasingly difficult, if not
impossible. It is in this respect that the full potential of the IBM can be achieved. The sim-
ple handling of boundaries and lack of any modification needed in the treatment of the
governing equations make the ghost-zone IBM ideal for complex geometries of all kinds.
How this is done in the Pencil Code is the topic of the remainder of this paper.

4, Complex geometries

One of the difficulties in extension to irregular geometries of a ghost-cell immersed bound-
ary method’s lies in how to track the boundaries correctly. To the best of our knowledge, two
ways to overcome this exist: the unstructured triangle surface mesh (Gilmanov et al. 2003;
Mittal et al. 2008; Nagendra et al. 2014) and the combination with level-set signed distance
functions (Liu and Hu 2014; Uddin et al. 2014). The first method can be used to repre-
sent arbitrary geometries and has gained its popularity in biological fluid mechanics. For
example, interactions between a very complex body, such as a bluegill sunfish pectoral fin
or a false vocal fold, and its surrounding flows have been studied in a two-way coupled
manner via the first method (Zheng et al. 2009; Dong et al. 2010). This method, with an
unstructured surface mesh for the complex boundary, was introduced and implemented in
the Pencil Code by Luo et al. (2016). Arbitrary two-dimensional immersed boundaries are
represented by many small line-segments. Each line-segment is identified by two vertices
as shown in figure 7. The general procedure is still the same as illustrated in section 2.2.1,
other than some special handling of fluid-points and mirror-points around the solid object.

The first difference lies in the identification of a given grid point to be a fluid-point or
a solid-point. For a circular object, the distance from a given grid point to the centre of
the circle is calculated and compared with the radius of the circular object to identify if
this grid point is a solid grid point or not, i.e. if it is inside the object or not. This becomes
an ineffective method for a complex geometry, where no single radius can be found for
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Figure 7. Immersed boundary method. (a) Identifying grid points as solid-points or fluid-points for a
two-dimensional geometry by dot product of line-segment normal and directional vector grid points. (b)
Schematic diagram for ghost points and the method to assign mirror/image-points along lines normal to
line-segments between vertex points. (e) solid-point, (#) fluid-point, (O) centroid of line-segment, (A)
vertex of line-segment, (1) line-segment’s normal vector, (CJ) boundary intersect point, (ll) mirror-point.
(a) Identifying fluid/solid-points and (b) mirror-point computation.

the object. In this case, for a given grid point, the closest surface element is detected first.
Second, the dot product between the closest line-segment’s normal vector and the direction
vector pointing from the centroid of the closest facet to the given grid point is calculated.
The sign of the dot product determines the identification of the grid point. Generally, a
negative result indicates a solid-point for the convex boundary shown in figure 7(a). The
treatment of some special cases that may occur during this process is described in Luo
et al. (2017).

After the identification of solid/fluid-points, three layers of ghost points are assigned to
construct a six-order central finite-difference stencil as shown in figure 7(b). Following this,
a corresponding boundary intercept point is determined for each one of them. The method
to detect the boundary intercept points is different from that of the simple circular geome-
try. First, the vertex closest to a given ghost point is determined. Then, the set of line/surface
elements sharing that vertex can be identified and a search is carried out among these
elements to find the boundary intercept point (which should lie within the line/surface
elements) as shown in figure 7(b). While conceptually simple, the implementation can be
very complicated and special attention is needed to find the correct intercept point. Here,
we adopt a method based on the robust procedure proposed in Mittal et al. (2008). For
details, see Luo et al. (2017).

Once boundary intercept points are determined for every ghost point, a corresponding
mirror-point can be obtained. The mirror-points are set either by symmetry over the solid’s
line element (corresponding to the way mirror-points are set with a simple geometry, see
figure 2), or at a constant distance away from the boundary intercept point. This distance, §
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Figure 8. Complex geometry. A combination of a semi-circular cylinder with radius R, and semi-elliptical
cylinder with major axis b and minor axis R. The circular side of the geometry faces the inlet.

in figure 7(b), is typically set to /2Ax for 2D geometries and +/3Ax for 3D geometries, to
ensure that every mirror-point is surrounded by fluid-points only. The same interpolation
procedure as for the simple circular geometry (i.e. the bilinear interpolation method) can
be adopted for the calculations of the parameters of the mirror-points. An optional way is
the inverse distance weight interpolation method (Chaudhuri et al. 2011). Finally, the flow
variables at the ghost-points can be calculated with the aid of the mirror-points and the
given boundary conditions at the boundary intercept point by linear interpolation. Three
types of boundary conditions, the Dirichlet, Neumann or Robin boundary condition, have
been implemented, similarly as for the simple circular object discussed in section 2.2.1. For
more details and test of the boundary conditions, the reader is referred to Luo et al. (2016).

This new method can be straightforwardly extended to complex three-dimensional
geometries, where triangular surface elements can be adopted to represent the surfaces.
Details about the method and its implementation can be found in Luo et al. (2017) and
will not be repeated here. In Luo et al. (2017), a spatial convergence test indicates that
only the bilinear interpolation procedure can obtain a local second-order accuracy. Sys-
tematic validations have also been conducted through calculations of flow past an elliptical
cylinder, square cylinder, semi-cylinder, as well as an NACA0012 airfoil. Quantitative com-
parisons with reported results in the literature show that the present method can accurately
reproduce the main features of the fluid flow past solid objects with complex geometry,
quantified by coeflicients such as drag and lift coeflicients, Nusselt number and Strouhal
number.

To demonstrate the IBM capabilities for a two-dimensional flow, we have simulated flow
past geometries constructed by combining a semi-circle and semi-elliptical cylinder. The
geometry is seen in figure 8. The radius of the semi-circle (R) and the major axis of the
semi-ellipse (b) can be varied to construct different geometries. Three cases, with R/b =
2.0, 1.0 (circle), and 0.5, respectively, are considered. For each case, 360 line segments are
used to resolve the immersed geometry. Other parameters related to the computational
domain are kept consistent with the Re= 100 case in the grid refinement part of section
3, except that the solid body is placed at a distance 5D from the inlet, in the streamwise
direction, rather than in the centre of the flow domain (10D from the inlet).

The vorticity component w; normal to the view plane for flow past the three different
geometries can be seen in figure 9. It can be seen that as the length b of the semi-ellipse
is increased, the length of the bound vortex increases accordingly. This results in different
patterns of von Karman vortex streets for each of the three cases. The corresponding mean



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 19

(a) (b) (c)

Figure 9. Flow visualisation. Contours of instantaneous vorticity w, = [V x u], (normal to the view
plane) plotted for three different geometries at Re = 100. Inflow at the top of plane. (a) R/b = 2.0, (b)
R/b = 1.0and (c) R/b = 0.5. (Colour online).

Table 2. Comparisons of mean drag coeffi-
cient, root-mean-square lift coefficient, and
Strouhal number for different geometries.

R/b G q st

2.0 1.55 0.34 0.190
1.0 135 0.26 0.175
05 117 0.11 0.168

drag coeflicient, root-mean-square lift coefficient and Strouhal number are listed in table 2.
It is obvious that even though the immersed boundary of the third geometry is the longest,
the drag force it experiences is the least. This is perhaps not surprising, as the shape of the
object is closer to a streamlined body for the largest value of b, a shape that is known for
low drag.

5. Concluding remarks

In this study, we have described and compared the two solid body representations avail-
able in the high-order finite-difference code known as the Pencil Code. The two methods,
the immersed boundary method and overset grids, are fundamentally different in many
aspects. These differences can be summed up as

(a) The ghost-point IBM can be implemented straightforwardly in an existing flow solver,
by extending the code without requiring major modifications to the existing solver.
Using overset grids requires a more generalised flow solver, able to handle all grids that
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are overset one another (Cartesian, cylindrical, etc.). This may require a modification
of the flow solver itself, when overset grids are first implemented in an existing fluid
dynamics code.

(b) Neither the IBM nor overset grids are mass conserving, as they both rely on inter-
polation of flow quantities to either mirror-points or non-conforming grid points,
respectively. As the interpolation is moved away from the solid surface when over-
set grids are used, the accuracy loss following from interpolation is expected to have a
reduced impact on flow properties directly related to the solid object (boundary layer
properties, etc.).

(¢) Foracircular cylinder, using the overset grid method in the Pencil Code is far superior
to using IBM. Reaching grid independent solutions with IBM required 4.7 and 4 times
as many grid points in each direction for Re = 100 and 400, respectively, as compared
to the background grid used in the overset grids method. In total, this meant using
18.1 and 14.5 times as many grid points in our two-dimensional simulations with IBM
as compared to that with overset grids at these Reynolds numbers. In addition, there
comes a much stricter limitation on the time step for the fine grid used in the IBM.
Such a limitation is only present on the curvilinear grid in the overset grid method,
while a 4-5 times as large time step can be used on the coarse background grid.

(d) TheIBMis highly flexible. The implementation in the Pencil Code can handle complex
geometries, that is, surfaces where an analytic surface representation is not available.
This opens up a large area of research that cannot be studied with overset grids.

The development of both IBM and overset grids is far from over, and the evolution
of these methods in the Pencil Code is destined to continue as long as researchers use
the code and implement their own improvements into this open-source software. Perhaps,
in time, overset grids can become more flexible, and the high-order accuracy achieved
for the simple geometry can be available for more complex shapes (e.g. by using many
grids overset one another). Alternatively (or, perhaps, in addition), the accuracy of the
IBM implementation may be improved through the implementation of stable, high-order
interpolation of mirror-points in the vicinity of the solid object. We hope that with this
paper, more researchers will be attracted to use the Pencil Code for simulations of flow past
solid objects. Only in this way can the advancements of the solid object representations in
the software continue, in the spirit of open-source software development.
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Appendix. Sample cases

To get started with simulations of flow past a cylindrical geometry using the Pencil Code, sample
cases that are available with the download of the code (The Pencil Code 2018) may be useful. From
the pencil-code directory, the sample cases can be found in

./ sanpl es/ 2d-test s/ cyl i nder _deposition

. sanpl es/ 2d-test s/ cyl i nder _deposition_ogrid

The postfix ogrid denotes the overset grid sample case. To compile and run a sample case, use the
commands pc_bui | d,pc_start and pc_r un. Both sample cases are simulations of a particle-
laden flow past a cylinder at Re = 100, in which particles may impact and deposit on the cylinder
surface. For documentation on the handling of particles and particle deposition with the cylinder
represented by IBM and overset grids, the reader is referred to Haugen and Kragset (2010) and
Aarnes et al. (2018a), respectively.
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