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ABSTRACT

We discuss, using simple analytical models and magnetohydrodynamic (MHD) simulations,

the origin and parameters of turbulence and magnetic fields in galaxy clusters. Any pre-existing

tangled magnetic field must decay in a few hundred million years by generating gas motions

even if the electric conductivity of the intracluster gas is high. We argue that turbulent motions

can be maintained in the intracluster gas and its dynamo action can prevent such a decay and

amplify a random seed magnetic field by a net factor of typically 104 in 5 Gyr. Three physically

distinct regimes can be identified in the evolution of turbulence and magnetic field in galaxy

clusters. First, the fluctuation dynamo will produce microgauss (μG)-strong, random magnetic

fields during the epoch of cluster formation and major mergers. At this stage pervasive turbulent

flows with rms velocity of about 300 km s−1 can be maintained at scales of 100–200 kpc. The

magnetic field is intermittent, has a smaller scale of 20–30 kpc and average strength of 2 μG.

Secondly, turbulence will decay after the end of the major merger epoch; we discuss the

dynamics of the decaying turbulence and the behaviour of magnetic field in it. Magnetic field

and turbulent speed undergo a power-law decay, decreasing by a factor of 2 during this stage,

whereas their scales increase by about the same factor. Thirdly, smaller-mass subclusters and

cluster galaxies will produce turbulent wakes where magnetic fields will be generated as well.

Although the wakes plausibly occupy only a small fraction of the cluster volume, we show

that their area-covering factor can be close to unity, and thus they can produce some of the

signatures of turbulence along virtually all lines of sight. The latter could potentially allow

one to reconcile the possibility of turbulence with ordered filamentary gas structures, as in

the Perseus cluster. The turbulent speeds and magnetic fields in the wakes are estimated to

be of the order of 300 km s−1 and 2 μG, respectively, whereas the turbulent scales are of the

order of 200 kpc for wakes behind subclusters of a mass 3 × 1013 M� and about 10 kpc

in the galactic wakes. Magnetic field in the wakes is intermittent and has the scale of about

30 and 1 kpc in the subcluster and galactic wakes, respectively. Random Faraday rotation

measure is estimated to be typically 100–200 rad m−2, in agreement with observations. We

predict detectable polarization of synchrotron emission from cluster radio haloes at wavelengths

3–6 cm, if observed at sufficiently high resolution.
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1 I N T RO D U C T I O N

Intergalactic gas in clusters of galaxies is magnetized (see reviews

by Kronberg 1994; Carilli & Taylor 2002; Govoni & Feretti 2004).

�E-mail: kandu@iucaa.ernet.in (KS); anvar.shukurov@ncl.ac.uk (AS);

nils.haugen@phys.ntnu.no (NELH)

The number of clusters that exhibit detectable synchrotron emis-

sion is relatively small, but it is believed that a magnetic field is

present in most clusters (unlike relativistic electrons). Therefore, a

more informative observational tracer of intracluster magnetic fields

is Faraday rotation of the polarization plane of background radio

sources and central radio galaxies. Clarke, Kronberg & Bohringer

(2001) conclude, from their statistical study of Faraday rotation

in 16 galaxy clusters, that random magnetic fields of a strength
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(5–10) × (l/10 kpc)−1/2 μG (with l the field scale) permeate the gas

within about 500 kpc from the cluster centre; the area-covering fac-

tor of magnetic fields is close to unity. The Faraday rotation measures

(RMs) detected are about 200 rad m−2 for the lines of sight through

clusters’ central parts and about 100 rad m−2 farther out (see also

Clarke 2004; Johnston-Hollitt & Ekers 2004). Important constraints

on intracluster magnetic fields come from limits on X-ray emission

produced from microwave background photons by inverse Comp-

ton scattering off relativistic electrons (Sarazin 1988; Bagchi, Pislar

& Lima Neto 1998). Observational evidence is compatible with a

random magnetic field of rms strength of 1–10 μG and coherence

length of about 10–20 kpc.

Faraday rotation maps of a number of radio galaxies in clusters

have also been analysed. Eilek & Owen (2002) studied Faraday

rotation maps of radio sources in the centres of the Abell clusters

A400 and A2634, and found patches of RM fluctuations on scales

of about 10–20 kpc. Assuming this to be also the coherence scale

for the field, these authors deduce field strengths of 1–4 μG. Vogt

& Enßlin (2003, 2005), using a novel technique (Enßlin & Vogt

2003), estimate magnetic field strength to be 3 μG in A2634, 6 μG

in A400 and 7 μG in Hydra A. They obtain field correlation lengths

of 4.9, 3.6 and 3 kpc for these clusters, respectively. It cannot be

excluded, however, that the Faraday rotation of cluster radio sources

is contaminated by that arising in dense turbulent cocoons around

the radio galaxies, rather than in the intracluster medium (ICM)

proper (Rudnick & Blundell 2003; see Enßlin et al. 2003 for another

view). For this reason, the statistical studies of Faraday rotation

of background radio sources, referred to above, provide perhaps a

more convincing evidence for cluster-wide magnetic fields and their

properties.

The origin of the cluster magnetic fields remains unclear. Carilli

& Taylor (2002) (see also Tribble 1993a) argue that the small value

of electric resistivity of the intracluster plasma guarantees that the

decay time of magnetic field will be comparable to or exceed the

cluster lifetime. They conclude that any magnetic field (e.g. that

captured by a cluster during its formation) would survive for a long

time. However, any inhomogeneous magnetic field will drive mo-

tions via the Lorentz force, and the motions will decay, plausibly

in the form of decaying magnetohydrodynamic (MHD) turbulence

(e.g. Biskamp 2003; see below). The turbulent decay time is com-

parable to the eddy turnover time of the largest eddies, about 108 yr,

irrespective of the resistivity or viscosity of the gas. (Here we have

taken a coherence scale of the order of 10 kpc for the field and the

induced motions, with associated turbulent velocities of the order of

100 km s−1). Although the energy density in MHD turbulence de-

cays with time as a power law, this time-scale is still much shorter

than the typical age of a cluster, which is thought to be several bil-

lion years. Therefore, one has to provide explicit explanation of the

origin and persistence of magnetic fields in the clusters; reference to

the low Ohmic resistivity of the intracluster plasma is not sufficient

if the gas is turbulent or the magnetic field is tangled.

An obvious option to explain intergalactic magnetic fields is to

consider magnetic fields stripped from galaxies. Since the intraclus-

ter gas is enriched with metals, at least part of it originates in galaxies

(Sarazin 1988). However, the strength of magnetic field produced

by the stripping cannot exceed �0.1 μG even in the cores of rich

clusters and even if spiral galaxies with relatively strong large-scale

field are involved (see Appendix A). Another possibility is that the

intracluster field is supplied by active galaxies within the cluster.

As we discuss in Appendix A, these mechanisms can provide rel-

atively strong magnetic field but fail to explain how the field can

be maintained against turbulent decay. In addition, it is not quite

clear how efficiently the magnetized relativistic plasma of the radio

lobes can be mixed with the thermal intergalactic plasma and what

would be the resulting scale of magnetic field. Altogether, the above

mechanisms can only provide suitable seed magnetic field for the

dynamo action in the intracluster plasma.

In most astrophysical systems, like disc galaxies, stars and plan-

ets, rotation is crucial for maintaining their magnetic fields, both by

providing strong shear and by making (when coupled with stratifica-

tion) random flows helical, and hence leading to mean-field dynamo

action. However, galaxy clusters are believed to have fairly weak ro-

tation (if any at all), so one has to appeal to some other mechanisms

for understanding cluster magnetism.

Another possibility to generate magnetic fields is related to the

fluctuation dynamo action (Batchelor 1950; Kazantsev 1967), where

random flow of electrically conducting fluid generates random mag-

netic field (Zeldovich, Ruzmaikin & Sokoloff 1990). This mecha-

nism does not require any rotation or density stratification, and only

relies on the random nature of the flow; so fluctuation dynamos can

be active in virtually any turbulent environment where the plasma

is ionized. Apart from the randomness of the flow, it is required that

the magnetic Reynolds number is large enough, that is, the electric

conductivity is high enough, and/or plasma motions are sufficiently

intense, and/or their scale is sufficiently large.

The earliest theories of intracluster magnetic fields were based,

implicitly or explicitly, on fluctuation dynamo theory under the

assumption that galaxy clusters are steady-state turbulent systems

(Jaffe 1980; Roland 1981; Ruzmaikin, Sokoloff & Shukurov 1989;

Goldman & Rephaeli 1991; De Young 1992). The source of turbu-

lence adopted by several authors was turbulent wakes of the cluster

galaxies. This picture has to be reconsidered for several reasons.

First, turbulence from galactic wakes can fill the cluster volume

only if the effective galactic radius is of the order of 10 kpc (e.g.

Ruzmaikin et al. 1989), that is, if the interstellar gas is not stripped

by the ram pressure of the intracluster gas. If the gas stripping is com-

plete, the wake is only produced by gravitational accretion (Bondi

1952), and its radius is about the accretion radius r g = 2GM/(c2
s +

V 2) where cs is the speed of sound, V is the galactic speed, M is the

galactic mass, and G is Newton’s gravitational constant. For cs =
103 km s−1, V ≈ cs and M = 1011 M�, the gravitational accretion

radius r g � 0.5 kpc is much smaller than both the galactic radius and

the apparent scale of the random magnetic field in the intergalac-

tic gas (both usually assumed to be of the order of 10 kpc). Hence,

sufficiently strong, volume-filling turbulent wakes whose width is

comparable to the galactic size can only arise if the galaxies retain

significant amounts of their interstellar gas. If the stripping of in-

terstellar gas by ram pressure is efficient, galactic wakes are rather

weak (Portnoy, Pistinner & Shaviv 1993; Balsara, Livio & O’Dea

1994; Acreman et al. 2003, and references therein; see however

Toniazzo & Schindler 2001 who argue that the stripping efficiency

is exaggerated in the above papers). Therefore, turbulence gener-

ated in galactic wakes may not fill the cluster volume (see also

Section 2.3.4).

Further, numerical simulations of De Young (1992), using a clo-

sure model, gave pessimistic estimates for magnetic fields produced

by the dynamo when the turbulence is induced by galactic wakes.

However, it is not clear if the resolution of those simulations (i.e.

the effective magnetic Reynolds number) was high enough to obtain

dynamo action, so this objection to the dynamo models is question-

able. Recent direct simulations of dynamo action in turbulent flows

(Haugen, Brandenburg & Dobler 2003, 2004; Schekochihin et al.
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Table 1. Summary of turbulence and magnetic field parameters at various stages of cluster evolution: duration

of the stage (the last two stages represent steady states), the rms velocity v0 and scale l0 of turbulence and eddy

turnover time t0 (for the decaying turbulence, values for the middle of the decay stage are given, 2 Gyr after its

start), the equipartition magnetic field Beq given by equation (23) (i.e. maximum field strength within a turbulent

cell), thickness of magnetic filaments and sheets lB, defined in equation (19), for the statistically steady state of

the dynamo, the rms magnetic field within a turbulent cell B rms ≡ 〈B2〉1/2 given by equation (24) (the latter two

obtained for Rm,cr = 35), and finally, the standard deviation of the Faraday rotation measure σ RM [calculated

using equation (28) for the volume-filling turbulence within 500 kpc of the centre and path length of 750 kpc in the

first two lines, and assuming one transverse wake along the line of sight in the last two lines, using equation (30)].

Subcluster mass of 3 × 1013 M� has been assumed.

Evolution stage Duration v0 l0 t0 Beq lB 〈B2〉1/2 σ RM

(Gyr) (km s−1) (kpc) (Gyr) (μG) (kpc) (μG) (rad m−2)

Major mergers 4 300 150 0.5 4 25 1.8 200

Decaying turbulence 5 130 260 2.0 2 44 0.8 120

Subcluster wakes 260 200 0.8 4 34 1.6 110

Galactic wakes 300 8 0.03 4 1.4 1.6 5

2004) have confirmed the efficiency of dynamo action in random

non-helical flows.

Perhaps more importantly, cluster dynamics has been reconsid-

ered recently, and the emerging picture is very different in that clus-

ters may not be relaxed systems, but still remain in the state of for-

mation via major mergers and accretion of smaller-mass subclusters.

Numerical simulations and recent observations strongly suggest that

a random flow, perhaps of turbulent nature, can be maintained for a

few crossing times of the forming galaxy cluster (Norman & Bryan

1999). Roettiger, Stone & Burns (1999a) and Roettiger, Burns &

Stone (1999b) have found that magnetic field can be amplified by

these motions [see also results obtained with smoothed particle hy-

drodynamics (SPH) simulations by Dolag, Bartelmann & Lesch

(1999, 2002)]. However, the resolution of the simulations is still

poor, and quantitative estimates of the turbulence parameters and

especially of its effects on magnetic field are very uncertain.

In addition to the volume-filling flow produced during the clus-

ter formation, significant random flows can still be generated in

wakes behind infalling subclusters and cluster galaxies. These are

not expected to fill the cluster volume, but we argue below that they

can have significant area-covering factor. There is also a possibil-

ity that radio galaxies can stir the intracluster gas as their plasma

buoyantly rises through the gas (Brüggen et al. 2002; Enßlin &

Heinz 2002). Another possible consequence of radio galaxy jets

and/or lobes propagating at subrelativistic speeds through the clus-

ter plasma, is the generation of turbulence in a cocoon surrounding

the radio source (see, e.g. Reynolds, Heinz & Begelman 2002).

The content of this paper is as follows. We consider the evolution

of turbulence in the intracluster gas of a galaxy cluster during and

after its formation in Section 2. Random flows produced during the

merger epoch can lead to magnetic field generation via the fluctu-

ation dynamo as discussed in Section 3. In Sections 2.2 and 4, we

present evidence that the decay of both magnetic and kinetic ener-

gies after the epoch of major mergers will be a power law in time,

rather than exponential, because of the turbulent nature of the flow.

During the decay phase of the turbulence, the correlation scale of

the magnetic field will grow (Frisch 1995; Olesen 1997; Biskamp

& Müller 1999; Christensson, Hindmarsh & Brandenburg 2001),

which slows down the decay of the Faraday RM produced in the in-

tracluster gas (Section 5.1). In Section 2.3, we argue that significant

turbulence and magnetic field amplification can occur in turbulent

wakes of smaller-mass subclusters and cluster galaxies. The tur-

bulent wakes may not fill the volume, but can cover the cluster’s

projected area (Section 2.3.2). We present order-of-magnitude esti-

mates of the parameters of the random flows at various stages of the

cluster evolution in Section 2, and of magnetic fields generated by

the flows, in Section 3, which are further substantiated by numerical

simulations of dynamo action in driven and decaying random flows

discussed in Section 4. Faraday RM and polarized radio emission

produced by these magnetic fields are discussed in Section 5. Our

results are summarized in Section 6 and Table 1.

2 I N T R AC L U S T E R T U R BU L E N C E

An upper limit on the turbulent velocity in a steady-state galaxy

cluster follows from the requirement that the rate of dissipation

of the turbulent energy should not exceed the X-ray luminosity of

the cluster LX, that is, 1
2
v3

0/l0 � LX/Mg, where v0 and l0 are the

turbulent speed and scale, respectively, and Mg is the mass of the

intergalactic gas. This yields

v0 � 180 km s−1

(
l0

200 kpc

)1/3(
LX

1045 erg s−1

)1/3

×
(

Mg

1014 M�

)1/3

. (1)

This restriction applies to a steady state, and stronger turbulence

can be driven in an evolving cluster, where the energy released by

the decay of turbulent motions heats up the gas. Therefore, turbulent

velocities significantly exceeding the above value can be considered

as an indication of the cluster’s ongoing evolution. The turbulent

nature of the flow is important, however, as equation (1) only applies

to turbulent flows and has to be reconsidered in the case of a random

flow without turbulent energy cascade. As we argue below, turbulent

motions during the epoch of cluster formation are intense enough

to violate the constraint (1) because they keep evolving and their

dissipation contributes to the heating of the intracluster gas to the

virial temperature.

We now discuss various sources of turbulence in galaxy clusters.

2.1 Turbulence produced during cluster formation

Theories of hierarchical structure formation suggest that clusters of

galaxies have been assembled relatively recently. N-body simula-

tions indicate that the clusters form at the intersection of dark matter

filaments in the large-scale structure, and result from both major
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mergers of objects of comparable mass (of the order of 1015 M�)

and the accretion of smaller clumps on to massive protoclusters. It is

likely that intense random vortical flows, if not turbulence, are pro-

duced in the merger events (Kulsrud et al. 1997; Norman & Bryan

1999; Ricker & Sarazin 2001). These would originate not only due

to vorticity generation in oblique accretion shocks and instabilities

during the cluster formation, but also in the wakes of the smaller

clumps. In this section, we summarize some of the work on the

cluster-wide turbulence resulting from major mergers. Its conse-

quences for the generation of cluster magnetic fields are considered

in Section 3.

There have been several numerical simulations of gas dynamics

during the formation of galaxy clusters. Norman & Bryan (1999)

find that the ICM becomes turbulent during cluster formation, with

turbulent velocities of about 400 km s−1 within 1 Mpc from the cen-

tre of a cluster and eddy sizes ranging from 50 to 500 kpc; the

random flow is volume filling (see also Sunyaev, Norman & Bryan

2003). In the cluster merger model of Ricker & Sarazin (2001), ram

pressure displaces gas in the cluster core from the bottom of the

potential well. The resulting convective plumes produce large-scale

disordered motions with eddy size up to several 100 kpc; even after

15 Gyr of evolution, turbulent velocities in the inner parts remain at

a surprisingly high level of 10–40 per cent of the sound speed (i.e.

100–400 km s−1), and grow up to the sound speed in the outer parts.

Observational evidence of intracluster turbulence is scarce. From

analysis of pressure fluctuations as revealed in X-ray observations,

Schuecker et al. (2004) argue that the integral turbulent scale in the

Coma cluster is close to 100 kpc, and they assume a turbulent speed

of 250 km s−1 at that scale. The non-thermal broadening, by the

turbulence, of X-ray spectral lines of ionized iron can be detectable

with future X-ray observatories (Inogamov & Sunyaev 2003).

The spatial resolution of all available simulations is rather coarse

(of the order of 10 kpc or worse) and only comparable with the ap-

parent scale of the intracluster magnetic field. Even if the random

nature of the resulting flow is obvious, it is not clear if it will evolve

into developed turbulence, that is, if the turbulent cascade is estab-

lished to carry energy to small scales where it dissipates into heat.

From the viewpoint of magnetic field generation, the presence of

turbulence as such is not required; the randomness of the flow is

sufficient (Kazantsev 1967; Zeldovich et al. 1990). However, the

dynamics of the flow and its evolution do depend on whether or not

the turbulent cascade persists (see Section 2.2).

The flow can become turbulent if the kinematic Reynolds number

in the intracluster gas, Re, is large enough. Following Sarazin (1988)

and Ricker & Sarazin (2001), an estimate of Re can be obtained as

Re = v0l0

ν
� 3

v0l0

csλδ
= 3M l0

λδ
, (2)

where ν = 1
3
csλδ is the effective kinematic viscosity, cs is the speed

of sound (assumed to be close to the thermal speed), M is the

Mach number, λ is the ion mean free path, and subscript ‘0’ refers

to the energy-range values. Here we have introduced parameter δ

that quantifies the poorly understood behaviour of viscosity in the

intracluster plasma. The standard, Spitzer’s value of λ can be written

as

λ � 5 kpc

(
cs

103 km s−1

)4(
ne

10−3 cm−3

)−1

,

with ne the electron number density. For M � 1, l0 � 100–500 kpc

and λ � 1 kpc, this yields Re � (300–1500)δ−1. This estimate is,

however, suspect because the mean free path is comparable to the

scale of inhomogeneities in the gas. It is also clear that even a weak

seed intracluster magnetic field could strongly reduce the effective

viscosity and make it anisotropic. The effective Reynolds number

can be significantly larger if any shorter length-scale plays the role

rather than the Coulomb mean free path, or a frequency higher than

the ion collision frequency (these may be associated with plasma

instabilities and/or waves). Schekochihin et al. (2005b) argue that

the firehose and/or mirror instabilities can provide the effective dif-

fusion in the magnetized plasma; the corresponding length-scale is

the ion gyroradius, a quantity normally much smaller than the mean

free path. These uncertainties are allowed for, in a heuristic manner,

by choosing δ < 1; Fabian et al. (2005) scale their results by δ = 0.1.

This prescription can be an oversimplification as it omits plausibly

important physical effects arising from the anisotropy of viscosity in

magnetized plasma (cf. Schekochihin et al. 2005b). However, even

if one cannot readily provide a confident estimate of Re, equation (2)

suggests that it will be large enough as to ensure that random motions

driven by major merger events can become turbulent. Only this fact

is important for our purposes in this paper. Our simulations of a flow

driven by external random force (Section 4) have been performed

for Re = 100–400, and they do indeed show a flow with broad range

of scales typical of turbulent flows (and so inertia forces dominate

over viscosity), even if the inertial range is not wide at these modest

Reynolds numbers.

To summarize, the above results seem to converge to the following

picture. Random motions driven in major merger events have the

typical initial speed of v0i � 300 km s−1 and scale of l 0i � 100–

200 kpc, so that the turnover time of the energy-range eddy is t 0i =
0.3–0.6 Gyr. The random motions will be maintained at this level

during the major merger epoch, whose duration can be as large as

t f � 3–5 Gyr. (The notation is motivated in Section 2.2.)

2.2 Dynamics of decaying turbulence

The random flows produced by major mergers will not remain sta-

tistically steady after the end of the merger event. Unlike a lami-

nar flow that decays exponentially in time due to viscosity, turbu-

lent kinetic energy decays slower, as a power law (e.g. Landau &

Lifshitz 1975; Frisch 1995). The reason for this is that kinetic energy

mainly decays at small scales, to where it is constantly supplied by

the turbulent cascade. As a result, the energy decay rate depends

non-linearly on the energy itself, which makes the decay a power

law in time. (The corresponding calculation is provided below.) Our

simulations of Section 4 confirm that the power-law decay occurs

even for the Reynolds number as small as Re ≈ 100.

In this section, we review simple models of decaying hydrody-

namic turbulence. The effects of magnetic field on the flow can

be neglected at early stages when magnetic field is still weak. In

Section 4, we present numerical simulations where the effects of

magnetic field on the flow are fully allowed for.

Consider an initial spectrum of turbulence shown with solid line

in Fig. 1, where Ek = Cks (with s > −1) at scales k < k 0, and

Ek ∝ k−5/3 at smaller scales as in Kolmogorov turbulence. Here kEk

is the specific energy per unit logarithmic interval in the k-space.

It is related to the turbulent velocity at wave number k via vk ∝
(kEk)1/2; Ek has a maximum at a certain wave number k0, which

is therefore called the energy-range wave number. Turbulent flow

remains in a statistically steady state despite viscous dissipation at

small scales if it is driven at larger scales. When such a driving

ceases, the turbulence decays.

Motions at small scales are the first to be affected by viscosity. It

is reasonable to expect that the exponent s and constant C are pre-

served during the decay (e.g. section 7.7 of Frisch 1995). Consider
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Figure 1. The evolution of the spectrum of decaying turbulence, where the

spectral exponent remains constant both in the inertial range, where it is equal

to −5/3, and at large scales where it is equal to s. Solid, dashed and dotted

lines show the spectrum at consecutive times. As the energy dissipates, the

energy-range wave number k0 reduces.

the time-dependent total specific turbulent energy E(t), which is

approximately equal to that at the energy-range scale, E(t) � 1
2
v2

0 ,

if the inertial part of the spectrum is steep enough. On the other

hand, E(t) = ∫ ∞
0

Ek dk ∝ ks+1
0 . As long as the Reynolds number

remains large, and so viscosity at k0 is negligible, energy at the

energy-range wave number k 0(t) mainly decays because it cascades

to smaller scales. Hence, the energy-loss rate is given by dE/dt =
−v2

0/t 0 � −v3
0k 0, where t 0 � (v0k 0)−1. Since v0 ∝ E1/2 and k 0 ∝

E1/(s+1), the evolution of the total turbulent energy is governed by

dE

dt
� −AE (3s+5)/[2(s+1)], (3)

where A is a certain constant related to C. This equation can easily

be integrated (for constant C) to yield (see Fig. 1) asymptotic forms

(applicable at large t) for the energy-decay law

E(t) ∝ t−α,

and for the energy-range scale growth law

l0 ∝ k−1
0 ∝ tβ,

where

α = 2
s + 1

s + 3
, β = 2

s + 3
.

The value s = 2 gives a ‘white noise’ spectrum at large scales, where

the three-dimensional spectrum k−2 Ek is flat. In this case

α = 6/5, β = 2/5.

Another possibility often considered in this context is s = 4, where

one gets α = 10/7 and β = 2/7 (Skrbek & Stalp 2000; Touil,

Bertoglio & Shao 2002).

There are arguments suggesting that s = 2 is a better acceptable

value than s = 4; in particular, the coefficient C is time-dependent

for s = 4, and this makes the energy decay significantly slower than

that obtained above (Frisch 1995). Also s = 4 would be relevant

for an incompressible flow, whereas the cluster flows are expected

to be mildly compressible, and s = 2 could be more appropriate.

The turbulence decay is sensitive to the detailed physical nature of

the system, and it is often slower than derived above. The decay of the

MHD turbulence can be significantly slowed down if the system has

non-zero invariants such as magnetic helicity and/or cross-helicity

(Biskamp 2003). If the intracluster seed magnetic fields are due to

stripping of the galactic magnetic fields, then they may have both

types of helicities. The decay law is also sensitive to the relation

between the turbulent energy-range scale and the size of the system;

the decay speeds up to become E ∝ t−2 when the two scales become

comparable and the value of k0 cannot decrease any further (Skrbek

& Stalp 2000; Touil et al. 2002).

We adopt α = 6/5 and β = 2/5 for numerical estimates in what

follows, so that

E � 1

2
v2

0 ∝
(

t − t f

t0i

)−6/5

, k0 ∝
( t − t f

t0i

)−2/5

, (4)

for t − t f � t 0i , where subscript ‘i’ refers to the start of the evolution,

t 0i is a certain dynamical time-scale, which can be identified with the

initial turnover time of the energy-containing eddies, t 0i = l 0i/v0i,

subscript ‘0’ refers to the energy-range (correlation) scale of the

motion (which varies with time), and the decay starts at time t = t f

when the flow forcing ceases. This decay is faster than in many

other models of decaying turbulence; thus, our conclusions will be

rather conservative with respect to the intensity of turbulence at late

times.

With the above decay law of turbulence, the Reynolds number

evolves slowly as

Re ∝
(

t − t f

t0i

)−1/5

, t − t f � t0i.

Allowing for the initial period t f = 3 Gyr of sustained turbulence,

Re decreases only by a factor of 1.4 after the total evolution time

of t = 6 Gyr for l 0i = 150 kpc and v0i = 300 km s−1 (yielding

t 0i = 0.5 Gyr).

2.3 Minor mergers and turbulent wakes

Consider the infall of relatively small subclusters of mass m into an

already formed cluster of mass M. Define d2 p/[d(ln m) dt] as the

probability that in a time dt a subcluster, whose mass belongs to a

logarithmic mass interval of [ln m, ln m + d(ln m)], merges with the

bigger cluster of mass M. The merger rate d2 p/[d(ln m) dt] scales

with the subcluster mass as (Lacey & Cole 1993)

d2 p

d(ln m) dt
∝ m−1/2 for

m

M
� 1. (5)

Thus, the merger rate of masses of the order of 1013 M� is about

10 times larger than that for 1015 M�. If major mergers of masses

of the order of 1015 M� occur once in 3 Gyr, the time interval be-

tween mergers with 1013-M� subclusters will then be of the order

of 0.3 Gyr (see also Norman & Bryan 1999). Such minor mergers

are thought to play an important role in explaining the observed

cold fronts in clusters (Heinz et al. 2003; Motl et al. 2004, and

references therein). They can also generate turbulence in the wake

of a moving subcluster (cf. recent simulations of Takizawa 2005).

Turbulence generated by subclusters was suggested by Norman &

Bryan (1999) to be a major source of the random motions observed

in their simulations of cluster formation. Here we examine this is-

sue further with analytical estimates, using parameters of galaxy

clusters and smaller structures obtained from hierarchical theories

of structure formation.

2.3.1 Ram pressure stripping

The subclusters contain gas which can be partially stripped by hy-

drodynamic interaction with the cluster gas (by ram pressure strip-

ping and via hydrodynamic instabilities) (Fabian & Daines 1991;

Acreman et al. 2003). A simple criterion for the radius R0 within
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which the subcluster gas remains unstripped can be obtained as fol-

lows. The ram pressure force exerted on a gas sphere of radius R0

is equal to ρ cv
2
scπR2

0, where ρ c is the intracluster gas density and

v sc is the speed at which the subcluster moves through the intra-

cluster gas. Following Fabian & Daines (1991), we note that the

gravitational restoring force per unit area due to the subcluster mass

is comparable to the gas pressure in the subcluster, assuming that

the subcluster is in hydrostatic equilibrium. The gas sphere will be

removed from the subcluster if the restoring force is smaller than

the ram pressure force. Thus, a local criterion for retaining the gas

at a distance R0 from the subcluster centre is

ρcv
2
sc � f ρsc(R0)u2, (6)

where ρ sc(R) is the gas density distribution of the subcluster, R is the

subcluster’s spherical radius, f is a numerical factor of the order of

unity, and u is the gas velocity dispersion within the subcluster. We

adopt, for illustrative purposes, gas density profiles for the cluster

and subcluster, respectively, of the form

ρc(r ) = ρc0[
1 + (r/rc)2

] , and ρsc(R) = ρsc0[
1 + (R/Rsc)2

] ,

where ρ c0 and ρ sc0 are the respective central gas densities and rc

and Rsc are the corresponding gas core radii. (These correspond to

the standard β-profile with the slope parameter β = 2/3 – Sarazin

1988). From equation (6), the subcluster gas is retained at radii

smaller that R0, where(
R0

Rsc

)2

= f
ρsc0u2

ρc0v
2
sc

[
1 +

(
r

rc

)2
]

− 1. (7)

Takeda, Nulsen & Fabian (1984) suggest f � 2.

Parameters of clusters and subclusters that enter equation (7) vary

broadly in both observed and simulated clusters. Suitable values can

be selected as follows. For example, consider subclusters predicted

by the hierarchical theory of structure formation (Peebles 1980;

Padmanabhan & Subramanian 1992; Padmanabhan 1993). Suppose

that the initial density fluctuations can be described as a Gaussian

random field with the rms density contrast σ m(m), where m is the

mass of the structure. In the hierarchical theory, σ m(m) ∝ m−(3+n)/3

with n close to−1 at the cluster scales and to−2 at the galactic scales.

For a density fluctuation which is μ times the above rms value, the

following scaling laws can be obtained: r vir ∝ μ−1 m(n+5)/6 for the

virial radius; u2 � Gm/r vir � μm(1−n)/6 for the virial velocity; and

ρ∝ m/r 3
vir ∝ μ3m−(n+3)/2 for the average gas density. This suggests

the average pressure scaling

ρscu
2 ∝ μ4m−2(n+2)/3.

We adopt n = −1.5, M = 1015 M�, m = 3 × 1013 M�, and a

bulk velocity of the subcluster of the order of the cluster velocity

dispersion, v sc � 1000 km s−1. For comparison, the merging com-

ponents of the Coma cluster have virial masses 0.9 × 1015 and 6 ×
1013 M� (Colless & Dunn 1996). We also assume that the cluster

and subcluster correspond to density fluctuations of the same value

of μ. Then equation (7) yields R0 = 2.3R sc at the cluster centre, r =
0, and R0 = 3.4R sc at the cluster core radius, r = r c. So, according

to this criterion, gas within two to three subcluster core radii will

not be stripped as the subcluster falls, along a radial orbit, into a

cluster which is about 30 times larger in mass.

Further, we take the gas core radius to be proportional to the virial

radius. Indeed, Sanderson & Ponman (2003) suggest that the gas

core radius is about 0.1r vir for clusters with temperature exceeding

1 keV, or the mass of a few times 1013 M�. Then the subcluster

gas core radius is about (m/M)(n+5)/6 ≈ 0.13 times the cluster gas

core radius for m/M = 0.03. For a rich cluster with the virial radius

3 Mpc and the core radius 10 times smaller, or r c = 300 kpc, we

obtain the subcluster gas core radius as R sc � 40 kpc. This implies

for such subclusters the stripping radius of at least

R0 � 100 kpc.

We adopt these values for qualitative estimates, keeping in mind

that scatter about the fiducial values is likely to be large.

Heinz et al. (2003) simulated a subcluster with a shallower gas

density profile (β = 0.5), a somewhat large core radius R sc =
250 kpc, central gas number density ρ sc0 = 3.6 × 10−3 cm−3 and a

temperature T = 3.2 keV, moving through a uniform gas of a den-

sity ρ c0 = 4.6 × 10−4 cm−3 and temperature T = 7.7 keV. These

authors find that the subcluster gas within R0 � 2R sc survives ram

pressure stripping, which compares favourably with our estimates

based on equation (6).

Flow past a solid sphere develops into a turbulent wake for suffi-

ciently large Reynolds numbers. Experiments and numerical simu-

lations (Tomboulides & Orszag 2000, and references therein) show

that the transition to turbulence occurs at Re ≈ 400, via the Kelvin–

Helmholtz instability of a shear layer that results from the separation

of the boundary layer on the sphere’s surface. It is not clear what is

the critical Reynolds number for a gaseous sphere. It can be specu-

lated that the entrainment of the dense subcluster gas into the flow

can be a cause of the flow randomness additional to that past a solid

sphere. The Kelvin–Helmholtz instability does indeed develop on

the boundary between the subcluster and the ambient gas, for ex-

ample, in the simulations of Takizawa (2005) among many other

authors, leading to prominent eddy-like structures in the subcluster

wake that can be described as a turbulent flow.

Nulsen (1982) describes how the introduction of eddies of a scale

of l can make the boundary layer smooth on this scale, suppress-

ing the Kelvin–Helmholtz instability at wavelengths smaller than l.
Longer-wavelength modes are still unstable, and the largest unstable

scales are comparable to the stripping radius. The Kelvin–Helmholtz

instability is efficient in eventually removing gas from the subclus-

ter. According to Heinz et al. (2003), all the gas is removed after

a time of the order of a few times 10R0/vcs , that is a few billion

years. This implies that a subcluster can generate a turbulent wake

during one or two passages through the cluster.

Altogether, the flow produced by the Kelvin–Helmholtz instabil-

ity can produce turbulence in the subcluster’s wake, subject to the

same reservations as discussed after equation (2). It is then plausible

that the wake far downstream of the subcluster is well described by

Prandtl’s self-similar solution for turbulent wakes.

2.3.2 The area-covering and volume-filling factors
of turbulent wakes

Prandtl’s solution for the turbulent scale and velocity variation with

distance x along the wake has the form (Landau & Lifshitz 1975)

l0x � L i(x/L i)
1/3 , v0x � V i(x/L i)

−2/3, (8)

where the turbulent velocity near the head of the wake can be

identified with some fraction of the subcluster speed, V i � vc �
1000 km s−1; and the initial value of the turbulent scale L i is close

to the stripping radius R0 estimated above, L i � R0. The Reynolds

number varies along the wake as

Re(x) = Rei(x/R0)−1/3, Rei = L iV i

ν
,

and we assume that the wake remains turbulent as long as the

Reynolds number exceeds a certain critical value, Recr. Then the
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length of a turbulent wake, X, follows from Re (X ) = Recr as

X

R0

�
(

Rei

Recr

)3

, (9)

where Recr = 400 (Tomboulides & Orszag 2000) can be adopted

for illustrative purposes. Thus, we assume that the critical value of

Re required to maintain turbulence within the wake is the same as

that to produce it immediately behind a solid sphere. This will result

in a quite conservative estimate of the wake length since turbulence

can plausibly sustain at even smaller local values of Re.

The area of a single wake of a length X seen from the side is given

by

S = 2

∫ X

R0

R0(x/R0)1/3 dx = 3

2
R2

0

[(
X

R0

)4/3

− 1

]
.

If the wake axis is inclined by a random angle α to the line of sight,

where α is uniformly distributed with 0 � α � π, the average area

of a single wake in the sky plane is given by

S = ξ S, ξ = 1

2

∫ π

0

sin7/3 α dα ≈ 0.74.

The area-covering factor of N wakes within a region larger in diam-

eter 2r than the wake length, r > X/2, follows as

fS = N S

πr 2
� 3

2π
Nξ

(
R0

r

)2
[(

X

R0

)4/3

− 1

]
. (10)

Similarly, the volume-filling factor of N wakes is given by

fV � 9

20
N

(
R0

r

)3
[(

X

R0

)5/3

− 1

]
. (11)

Both estimates assume that the wakes do not intersect in three di-

mensions, which makes them slight overestimates.

The rms turbulent velocity averaged over the wake length X is

given by

v0 =
(

X−1

∫ X

0

v2
0x dx

)1/2

�
√

3V i

{
R0

X

[
1 −

(
R0

X

)1/3
]}1/2

�
√

3V i

(
Recr

Rei

)3/2 (
1 − Recr

Rei

)1/2

. (12)

Similarly, the typical turbulent scale can be identified with the av-

erage wake width,

l0 � 3

4
R0(X/R0)1/3. (13)

The area-covering factor and the volume-filling factor of the

wakes sensitively depend on the subcluster mass m and are larger for

larger m (which is consistent with the idea that turbulence produced

in major merger events fills the volume). We also note the strong

dependence of the covering and filling factors on the Reynolds num-

ber: fS ∝ Re4 and fV ∝ Re5 (for X/R0 � 1).

It is clear from equations (10) and (11) that one can have fV �
1 but fS � 1 (note that R0 � r ). When this is the case, the wakes

are widely separated in space, but their images overlap in the two-

dimensional projection on to the sky plane.

2.3.3 Subcluster wakes

For subclusters of a mass m = 3 × 1013 M�, we adopt R0 = 100 kpc,

V i = cs and λ = 1 kpc to obtain, from equation (9), an estimate

X

R0

� 27

(
R0

100 kpc

)3 (
4λδ

1 kpc

)−3 (
Recr

400

)−3

. (14)

With the scaling of equation (5), the merger rate of subclusters of this

mass is about five times larger than that of major mergers; thus, we

assume that N = 5 subclusters of this mass can (almost) simultane-

ously fall into a larger cluster. The area-covering and volume-filling

factors of N = 5 wakes within the radius r = r vir ≈ 3 Mpc are

estimated as

fS � 0.2 ξ
N

5

(
R0

100 kpc

)6 (
Recr

400

)−4 (
4δλ

1 kpc

)−4

,

and

fV � 0.02
N

5

(
R0

100 kpc

)8 (
Recr

400

)−5 (
4δλ

1 kpc

)−5

.

The covering and filling factors strongly depend on the poorly

known viscosity, parametrized with δ. For δ � 0.16, we obtain fS �
1, but the volume-filling factor remains smaller than unity for δ �
0.1. Furthermore, both fS and fV depend on high powers of another

poorly known parameter, the stripping radius R0. Hence, properties

of the subcluster wakes can be rather different in apparently similar

clusters. In addition, results of numerical simulations of turbulent

wakes should be treated with caution as otherwise reasonable ap-

proximations, numerical resolution, and numerical viscosities can

strongly affect the results.

Upper limits on the covering and filling factors follow if we as-

sume that the wake length is equal to or exceeds the region size,

X = 2r vir = 6 Mpc, which is obtained in equation (9) if Rei/Recr >

4 (and λ = 1 kpc):

fS � 0.5(4δ)−4, fV � 0.08(4δ)−5,

which yields fS � 2 and fV � 0.5 for δ � 0.2.

Thus, wakes from subclusters of a mass 3 × 1013 M� can occupy

just a small fraction of the total volume within the virial radius of a

cluster, but their area-covering factor can be substantial. Given the

sensitive dependence on the poorly known value of the Reynolds

number, it appears reasonable to assume that fS = O(1), that is,

any line of sight within the virial radius will have good chance to

intersect at least one turbulent wake.

The rms turbulent velocity averaged over the wake length follows

from equation (12) as v0 � 260 km s−1 if averaged along the whole

length X � 2.7 Mpc, and v0 � 190 km s−1 within the cluster virial

radius (with X = 2r vir � 6 Mpc). The average turbulent scale follows

from equation (13) as l 0 � 200 kpc.

Takizawa (2005) has recently studied turbulence generated by a

subcluster of total mass of 1014 M�, gas core radius of 100 kpc and

a much higher central density �3 × 10−2 cm−3, moving through a

uniform medium about 100 times less dense. Turbulent velocities

obtained in those simulations, 300–500 km s−1 (see also Norman &

Bryan 1999; Ricker & Sarazin 2001; Schuecker et al. 2004), are in

a reasonable agreement with our estimates.

2.3.4 Galactic wakes

The stripping radius of galaxies could be estimated similarly to

that of subclusters, but the arguments are complicated by the re-

plenishment of interstellar gas by stellar winds, magnetic fields that
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affect the Kelvin–Helmholtz instability, etc. Both numerical models

(Portnoy et al. 1993; Balsara et al. 1994; Acreman et al. 2003) and

observations (Sun et al. 2005) indicate that gas within

R0 = 3–5 kpc (15)

of the centre of a massive elliptical galaxy can remain unstripped.

We assume that the Reynolds number based on this scale, Re �
(10–15)δ−1, is large enough to produce a turbulent wake, for exam-

ple, because δ is small enough.

Consider a rich galaxy cluster, where N ≈ 100 galaxies are found

within the gas core radius r c = 180 kpc (Sarazin 1988). From equa-

tion (10), the area-covering factor of galactic wakes in this region

is unity if

X

R0

� 30–15, X � 100–70 kpc, (16)

where the range corresponds to that in equation (15). Wakes of this

length would require Rei/Recr � 3, which is obtained, for example,

for δ � 0.01 if Recr = 400.

The rms turbulent velocity and scale averaged along the wake

follow from equations (12) and (16) as

v0 � 300 km s−1, l0 � 8 kpc (17)

for R0 = 4 kpc and X/R0 = 20. The volume-filling factor of such

wakes is fV � 0.07.

The size of galactic wakes required to cover the projected cluster

area, given by equation (16), does not seem to be unrealistic. For

example, Sakelliou et al. (2005) have observed a wake behind a

massive elliptic galaxy (mass of the order of 2 × 1012 M�) moving

through the intracluster gas at a speed of about vc � 1000 km s−1.

The length of the detectable wake is about X � 130 kpc (assuming

that it lies in the sky plane), and its mean radius is 40 kpc (obtained

from the quoted volume of about 2 × 106 kpc3). These authors

argue that the wake is produced by the ram pressure stripping of the

interstellar gas. The projected area of the wake is about 104 kpc2, as

compared to 103 kpc2 for the wake parameters derived above. This

wake has been detected only because it is exceptionally strong, and

it is not implausible that weaker but more numerous galactic wakes

can cover the area of the central parts of galaxy clusters.

We conclude that subcluster wakes are likely to be turbulent, but

galactic wakes can be laminar if the viscosity of the intracluster gas

is as large as Spitzer’s value. Given the uncertainty of the physical

nature (and hence, estimates) of the viscosity of the magnetized

intracluster plasma, we suggest that turbulent galactic wakes remain

a viable possibility. Both types of wake have low volume-filling

factor but can have an area-covering factor of the order of unity.

3 M AG N E T I C F I E L D I N T H E

I N T R AC L U S T E R G A S

In this section, we discuss the amplification of an initially weak seed

magnetic field by the fluctuation dynamo operating in the intraclus-

ter gas. The seed field itself can be produced by a wide range of

mechanisms (Appendix A; see also Ruzmaikin et al. 1989; Widrow

2002; Brandenburg & Subramanian 2005). We first discuss the fluc-

tuation dynamo in general terms. These general ideas are then ap-

plied to the various contexts of intracluster turbulence discussed

above. First, we consider the merger epoch when the turbulence can

be assumed to be in a statistically steady state, then the later epochs

after the driving by the merger had ceased and the turbulence decays,

and finally to magnetic field generation in turbulent wakes.

3.1 The fluctuation dynamo

The evolution of a magnetic field embedded into a flow of conduct-

ing fluid is controlled by the magnetic Reynolds number defined,

similarly to equation (2), as

Rm = v0l0

η
,

where η is the magnetic diffusivity (inversely proportional to the

electric conductivity).

The exponentially fast amplification of an initially weak magnetic

field by a random flow (called the fluctuation dynamo) is a result

of a random stretching of magnetic field by the local velocity shear

(see reviews in Zeldovich et al. 1990; Brandenburg & Subramanian

2005). For Rm � 1, magnetic field is nearly frozen into the flow.

Then, due to the random stretching, magnetic field lines grow longer,

that is, B/ρ increases, where ρ is the gas density. For flows with ρ

approximately constant, the magnetic field will be amplified. Such

amplification comes at the cost of a decrease in the scale of field

structures in the directions perpendicular to the stretching (i.e. on

average in all directions if the flow is statistically isotropic). This en-

hances Ohmic dissipation and the latter ensures that the correlation

function of magnetic field can grow exponentially as an eigenfunc-

tion if the Lorentz force is negligible (the kinematic dynamo). The

growth occurs under a fairly weak condition Rm > Rm,cr � 30–100

(where the variation within the range depends on the form of the

velocity correlation function). If vl is the velocity at a scale of l, the

e-folding time for the magnetic field is roughly equal to the eddy

turnover time l/vl. In the Kolmogorov turbulence, where vl ∝ l1/3,

the e-folding time is shorter at smaller scales, l/vl ∝ l2/3, and so

smaller eddies amplify the field faster.

Since η � ν in the rarefied intracluster plasma (e.g. Brandenburg

& Subramanian 2005), we have Rm � Re. Therefore, Rm � Rm,cr

if Re � 100, so that random motions in galaxy clusters will be a

dynamo for any Reynolds number which is large enough to make

them turbulent.

Numerical simulations of magnetic field evolution in turbulent

flows confirm that the fluctuation dynamo action readily occurs in

forced and convective turbulent flows (Meneguzzi, Frisch & Pouquet

1981; Cattaneo 1999; Haugen et al. 2003, 2004; Maron, Cowley

& McWilliams 2004; Schekochihin et al. 2004), especially, when

Rm � Re. Such simulations are also able to follow the fluctuation

dynamo into the non-linear regime where the Lorentz force becomes

strong enough to affect the flow as to saturate the growth of magnetic

field.

In the kinematic regime, the field is predicted to be intermittent,

that is, concentrated into structures whose size, in at least one di-

mension, is as small as the resistive (Ohmic) scale of

lη = l0 R−1/2
m (18)

in a single-scale flow (e.g. Ruzmaikin et al. 1989; Zeldovich et al.

1990). We emphasize that magnetic field at the small Ohmic dif-

fusion scale is produced by the shear of the flow at a larger scale

of l0.

In a turbulent flow, where a broad spectrum of motions is present,

flow at each scale of l would produce magnetic structures at all

scales down to the corresponding Ohmic scale. In the kinematic

regime this would correspond to a set of eigenfunctions, each with

a distinct growth rate vl/l. The fastest growing eigenfunction is

due to stretching by the smallest eddies with Rm(l) > Rm,cr, where

Rm(l) = Rm (l/l 0)3/4. These are the viscous scale eddies, with l =
l ν = l 0 Re−3/4, provided Rm/Re > Rm,cr. However, in the non-linear
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regime, when the fastest growing mode saturates, larger-scale modes

could still grow. Since most of the kinetic energy is contained at the

scale of l0, the dominant magnetic scale could still be determined

by dynamo action due to eddies of the scale of l0 and, especially,

by the subtle details of the dynamo saturation. We now discuss how

the dynamo action could saturate.

Non-linear effects can modify the resulting magnetic structures,

although it is as yet not clear in what way (cf. Haugen et al. 2003,

2004; Schekochihin et al. 2004). A simple model of Subramanian

(1999) suggests that the smallest scale of the magnetic structures

will be re-normalized in the saturated state to become

lB � l0 R−1/2
m,cr , (19)

instead of the resistive scale of lη. This essentially happens via a

re-normalization of the effective magnetic diffusivity in the models

of Subramanian (1999, 2003). In other words, it is suggested that

the dynamo action can be saturated via a reduction of the effective

magnetic Reynolds number down to its critical value for the dynamo

action.1

Such results, however plausible they are, require further substan-

tiation, for example, by numerical simulations. Dynamo simulations

of Haugen et al. (2003, 2004) with ν/η = 1, where Rm,cr ≈ 35, show

that k Mk , magnetic energy per unit logarithmic interval of k, has a

broad maximum at k ∼ 9, a scale of about six times smaller than the

forcing scale, but a factor of about 4 larger than the resistive scale

given by k η = k 0 R1/2
m � (20–30)k 0 for Rm = 420–960, in agreement

with the above idea and equation (19). (We note, however, that it is

not quite clear how significant is the difference or agreement here

since all the estimates have factors of the order of unity omitted,

which can be important at the modest values of Rm available.) Fur-

ther, these simulations also show that the value of kB does not scale

with Rm when Rm is increased from about 420 to 960, confirming

equation (19). However, the magnetic spectrum is rather broad and

it is difficult to identify accurately the dominant magnetic scale in

those simulations. Nevertheless, it is clear that the non-linear mag-

netic field distribution is less intermittent (i.e. its scale is larger) than

at the kinematic stage. Below we present evidence for this non-linear

behaviour in our own simulations of the fluctuation dynamo. The

values of magnetic Reynolds number accessible now in such sim-

ulations are too modest to make any confident conclusions, but we

believe that our approach to the saturation of the fluctuation dynamo

is consistent with the evidence available.

For the Kolmogorov turbulence, in the kinematic regime, the cor-

responding resistive scale for the marginal mode is predicted to

be l η � l 0 R−3/4
m (Subramanian 1997; Brandenburg & Subramanian

2005), when it is larger than the viscous cut-off scale (that is when

l η > l ν = l 0Re−3/4 or P m < 1). This scaling is different from that in

equations (18) and (19), which apply to a single-scale flow, because

the shearing rate now is (v0/l 0)(l/l 0)−2/3 at any scale l in the inertial

range. For the marginal magnetic mode (neither growing nor decay-

ing), the shearing is balanced by dissipation at l = l η which occurs

at a rate of η/l2
η. In the intracluster gas, we generally have l η < l ν .

However, in the saturated state one may have lB > l ν for Re > Rm,cr.

This would then suggest a different scaling, lB � l 0 R−3/4
m,cr instead

of equation (19). Nevertheless, in both the simulations presented

below and in real clusters the flow is not strongly turbulent, that is,

1 Saturation could also happen if the stretching properties of the flow are

suppressed by the Lorentz force (Kim 1999). This can perhaps be described

as a reduction of the effective magnetic Reynolds number to its critical value

Rm,cr of the kinematic dynamo, a feature which, however, has not yet been

studied in the model of Kim (1999).

it has no extended Kolmogorov inertial range because the Reynolds

number is not very large; so equation (19) can remain a better ap-

proximation. There is some evidence for this from the simulations,

in that equation (19) agrees better with the wave number at which

the magnetic spectrum peaks. We will therefore use equation (19)

in our estimates.

We note that properties of MHD turbulence can depend on the

ratio P m = ν/η, known as the magnetic Prandtl number. The in-

tracluster gas has P m � 1 if Spitzer’s viscosity and resistivity are

adopted; realistically large values of Pm are not accessible to com-

puter simulations, but we will discuss simulations with a modestly

large value of Pm in what follows.

3.2 Application to cluster turbulence

Here we present semi-quantitative estimates to characterize the fluc-

tuation dynamo in the intracluster gas, before discussing, in Sec-

tion 4, direct numerical simulations of the fluctuation dynamo.

3.2.1 The epoch of cluster formation

During the epoch of major mergers, we expect that the intracluster

medium is involved in a steady-state, driven turbulence, for which

we assume the Kolmogorov spectrum. Due to the action of eddies

at scale l, the rms magnetic field grows exponentially at a rate of

γ (l) = vl i

l
= 1

t0i

(
l

l0i

)−2/3

, t0i � l0i

v0i

, (20)

where subscript ‘i’ refers to the initial, steady state of the intracluster

turbulence. As summarized in the last paragraph of Section 2.1, the

turbulent speed and scale can be adopted as v0i = 300 km s−1 and

l 0i = 150 kpc, respectively. Assuming that the driven turbulence lasts

for t f = 3 Gyr, we obtain an amplification exponent of the magnetic

field 
 = γ (l)t f ≈ 6 at l = l 0i (and larger at smaller scales). So

the seed field can be amplified by a factor of 400 by motions at

l = l 0i during this time (the amplification factor is larger at smaller

scales). For a seed magnetic field of 10−8 G, this amplification is

sufficient to explain the observed magnetic fields; this implies that

the observed magnetic fields are plausibly in the saturated state and

the Lorentz force can now affect significantly the velocity field in

galaxy clusters.

3.2.2 The epoch of decaying turbulence

After the driving forces have been diminished, the turbulence de-

cays. Both the instantaneous outer scale and the viscous scale then

increase with time (the latter, because of the decrease in the Reynolds

number). In this situation it is more useful to estimate the growth

rate at a fixed scale l, which belongs to the turbulent spectrum for

a long time and can hence lead to a fluctuation dynamo, instead of

considering an evolving viscous scale (where the dynamo time-scale

is the shortest). The instantaneous growth rate of the rms magnetic

field due to motions at a fixed scale l decreases with time as

γ (l, t) = vl (t)

l

= vl i

(l2l0i)1/3

(
t − t f

t0i

)−( 1
2
α+ 1

3
β)

, t � t0i. (21)

Here we have adopted a Kolmogorov spectrum with vl =
v0(t)[l/l 0(t)]1/3 and for numerical estimates take α = 6/5 and

β = 2/5. For a growth rate evolving with t, magnetic field evolves
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as B ∝ exp
∫ t

0
γ (l, t ′) dt ′. If turbulence is maintained in a steady

state during an initial period t � t f and then γ decreases as in equa-

tion (21), the amplification exponent for the Kolmogorov spectrum

follows as∫ t

0

γ (l, t ′) dt ′ = 
(t)

(
l

l0i

)−2/3

, (22)

where


(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t

t0i

, t � t f + t0i,

1 + t f

t0i

+ 1

ζ

[(
t − t f

t0i

)ζ

− 1

]
, t > t f + t0i,

where ζ = 1 − 1
2
α − 1

3
β. We have applied the power-law (21)

only at t > t f + t 0i and assumed that the decay does not affect the

growth rate before that time. Assuming that the turbulence starts

decaying after a time t f = 3 Gyr, we obtain, at t = 5 Gyr, that

the energy-range speed reduces down to v0 ≈ 130 km s−1, whereas

the energy-range scale increases to l 0 ≈ 260 kpc. The amplification

exponent of magnetic field due to motions at l = l 0i is obtained as


 ≈ 9 at t = 5 Gyr (consisting of 7 at t = t f + t 0i = 3.5 Gyr and only

less than 2 at later times), so that the seed field could be amplified

by a factor of about 6 × 103 by the end of the decay phase if it were

too weak to bring the dynamo to the saturated state earlier. In order

to obtain magnetic field of 1 μG at this scale for t = 5 Gyr, a seed

field of 2 × 10−10 G would be sufficient. Again the amplification is

larger due to smaller scale eddies which remain part of the turbulent

cascade as the turbulence decays.

3.2.3 Dynamo action in wakes

Using the turbulent speed and scale averaged over the wake length,

as derived in Section 2.3.2, we obtain magnetic field growth time-

scales γ −1 � l 0/v0 � 0.8 Gyr for subcluster wakes and 3 × 107 yr for

galactic wakes. At a given position, time available for the dynamo

action is X/V i, where V i � 1000 km s−1 is the speed of a subcluster

or a galaxy. Therefore, the dynamo amplification exponent is given

by


 � v0

V i

X

l0

� 3

for both subclusters and galaxies, which implies additional ampli-

fication by a factor of 20 at the outer scale.

3.2.4 Magnetic field strength in the intracluster gas

The maximum local magnetic field strength produced by the tur-

bulent dynamo will be, presumably, close to equipartition with the

turbulent energy:

Beq = (
4πρv2

0

)1/2

� 3 μG

(
n

10−3 cm−3

)1/2(
v0

200 km s−1

)
, (23)

where ρ is the gas density. [We note that some models of non-linear

fluctuation dynamo predict stronger local magnetic fields (Belyanin,

Sokoloff & Shukurov 1993, 1994), but here we adopt a conserva-

tive limit (23).] As discussed in Section 3.1, magnetic field produced

by the fluctuation dynamo is expected to be spatially intermittent

(especially at early stages of dynamo action), that is, represented

by intense filaments and sheets whose volume-filling factor is less

than unity. Numerical simulations and analytical models recently

reviewed by Brandenburg & Subramanian (2005) suggest that mag-

netic sheets and ribbons are prevalent, whose thickness is given by

equation (19) and whose other two dimensions are of the order of

the turbulent scale l0 (see Fig. 5). Then the volume-filling factor of

magnetic structures within a single turbulent cell in the statistically

steady state can be estimated as

fB = lBl2
0

l3
0

� R−1/2
m,cr ≈ 0.17,

where the numerical value refers to Rm,cr = 35. Therefore, the rms

magnetic field within a turbulent cell is of the order of

〈B2〉1/2 � f 1/2
B Beq

� 1.2 μG

(
n

10−3 cm−3

)1/2(
v0

200 km s−1

)
×

(
Rm,cr

35

)−1/4

,
(24)

which implies that magnetic energy density in a saturated dynamo

state is a factor of R1/2
m,cr � 6 times smaller than the turbulent en-

ergy density. (Here and below angular brackets denote averaging.)

We emphasize that weaker volume-filling magnetic fields are also

present; their contribution to the magnetic energy density can be

somewhat smaller than that of the intermittent part. In agreement

with this estimate, magnetic energy density is about 0.2 (0.33) of

the kinetic energy density in Model 1 (Model 2) of the numeri-

cal simulations discussed in Section 4. As discussed by Haugen

et al. (2004, their fig. 14), this ratio weakly varies with magnetic

Reynolds number; in their simulations, the variation is from about

0.25 for Rm = 420 to 0.4 for Rm = 960, both with P m = 1. For

P m = 30, their simulations yield the magnetic-to-kinetic energy

ratio of about unity. Thus, the flow at larger magnetic Prandtl num-

ber appears to be producing more magnetic energy; perhaps mag-

netic structures fill turbulent cells more densely, and/or a smoothly

distributed magnetic field is stronger. This feature is yet to be un-

derstood. What is, however, important for our immediate purpose

here, is that the fluctuation dynamo produces magnetic fields whose

energy density is comparable to the kinetic energy density of the

turbulence.

If the volume-filling factor of the turbulent flow fV is less than

unity, as in the case of turbulent wakes of subclusters and galax-

ies, the rms magnetic field in the cluster volume is obtained from

equation (24) by further multiplication by a factor of f 1/2
V ; this is a

measure of the total magnetic energy of the cluster. However, this

quantity has little physical significance because it would not result

from any local magnetic measurement. In this sense, the local value

(24) is more meaningful; it is presented in Table 1 together with

other quantities that characterize turbulence and magnetic fields at

various stages of the cluster evolution.

4 S I M U L AT I O N S O F T H E F L U C T UAT I O N

DY NA M O

We have simulated the generation and subsequent decay of dynamo-

active turbulence using the numerical model of the fluctuation dy-

namo by Haugen et al. (2003, 2004), where isothermal, viscous,

electrically conducting, compressible gas is driven by a random

force imposed as a source in the Navier–Stokes equation. The

Navier–Stokes, continuity and induction equations are then solved

in a Cartesian box of a size D on a cubic grid with 2563 mesh points.
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The driving force f is sinusoidal in the spatial coordinates, transver-

sal ( f ⊥ k with k the wave vector of the force), and localized in

the wave-number space about a certain wave number k = k f, so it

drives almost incompressible, vortical motions in a certain wave-

length range around 2π/k f (see Haugen et al. 2004 for details). The

direction of the wave vector of the force and its phase change ran-

domly every time step in the simulations, so the force is effectively

δ-correlated in time.

We represent numerical results using the following units. (Tilde

is used to denote dimensionless quantities.) For a unit length d, the

computational domain size is equal to D = 2π d . The wave number

is measured in the units of d−1. In simulations with dimensionless

forcing wave number k̃f, it is appropriate to adopt k f = 2π/l 0 for

its dimensional value, where l 0 = 150 kpc is the turbulent scale in a

merging cluster, as obtained in Section 2.1. Then the unit length is

d = k̃fl0/(2π) and the dimensional size of the computational domain

is D = l0k̃f. The unit density ρ 0 can be adopted to correspond to the

number density of n0 = 10−3 cm−3. The unit speed is the speed of

sound, cs = 1000 km s−1, so that the unit magnetic field is (4πρ 0)1/2

cs = 15 μG.

Here, we report results obtained with two values of the central

driving wave number k f. Some results were obtained with driving

covering the range of dimensionless wave numbers k̃ = 4.5–5.5,

centred at k̃f = 5 (Model 1). Results at higher resolution (which was

especially needed when P m > 1), were obtained with the driving

wave-number range of k̃ = 1–2 centred at k̃f = 1.5 (Model 2). In

these latter runs, the computational box contains just a few turbulent

cells.

The intensity of the driving was adjusted to obtain the rms Mach

number of the turbulence of about 0.1 which produces relative den-

sity fluctuations of the order of 0.01 (implying that only a small

fraction of the total velocity is compressible). The kinematic vis-

cosity and magnetic diffusivity in most runs are adopted to be

equal to ν = η = 2 × 10−4csd (i.e. a magnetic Prandtl number

of unity). This corresponds to Re = Rm ≈ 110 in Model 1 and Re =
Rm ≈ 420 in Model 2, which is close to what is expected for Re in

the intracluster gas. (We note, however, that the values of magnetic

Reynolds number explored here still are smaller than those expected

in reality.) We have also considered the case where magnetic dif-

fusivity is 30 times smaller than kinematic viscosity in runs with

k̃f = 1.5, ν = 1.5 × 10−3csd and η = ν/30, that is, P m = 30, Re ≈
44 and Rm ≈ 1300. Results presented in what follows refer to the

case P m = 1 unless stated otherwise.

In order to simulate dynamo action in forced and then decaying

turbulence, the flow had been driven until it reached a statistically

steady state, with a weak magnetic field introduced at the start of the

simulation. Then the system was evolved for some period (about 45

time units in Model 1), after which the driving force was switched

off; t f = 0 is the time when the driving halts. The initial, weak

magnetic field is random, with energy density of about 0.6 per cent

of the kinetic energy density in Model 1.

Fig. 2 shows the time-evolution of the suitably normalized rms

velocity and magnetic field obtained in Model 1, after the driving

was switched off [in fact, v rms/(νk f), shown with solid line, is the

Reynolds number based on the forcing scale, with v0 ≈ v rms]. The

initial exponential growth of the rms magnetic field that obtains (not

shown in Fig. 2), is followed by its saturation at a level where its

energy density is about 0.2 (0.3) of the turbulent energy density in

Model 1 (Model 2). More precisely, the rms values of the turbulent

velocity and magnetic field (measured in velocity units) in the steady

state of Fig. 2 are about 0.114cs and 0.050cs, respectively, whereas

the similar quantities for k̃f = 1.5 are 0.116cs and 0.065cs. The

Figure 2. The evolution of the rms fluid velocity (solid) and magnetic field

(dashed) in driven and then decaying turbulence with k̃ f = 5 (Model 1)

(v rms ≡ 〈v2〉1/2 and likewise for B). Velocity is measured in the units of dif-

fusive speed at the driving wavelength, νk f, and magnetic field is expressed

in similar velocity units, (4πρ)1/2 νk f. Hence, v rms numerically coincides

with Re in the statistically steady state. Time is measured in the units of the

initial turnover time of the energy-containing eddies, t oi. Dotted line shows

the asymptotics (t − t f)
−0.65, where t f = 0 is the time when the forcing is

turned off.

critical value of the magnetic Reynolds number remains about 35

in both models.

The subsequent decay of both the velocity and magnetic field

strength can be approximated by (t − t f)
−0.65 for t � t 0i, as shown

with dotted line. This decay law is consistent with equation (4) which

predicts the power-law exponent of −3/5. However, the alternative

value α = 10/7 would result in the exponent of −5/7 ≈ −0.71,

which is also consistent with our numerical results.

With l 0 = 150 kpc and n = 10−3 cm−3, the rms turbulent ve-

locity and magnetic field strength in the steady state in Fig. 2 are

〈v2〉1/2 ≈ 110 km s−1 and 〈B2〉1/2 ≈ 0.7 μG, respectively. These

results favourably agree with estimates presented in Table 1 in

the sense that in both cases the ratio of the turbulent and Alfvén

speeds is about 1/2, which confirms our estimate of the rms mag-

netic field strength in equation (24). In other words, if our simula-

tions had stronger driving to achieve 〈v2〉1/2 ≈ 300 km s−1, then the

rms magnetic field would be 〈B2〉1/2 ≈ 2 μG, as in our analytical

estimate.

The magnetic and kinetic energy spectra are shown in Fig. 3. In

the statistically steady state (the upper curves), kinetic energy in

Model 1 peaks at k̃f = 5, the driving wave number. However, mag-

netic energy has broad maximum at a significantly smaller scale,

apparently because of its intermittent structure. This difference is

better visible in the right-hand panel that refers to Model 2 where

we have higher resolution. Similar simulations, but with a signifi-

cantly higher resolution 10243 (Haugen et al. 2003, 2004), confirm

that the magnetic energy per unit logarithmic interval in the k-space,

kMk, has a maximum at kB ≈ 6k f in excellent agreement with equa-

tion (19) with Rm,cr = 35, but no significant dependence of kB on

Rm has been revealed. The value of Rm in those simulations is about

1000, so the deviation from the scaling kB ∼ k η ∝ R−1/2
m advocated

by Schekochihin et al. (2004) is by a factor of 3–5 over the range

Rm = 400–1000.

The length-scales of the velocity and magnetic fields can be char-

acterized more precisely in terms of their integral scales

Lv = 2π

∫
k−1 Ek dk∫

Ek dk
, (25)
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Figure 3. The spectra of kinetic (solid) and magnetic (dashed) energies at various stages of evolution, t/t 0i = 0, 10 and 50, with (a) k̃ f = 5 – Model 1,

left-hand panel, and (b) k̃ f = 1.5 – Model 2, right-hand panel. Spectra obtained at later times are at lower levels because of the decay of turbulent energy.

and similarly for the magnetic scale LB; here integration extends over

the whole interval of k available. These scales are simply related to

the longitudinal lL and transverse lN integral scales of the magnetic

fields by lL = 1
2
lN = 3

8
L B [equation (12.91) of Monin & Yaglom

1975], and similarly for L v , but only approximately because v is not

solenoidal. The dimensionless value of the scale of magnetic field in

the steady state is then obtained from Fig. 4 as lB = √
2/πlL ≈ 0.16

(see Appendix B). This agrees reasonably well with the prediction

from our heuristic estimates, lB � (2π/k̃f)R−1/2
m,cr � 0.2. The time

variation of these scales is shown in Fig. 4. When the turbulence

decays, the integral scales of both velocity and magnetic field exhibit

power-law increase, in agreement with equation (4); the growth

slows down when L v has grown to become comparable with the

box size.

Magnetic energy at small scales has, at early times, excess over

kinetic energy because magnetic field is very intermittent, which is,

especially, clearly visible in the right-hand panel of Fig. 3. At later

stages, magnetic field distribution becomes more homogeneous and

this feature disappears. Simultaneously, the scale of magnetic field

increases and becomes comparable to that of the flow, which is not

the case at early stages.

Fig. 5 illustrates (using Model 2) the structure of magnetic field in

a turbulent flow in a statistically steady state (left-hand panel) and at

a late stage of decay (right-hand panel). The magnetic field produced

Figure 4. Evolution of the integral scales of the velocity (L v , solid line) and

magnetic fields (LB, dashed line), as defined in equation (25), with k̃ f = 5

(Model 1).

by the fluctuation dynamo consists of an intermittent part, repre-

sented by randomly distributed, intense magnetic ribbons, sheets

and filaments (which can even be folded), immersed in a sea of

volume-filling random magnetic field. The intermittency gradually

reduces as the turbulence decays together with magnetic field be-

cause structures of smaller scale decay faster, and the volume-filling

factor of magnetic field increases with time – this tendency can eas-

ily be seen in the right-hand panel of Fig. 5.

5 O B S E RVAT I O NA L D I AG N O S T I C S

5.1 The Faraday rotation measure

An important observational diagnostic of the intracluster magnetic

field is the Faraday rotation of polarized radio emission of back-

ground sources (located beyond the cluster or in its centre) pro-

duced in the intracluster gas. The Faraday rotation is quantified by

the Faraday RM

RM = K

∫
L

ne B · dl, (26)

where ne is the number density of free thermal electrons, the integral

is taken along the path length L from the source to the observer, and

K = 0.81 rad m−2 cm3 μG−1 pc−1. For a magnetic field with zero

mean value 〈B〉 = 0, the mean value of RM vanishes, whereas its

standard deviation can be represented in the form (Appendix B; see

also Burn 1966; Sokoloff et al. 1998),

σRM � RM0

√
N , (27)

where RM0 is the Faraday RM produced in a single turbulent cell

of a size l0 and N = L/l 0 is the number of the cells along the line

of sight.

Suppose that each turbulent cell contains randomly oriented mag-

netic sheets of thickness lB where magnetic field strength is equal

to Beq, with a covering factor of the order of unity, as described in

Section 3.2.4 Then the Faraday RM produced in a single turbulent

cell follows as RM0 � Kne B eqlB, and, adopting lB = l 0 R−1/2
m,cr ,

σRM � K ne Beq R−1/2
m,cr (l0 L)1/2

� 110 rad m−2

(
ne

10−3 cm−3

)(
Beq

3 μG

)(
Rm,cr

35

)−1/2

×
(

l0

100 kpc

)1/2(
L

750 kpc

)1/2

.
(28)
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Figure 5. Snapshots of magnetic field in a cross-section through the middle of the computational domain of Model 2 at t/t 0i = 0.30 when the system is in a

statistically steady state (left-hand panel), and t/t 0i = 59.34, at a late stage of decay (right-hand panel). Here k̃f = 1.5, so each frame contains a few turbulent

cells. The magnitude of the field component perpendicular to the plane of the figure is shown colour coded (in shades of grey) with black corresponding to field

pointing into the figure plane, and lighter shades, to field pointing out of the plane. The field in the plane of the figure is shown with vectors whose length is

proportional to the field strength.

If the magnetic sheets multiply cover the projected area of a turbu-

lent cell, by a factor of q = O(1), then additional factor of q1/2 has

to be included in equation (28). The comparison of equation (28)

with both numerical simulations and observations of Faraday ro-

tation in galaxy clusters suggests that q ≈ 1. If B eq ∝ v0 ∝ t−3/5

and l 0 ∝ t2/5, the observed RM will, on average, decrease with

time as

σRM ∝ [(t − t f)/t0i]
−2/5. (29)

We have calculated the Faraday RM for 2562 lines of sight through

our computational domain, and then computed σ RM as the standard

deviation of the results. The evolution of σ RM in decaying turbulence

Figure 6. The width of the histogram of Faraday RMs, σ RM, calculated

along 2562 lines of sight through the computational box, with k̃f = 5 (Model

1, as in Fig. 2), as a function of time. The solid line is the least-squares fit

to the data points at t > 1, while the dotted line corresponds to t−2/5. Here

σ RM is measured in the units of Kne〈B2〉1/2 l 0 ≈ 280 rad m−2, so that

σ RM ≈ 80 rad m−2 in the steady state.

is shown in Fig. 6 for Model 1 and it exhibits remarkable agreement

with equation (29). At earlier stages of the simulations in Model

1, σ RM first grows rapidly while magnetic field is exponentially

amplified, and then remains fairly constant, σ RM ≈ 0.3, for −20 <

t < 1 (Fig. 6). In dimensional units, this corresponds to σ RM ≈
80 rad m−2. Model 2 results in a value of σ RM ≈ 0.47 (Fig. 8),

corresponding to 130 rad m−2.

It is useful to compare results of the simulations with the an-

alytical estimate of equation (28), σ̃RM � (Beq/〈B2〉1/2)R−1/2
m,cr k̃1/2

f

in dimensionless units used in Fig. 6. This gives σ̃RM � 0.4 for

k̃f = 1.5 in Model 2 and σ̃RM � 0.75 for k̃f = 5 in Model 1.

This estimate of σ̃RM for Model 2, which has a higher spatial res-

olution, is in good agreement with the numerical simulations, but

that obtained for Model 1 is a factor of about 2 lower than ex-

pected. Nevertheless, our simulations confirm that equation (28) and

Table 1 provide reasonably good estimates of the expected amount

of Faraday rotation by magnetic field generated by the fluctuation

dynamo.

Altogether the estimate (28) and the amount of Faraday rotation

in our simulations agree very well with observations of Faraday

rotation in the intracluster gas.

Fig. 7 shows the autocorrelation function of the Faraday RM for

Model 2 at the beginning of the evolution and at two later times.

As turbulence decays and magnetic field becomes less structured,

the correlation scale of RM fluctuations increases. In the steady

state, the dimensional value of the Taylor microscale (or differential

length-scale) of the RM fluctuations is, as expected, about RRM ≈
15 kpc, that is, about half the thickness of magnetic sheets, lB, as

quoted in Table 1.

The situation is somewhat different for the wakes of subclusters

and individual galaxies. As discussed in Sections 2.3.3 and 2.3.4,

their volume-filling factor is small, whereas the area-covering factor

can be of the order of unity. In other words, a line of sight typically

passes through just a single turbulent wake, where the turbulent

scale is comparable to the wake width. The resulting Faraday RM
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Figure 7. The normalized autocorrelation function c(R) = C(R)/σ 2
RM,

where C(R) = 〈RM(X + R)RM(X)〉 and σ 2
RM = 〈RM2(X)〉 obtained for

Model 2 (k̃f = 1.5) with P m = 1, at various times: t = 0 (solid), t = 30

(dashed) and t = 70 (dotted). The former curve refers to the statistically

steady state, whereas the latter two illustrate how RM distribution becomes

less intermittent as turbulence decays. Here R is measured in the units of

k̃fl0/(2π) ≈ 70 kpc.

is given by

σRM = K ne BeqlB

� 8.6 rad m−2

(
ne

10−3 cm−3

)(
Beq

1 μG

)(
lB

10 kpc

)
, (30)

where we retain the notation σ RM because the resulting amount of

Faraday rotation will remain random, both because of the random

orientation of the wakes and due to the randomness of magnetic

field within the wake.

Estimates of typical Faraday RMs obtained from equations (28)

and (30) are given in the last column of Table 1.

Schekochihin et al. (2005a,b) suggest a different spatial struc-

ture of the cluster magnetic field, based on their interpretation of

the fluctuation dynamo for P m � 1 (Schekochihin et al. 2004).

These authors suggest that magnetic field produced by the dynamo

is locally anisotropic and represents l0-long magnetic sheets and/or

ribbons multiply folded at a microscopic resistive scale of l η. Such

a model would typically produce a much smaller σ RM. Arguments

similar to those that lead to equation (28) (even assuming that the

folds are randomized by some unspecified mechanism) predict σ RM

smaller than in our model by a factor of F � (Rm/Rm,cr)
1/2. In our

simulations, this corresponds to F � 3–5 over the range Rm = 400–

1000. Still, the simulations that we have analysed (with Rm � 400),

cannot help to confidently discriminate between the two magnetic

field geometries.

However, observations indicate that magnetic coherence scale is

at least a few kpc and more plausibly exceeds 10 kpc. This would be

difficult to produce in the model of Schekochihin et al. (2005a,b),

unless the effective value of Rm in the clusters is reduced, say, due to

plasma effects, to be close to Rm,cr. Furthermore, Schekochihin et al.

(2005a,b) envisage systematic reversals of the folded magnetic field

along the line of sight, rather than random changes of its direction.

Such a systematic behaviour would reduce σ RM even further due

to systematic cancellations of magnetic field along the line of sight

which would preclude the random walk of the polarization angle

assumed in equation (28).

Figure 8. The histogram (probability density) of the Faraday RM calculated

along 2562 lines of sight through the computational box, with k̃f = 1.5, for

P m = 1 (solid), P m = 30 (dashed) and P m = 1/4 (dotted), all in the

statistically steady state before the decay starts, and with Re = 450, 44,

445 respectively. Here RM is normalized by Kne〈B2〉1/2 l 0, with B rms ≡
〈B2〉1/2.

We have also used numerical simulations to examine the effects

of varying the magnetic Prandtl number on magnetic field structure

and Faraday rotation. The probability distribution of the Faraday RM

along 2562 lines of sight through the computational box is shown in

Fig. 8 for three values of the magnetic Prandtl number. The shape

of the probability distribution is close to a Gaussian curve for P m =
1/4 and P m = 1 (which is a parabolic shape in this representation),

but the distribution obtained at P m = 30 exhibits shorter tails at large

|RM|. The reason for this is apparently the abundance of small-scale

structures that produce smaller Faraday rotation when P m � 1, that

is, when the magnetic dissipation scale is smaller. Nevertheless, the

standard deviation of the Faraday RM has similar values for both

P m = 1 and P m = 30, σ RM ≈ 0.47 and 0.3 in the units of Fig. 8,

respectively. This implies that magnetic field does not become more

strongly folded as Pm increases. For the reader’s convenience, we

note again that Re ≈ 44 and Rm ≈ 1300 for P m = 30 and Re ≈ 445

and Rm ≈ 111 for P m = 1/4.

Fig. 9 shows the autocorrelation function of the Faraday RM for

various values of Pm. The correlation scales for both P m = 30 and

Figure 9. As in Fig. 7, but for different magnetic Prandtl numbers; P m = 1

(solid), P m = 30 (dashed) and P m = 1/4 (dot–dashed), all in the statistically

steady state with k̃f = 1.5 before the decay starts.
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P m = 1 are comparable, but that which obtains when P m = 1/4 is

a factor of 2 larger.

We emphasize again that both the form of the RM probability

distribution and the correlation function do not change much as

Pm increases from unity to 30. This suggests that our results can

be robust and directly comparable with observations even though

P m � 1 in the intracluster gas. Nevertheless, it would be important

to clarify this issue further using simulations with higher resolution.

Note that the Faraday RM is proportional to the product of magnetic

field and its scale; therefore, it remains dominated by large scales

for magnetic spectra Mk ∝ kκ with κ < 1.

5.2 Polarization of cluster radio haloes

Estimates of the scale of magnetic field in galaxy clusters obtained

above are somewhat larger than what is usually adopted. We predict

that the number of turbulent correlation cells along a path length of

750 kpc can be only about 3–5. As discussed above, magnetic field

in each cell has an intermittent component of randomly oriented

sheets and somewhat weaker fields in a volume-filling component

(see Fig. 5). It can be expected that synchrotron emission produced in

such a random magnetic field will be significantly polarized (assum-

ing that magnetic field is well ordered within individual magnetic

sheets). As discussed by Sokoloff et al. (1998, their section 5.1), the

expected degree of polarization is a random quantity whose standard

deviation is about

σp � p0 N−1/2,

where p0 ≈ 70 per cent is the intrinsic degree of polarization and

N is the number of turbulent cells within the beam cylinder, which

yields σ p � 30 per cent, neglecting beam depolarization (see below).

(We note that this estimate strictly applies if N � 1.) The polarized

emission would be confined to elongated structures (projections of

magnetic sheets) of lB = 20–40 kpc in width and l 0 = 150–300 kpc

in length. The intrinsic polarization plane should be perpendicu-

lar to the major axes of the elongated synchrotron structures since

magnetic field is mostly parallel to the magnetic sheets.

However, the fractional polarization observed from cluster ra-

dio haloes is less than 2–10 per cent at the wavelength λ = 21 cm

(L. Feretti private communication; Govoni & Feretti 2004). No sig-

nificant diffuse polarized emission in the Coma cluster has been

detected by Thierbach, Klein & Wielebinski (2003) at wavelengths

λ = 11.2 and 6.2 cm. The depolarization can be attributed to internal

Faraday dispersion by the random magnetic field, where the degree

of polarization will be further reduced to [equation (34) of Sokoloff

et al. 1998]

p = σp
1 − exp(−S)

S
, S = 2λ4σ 2

RM

(which is strictly applicable when N � 1). Faraday dispersion read-

ily explains the lack of polarization at λ = 21 cm where this equa-

tion yields p ≈ 0.2 per cent for σ RM = 200 rad m−2. The Faraday

depolarization is weaker at shorter wavelengths, with p ≈ 3 per cent

at λ = 11 cm and p ≈ 20 per cent at λ = 6 cm. However, the linear

resolution of the observations of Thierbach et al. (2003) was W =
110 kpc at λ = 11.2 cm and W = 60 kpc at λ = 6.2 cm. Given that

the thickness of the elongated polarized structures is of the order of

lB = 25 kpc, beam depolarization would further reduce the degree

of polarization at least by a factor of W/lB to 0.5 per cent at λ =
11.2 cm and 8 per cent at λ = 6 cm. These estimates indicate that

the polarization of cluster synchrotron haloes should be weak but

detectable at sufficiently high resolution and short wavelengths. In

reality, each correlation cell may contain a few magnetic sheets with

independent directions of magnetic field (cf. Fig. 5). Therefore, the

effective number of magnetic sheets along the path length (and/or

within the telescope beam) can be a factor of 2–3 larger than adopted

above and our values of the degree of polarization can be overesti-

mated by a factor of 2. Further polarization observations of cluster

radio haloes at short wavelengths can reveal magnetic structures

suggested here.

Shear in the gas motions at a scale of a few hundred kpc, pro-

duced during major merger events, can make the random magnetic

field locally anisotropic. The anisotropy can also be produced by

differential rotation and/or inhomogeneous inflow in cluster cores.

Anisotropic random magnetic field can produce significant polar-

ization of the synchrotron emission, with the polarization vector

orthogonal to the direction of the maximum rms field strength

(Laing 1981; Sokoloff et al. 1998). This polarization can be ob-

servable if the shear regions are large enough as to avoid the cancel-

lation of polarization along the line of sight or across the telescope

beam.

Govoni et al. (2005) report detection of polarized emission from

filamentary structures in the cluster A2255, of a size 180 × 540 kpc2

(see also Murgia et al. 2004), but the orientation of the polariza-

tion plane mostly disagrees with the above suggestions, unless the

amount of foreground Faraday rotation is larger than that assumed

by Govoni et al.

Another situation where significant polarization of synchrotron

emission in the cluster environment can be expected is the wakes of

subclusters and galaxies. Since individual lines of sight pass through

one (or a few) wakes wherein the turbulent scale is comparable to

the wake width, polarization due to the random magnetic field can

be detectable.

6 D I S C U S S I O N

There is growing direct and indirect evidence for the presence of ran-

dom – and plausibly turbulent – motions in the intergalactic gas of

galaxy clusters. We have identified several stages in their evolution,

from a statistically quasi-steady motion during the epoch of major

mergers, to the stage of decaying turbulence that follows, and to a

state where turbulence is confined to the wakes of relatively small

subclusters and individual galaxies. Typical parameters of the veloc-

ity and magnetic fields at various stages of the cluster evolution are

summarized in Table 1: random velocities of v0 = 150–300 km s−1

can be maintained at various stages of the evolution, and their scale

is expected to be l 0 = 150–300 kpc, with the exception of galactic

wakes where it can be of the order of 10 kpc.

It is not quite clear whether or not the random motions in the

intracluster gas can evolve into developed turbulence. This depends

on the value of the Reynolds number, a measure of the relative

strength of non-linear hydrodynamic effects and, therefore, of the

strength of the spectral energy cascade. If the flow remains laminar,

the motions can decay faster after the end of the major mergers,

and the wakes can have properties different from those discussed

above. However, our numerical simulations suggest that the power-

law decay establishes itself even for the Reynolds number as modest

as Re � 100.

The turbulent flow of magnetized gas can accelerate relativistic

particles required to produce cluster radio haloes (Tribble 1993b;

Brunetti et al. 2004; Cassano & Brunetti 2005). Turbulent mixing

in clusters has also been invoked in modelling the transport of heat

(Cho et al. 2003; Kim & Narayan 2003; Voigt & Fabian 2004;
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Dennis & Chandran 2005), and metals (Rebusco et al. 2005). The

dissipation of the turbulent energy can help to balance the cooling of

cluster cores (Fujita, Matsumoto & Wada 2004; Rebusco et al. 2005).

Clearly, turbulence in clusters seems to be useful to understand

several diverse aspects of cluster physics.

Random motions during and immediately after the major merger

epoch are plausibly volume filling. However, random flows pro-

duced by the wakes can have area-covering factor of the order of

unity, but the volume-filling factor of such wakes can be relatively

small, fV � 0.1, leaving large quiescent regions between the wakes.

Therefore, a typical line of sight passes through a turbulent region

with an rms speed of a 200–300 km s−1, producing some observa-

tional signatures of developed turbulence, and yet there is enough

space to accommodate well-ordered morphological features appar-

ently unaffected by any random motions. For example, in the core

of the Perseus cluster, where the density is higher (Churazov et al.

2004), with n e � 10−2 cm−3 for r � 100 kpc, the mean free path

is smaller λ � 0.5 kpc, and the wakes can have a potentially larger

filling factor of fV � 0.5, for δ = 0.2. The presence of long Hα

filaments observed by Fabian et al. (2003, 2005) in the core of the

Perseus cluster may not be inconsistent with various evidence for

random motions in this cluster core (Churazov et al. 2004; Rebusco

et al. 2005). A possible signature of such spatially intermittent tur-

bulence could be a specific shape of spectral lines, with a narrow

core, produced in quiescent regions, accompanied by non-thermally

broadened wings. It would be interesting to pursue this idea further

in a more quantitative fashion.

In the presence of random motions, any pre-existing magnetic

field will be rapidly destroyed owing to a reduction of its scale by

the velocity shear. Even in a quiescent medium, any non-uniform

magnetic field would decay by driving motions whose kinetic energy

can be efficiently converted into heat because the intracluster gas

is expected to be rather viscous. Therefore, random magnetic fields

confidently revealed in many clusters through their Faraday rotation

must be constantly maintained even if the electrical conductivity of

the intracluster gas is large.

However, the same random motions – either turbulent or not –

will generate magnetic fields via the fluctuation dynamo action at

all the stages of the cluster evolution. The field is amplified by

random shear, which reduces its scale along the directions perpen-

dicular to the shear layers. This makes the spatial distribution of the

magnetic field intermittent. Numerical simulations give an impres-

sion of strong field regions being largely confined into magnetic

sheets and ribbons (and, with lower probability, filaments) wherein

its strength is similar to that given by energy equipartition with

the overall kinetic energy density. Following Subramanian (1999),

we argue that the volume-filling factor of the magnetic structures

within a turbulent cell (provided they are mostly sheets rather than

filaments) is of the order of 0.1–0.2. Our numerical simulations

confirm this picture, but add to it a weaker volume-filling mag-

netic background, so that the total magnetic energy density is about

1/5–1/3 of the kinetic energy density of the random flow. The lim-

ited experience available with fluctuation dynamo models at large

magnetic Prandtl number seems to indicate that magnetic fields can

be closer to energy equipartition with turbulence in more realistic

models.

The (random) Faraday RMs produced by such magnetic fields are

in the 1σ range of 100–200 rad m−2 in agreement with observations.

We note, however, that, according to our estimates, the scale of the

magnetic field is lB = 20–40 kpc, that is, a factor of a few larger than

what is usually assumed. The scale of the field is smaller, of the order

of 1 kpc, for galactic wakes; it could also be smaller if there were

other sources of stirring like radio galaxies. The maximum field

strength in the magnetic structures is about 2–4 μG, whereas its rms

value within a turbulent cell is 1–2 μG. Such rms field strengths

are in better accord with those inferred from synchrotron intensity

assuming equipartition between magnetic fields and cosmic rays, or

with inverse Compton limits.

We predict that synchrotron emission from cluster radio haloes

similar to that in the Coma cluster can be significantly polarized at

short wavelengths λ = 3–5 cm.
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MNRAS, 347, 29

Clarke T. E., Kronberg P. P., Bohringer H., 2001, ApJ, 547, L111

Clarke T. E., 2004, JKAS, 37, 1

Colgate S. A., Li H., Pariev V., 2001, Phys. Plasmas, 8, 2425

Colless M., Dunn A. M., 1996, ApJ, 458, 435

De Young D. S., 1992, ApJ, 386, 464

Dennis T. J., Chandran B. D. G., 2005, ApJ, 622, 205

Dolag K., Bartelmann M., Lesch H., 1999, A&A, 348, 351

Dolag K., Bartelmann M., Lesch H., 2002, A&A, 387, 383

Eilek J. A., Owen F. N., 2002, ApJ, 567, 202

Enßlin T. A., 2003, A&A, 399, 409

Enßlin T. A., Heinz S., 2002, A&A, 384, L27

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 366, 1437–1454



Evolving turbulence and magnetic fields 1453

Enßlin T. A., Vogt C., 2003, A&A, 401, 835

Enßlin T. A., Vogt C., Clarke T. E., Taylor G. B., 2003, ApJ, 597, 870

Fabian A. C., Daines S. J., 1991, MNRAS, 252, 17P

Fabian A. C., Sandres J. S., Crawford C. S., Conselice C. J., Gallagher J. S.,

Wyse R. F. G., 2003, MNRAS, 344, L48

Fabian A. C., Reynolds C. S., Taylor G. B., Dunn R. J. H., 2005, MNRAS,

363, 891

Frisch U., 1995, Turbulence. The Legacy of A. N. Kolmogorov. Cambridge

Univ. Press, Cambridge

Fujita Y., Matsumoto T., Wada K., 2004, ApJ, 612, L9

Furlanetto S. R., Loeb A., 2001, ApJ, 556, 619

Goldman I., Rephaeli Y., 1991, ApJ, 344, 350

Goldshmidt O., Rephaeli Y., 1994, ApJ, 431, 586

Govoni F., Feretti L., 2004, Int. J. Mod. Phys. D, 13, 1549

Govoni F., Murgia M., Feretti L., Giovannini G., Dallacasa D., Taylor G. B.,

2005, A&A, 430, L5

Haugen N. E. L., Brandenburg A., Dobler W., 2003, ApJ, 597, L141

Haugen N. E. L., Brandenburg A., Dobler W., 2004, Phys. Rev. E, 70,

016308

Heinz S., Churazov E., Forman W., Jones C., Briel U. G., 2003, MNRAS,

346, 13

Inogamov N. A., Sunyaev R. A., 2003, Astron. Lett., 29, 791

Jaffe W., 1980, ApJ, 241, 925

Johnston-Hollitt M., Ekers R. D., 2004, preprint (astro-ph/0411045)

Kazantsev A. P., 1967, JETP, 53, 1806

Kim E.-J., 1999, Phys. Lett. A, 259, 232

Kim W.-T., Narayan R., 2003, ApJ, 596, 139

Kronberg P. P., 1994, Rep. Progr. Phys., 57, 325

Kulsrud R. M., Cen R., Ostriker J. P., Ryu D., 1997, ApJ, 480, 481

Lacey C., Cole S., 1993, MNRAS, 262, 627

Laing R. A., 1981, ApJ, 248, 87

Landau L. D., Lifshitz E. M., 1975, Fluid Mechanics. Pergamon Press,

Oxford

Maron J., Cowley S., McWilliams J., 2004, ApJ, 603, 569

Medina-Tanco G., Enßlin T. A., 2001, Astroparticle Phys., 16, 47

Meneguzzi M., Frisch U., Pouquet A., 1981. Phys. Rev. Lett., 47,

1060

Monin A. S., Yaglom A. M., 1975, Statistical Fluid Mechanics, Vol. 2. MIT

Press, Cambridge

Motl P. M., Burns J. O., Loken C., Norman M. L., Bryan G., 2004, ApJ, 606,

635

Murgia M., Govoni F., Feretti L., Giovannini G., Dallacsa D., Fanti R., Taylor

G. B., Dolag K., 2004, A&A, 424, 429

Norman M. L., Bryan G. L., 1999, in Röser H.-J., Meisenheimer K., eds,
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A P P E N D I X A : S E E D M AG N E T I C F I E L D S

I N G A L A X Y C L U S T E R S

There are a number of sources of seed magnetic fields in galaxy

clusters. It is well known that the intracluster medium (ICM) has

high metallicity which must have been produced in stars in galax-

ies and subsequently ejected into the galactic interstellar medium

(ISM) and then into the ICM. Since the ISM is likely to be mag-

netized with fields of the order of a few μG, this would lead to

a seed field in the ICM. One can roughly estimate the seed field

resulting from stripping the galactic gas, by using magnetic flux

conservation under spherically symmetric expansion; that is, B seed

� (ρ ICM/ρ ISM)2/3 B gal. For B gal � 3 μG, and ρ ICM/ρ ISM � 10−2–

10−3, one gets B seed � 0.1–0.03 μG. One may get even larger seed

fields if there are a substantial number of active galaxies with mag-

netized outflows: if about 103 galaxies have mass outflow with

Ṁ � 0.1 M� yr−1 lasting for 1 Gyr, with a Poynting flux of about

10 per cent of the material flux, and the field gets mixed into the

cluster gas over an Mpc-sized region, B seed � 0.3 μG would result

(Brandenburg 2000). This estimate, however, assumes that all the

intracluster gas has been processed through the outflows, which may

be an exaggeration.

Another source of seed fields is likely to be the outflows from ear-

lier generation of active galaxies (radio galaxies and quasars) (Rees

1994; Goldshmidt & Rephaeli 1994; Medina-Tanco & Enßlin 2001;

Furlanetto & Loeb 2001; Colgate, Li & Pariev 2001). Such outflows
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can produce magnetized plasma bubbles in some fraction of the in-

tergalactic volume before the clusters are formed (typically of the

order of 10 per cent – Furlanetto & Loeb 2001) which, when incorpo-

rated into the ICM, would seed the general cluster gas with magnetic

fields. If one assumes that the cluster gas is 103 times denser than

the intergalactic medium and blindly uses the enhancement of the

bubble field due to compressions during cluster formation, one can

get fields as large as 0.1–1 μG in the ICM (Furlanetto & Loeb 2001).

However, this is to ignore the issue of how the field in the magnetized

bubble, especially if it is predominantly relativistic plasma from a

radio galaxy, mixes with the unmagnetized and predominantly ther-

mal gas during cluster formation, and the resulting effects on both

the field strength and coherence scale [see Enßlin (2003) for the re-

lated problem of the escape of cosmic rays out of radio cocoons]. It

is likely that, while active galactic nuclei and galaxies provide a po-

tentially strong seed magnetic field, there would still be a need for

their subsequent amplification and maintenance against turbulent

decay.

Altogether, we adopt B seed = 10−7 G as a plausible estimate of

the seed magnetic field in the intracluster gas.

A P P E N D I X B : T H E C O R R E L AT I O N

F U N C T I O N O F T H E FA R A DAY

ROTAT I O N M E A S U R E

In order to calculate the autocorrelation function of the Faraday RM,

defined in equation (26), we introduce coordinates (x , y, z) with the

z-axis directed towards the observer, and those in the plane of the

sky, X = (X , Y ). We assume the magnetic field to be an isotropic,

homogeneous, random field with zero mean value. Then its equal-

time, two-point correlation tensor has the form 〈Bi(x, t)Bj(y, t)〉 =
Mij(r , t), where

Mi j =
(

δi j − rir j

r 2

)
MN(r , t) + rir j

r 2
ML(r , t).

Here 〈· · ·〉 denotes the ensemble average, r = |x −y|, and ri =
xi − yi (see section 34 of Landau & Lifshitz 1975; Monin & Yaglom

1975). The functions M L(r , t) and M N (r , t) are known as the

longitudinal and transverse correlation functions of the magnetic

field, respectively. Since ∇ · B = 0,

MN = 1

2r

∂

∂r

(
r 2 ML

)
.

We also assume for simplicity that the electron density is uncorre-

lated with the magnetic field and also constant over the field correla-

tion length. This is consistent with the fact that random gas motions

in galaxy clusters are quite subsonic. The correlation function of

RM is then

C(R) = 〈RM(X1)RM(X2)〉

= K 2n2
e

∫ L

0

∫ L

0

〈Bz(X1, z1)Bz(X2, z2)〉 dz1 dz2

= K 2n2
e L

∫ L

−L

Mzz(R, ζ ) dζ

= K 2n2
e L

∫ L

−L

(
ML

R2

R2 + ζ 2
+ MN

ζ 2

R2 + ζ 2

)
dζ

= K 2n2
e L

∫ L

−L

(
ML + ζ 2

2r

dML

dr

)
dζ. (B1)

Here, we have assumed that L is much greater than the correlation

length of the magnetic field, ζ = z1 − z2, R = |X1 − X2| and r 2 =
R2 + ζ 2.

For the sake of illustration, consider the longitudinal correlation

function of the form

ML = 1

3
〈B2〉 exp

(
− r 2

2l2
B

)
,

which corresponds to the one-dimensional magnetic spectrum of

the form Mk ∝ k4 exp(−k2l2
B/2) (Monin & Yaglom 1975). We note

that Mk attains maximum at a wavenumber km = 2/lB (or a scale of

2π/km = πlB), whereas the longitudinal correlation scale is given

by lL = [ML(0)]−1
∫ ∞

0
ML(r ) dr = lB

√
π/2.

Straightforward calculation then yields

C(R) =
√

2

3
cK 2n2

e〈B2〉LlB exp

(
− R2

2l2
B

)
, (B2)

where

c =
∫ L/(

√
2lB )

−L/(
√

2lB )

(1 − s2) exp (−s2/2) ds ≈ 0.88,

with the numerical value obtained for L/(
√

2lB) � 1.

The rms value of RM can be obtained from equation (B1) or (B2)

at R = 0:

σ 2
RM = K 2n2

e L

∫ L

−L

MN(R, z)|R=0 dζ

=
√

2

3
cK 2n2

e〈B2〉LlB, (B3)

which is similar to equations (27) and (28).
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