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ABSTRACT

An overset grid method was developed to investigate the interaction between a particle-laden
flow and a circular cylinder. The method is implemented in the Pencil Code, a high-order finite-
difference code for compressible flow simulation. High-order summation-by-parts operators were
used at the cylinder boundary, and both bi-linear Lagrangian and bi-quadratic spline interpola-
tion were used to communicate between the Cartesian background grid and the body-conformal
cylindrical grid. The performance of the overset grid method was assessed to benchmark cases
of steady and unsteady flows past a cylinder. Results show high-order accuracy and good agree-
ment to the literature. Particle-laden flow simulations were performed, with inertial point particles
impacting on a cylinder. The simulations reproduced results from the literature at a significantly
reduced cost. Further, an investigation into blockage effects on particle impaction revealing that
the previously published DNS data is less accurate than assumed for particles with very small Stokes
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1. Introduction

A common flow problem in numerical simulations
is flow past a bluff body. Obstructions in the flow
include (but are not limited to) spheres, flat plates,
circular, rectangular or elliptical cylinders, triangles,
spheroids and complex geometries made out of a com-
bination of these shapes. Particle-laden flows inter-
acting with such obstacles are important for a range
of applications. Whether the goal is to maximise the
particle extraction from the flow, as for filter appli-
cations, or to minimise particle attachment on the
object to avoid an insulating layer, as for biomass
boilers, understanding the mechanics of inertial par-
ticles helps improve design, and hence, the efficiency
of said applications. Accurate prediction of parti-
cle behaviour in the vicinity of bluff bodies requires
highly accurate boundary layer representation within
numerical simulations. Finding the numerical method
best suited to this task is not trivial, and can have a
huge impact on both the efficiency and accuracy of
simulations.

1.1. Representing solid objects in the flow

For generic shapes (cylinders, spheres, plates, etc.)
body-fitted structured meshes are commonly used to
accurately resolve the solid boundary. These meth-
ods use grids that conform to the solid (or solids)
immersed in the flow and to other physical bound-
aries of the domain (inlet/outlet, walls, etc.). Depend-
ing on the domain’s geometry, this may require some
deformation of the grid to conform to the bound-
aries, in addition to the mapping of the flow domain
onto a simple computational domain. The result
may lead to unnecessary local variations in the grid
and rather time consuming grid generation (Versteeg
and Malalasekera 2007). Alternatively, unstructured
meshes can be applied to resolve the solid boundaries
in the flow. Unstructured meshes provide the high-
est flexibility in adapting a mesh to the flow problem,
and are a good alternative for complex geometries
when finite-volume or finite-element formulations of
the governing equations are used (Mavriplis 1997).
Among the disadvantages of such grids are much
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larger storage requirements (Tannehill, Anderson, and
Pletcher 1997) and the need for intricate mesh gener-
ation techniques (Owen 1998).

An alternative to body-fitted grids are non-
conforming (typically Cartesian) meshes, where a
solid in the flow is represented by a change in the fluid
equations in the vicinity of the solid boundary. One
such method, which has gained vast popularity over
the last decades, is the immersed boundary method
(IBM). This method (or rather, this class of meth-
ods) was originally developed to model flow around
heart valves (Peskin 1972) by allowing for the repre-
sentation of bluff bodies in the flow without using a
body-conformal grid. A simple Cartesian grid can be
used, with the boundary conditions (the sharp inter-
face) of the bluff body incorporated into the solver
by a modification of the equations in the vicinity of
the boundary (see review article by Mittal and Iac-
carino (2005) and references therein for details). This
makes IBMs very flexible for representing bluft bodies,
and particularly well-suited to complex geometries,
where the use of body-fitted structured meshes is lim-
ited. A caveat to the IBM is the difficulty in achieving
high-order accuracy near boundaries that do not con-
form to the grid. For complex geometries this may be
regarded as a necessary loss in order to be able to rep-
resent the boundary. For flow past simple geometries
other methods may be more suitable, especially when
the accuracy in the vicinity of the surface is of major
concern.

Roughly 10 years after the initial development of
the IBM, a method of multiple grids overset on top of
one another was proposed to represent solids in a flow
(see Steger, Dougherty, and Benek 1983; Benek, Bun-
ingt, and Steger 1985; Steger and Benek 1987). Overset
grids, or Chimera methods, employ body-conformal
grids at the bluff bodies, but the body-conformal grids
do not extend to the domain boundaries. Instead, a
non-body-conformal background grid (typically uni-
form Cartesian) is used, and updated flow informa-
tion within overlapping grid regions is communicated
between grids at every time step. In this way, the
flow simulation is split into multiple sub-simulations,
one for each grid, and the boundaries of one grid
are updated with information from the other grids.
The background grid is used to compute the general
flow field outside the smaller body-fitted grids, and
the communication between grids is achieved through
interpolation.

Overset grid methods have the advantage of being
highly accurate at the solid-fluid interface. This is due
to the use of body-fitted grids in these regions, and
the flexibility in grid stretching made possible when
several grids are used. At the same time, no grid defor-
mation is necessary to conform to domain boundaries,
due to the use of an appropriate non-conformal back-
ground grid. If the domain is circular, a cylindrical grid
can be used as a background grid, if the domain is
rectangular, a Cartesian grid, etc.

The communication between the grids is the lim-
iting factor in terms of the accuracy of overset grid
methods. In general, the interpolation of flow vari-
ables is detrimental to mass conservation (although
conservative, mass correcting overset grid meth-
ods do exist for finite-volume codes, see e.g. Part-
Enander and Sjogreen 1994 and Zang and Street 1995).
Using high-order interpolation between grids has
proved beneficial in regards to the overall accu-
racy and stability of the overset grid method for
both finite-difference and finite-volume implemen-
tations (Sherer and Scott 2005; Chicheportiche and
Gloerfelt 2012; Volkner, Brunswig, and Rung 2017).
While advantageous in terms of accuracy, high-order
interpolation techniques have the disadvantage of
increase in complexity, inter-processor communica-
tion and floating-point operations, when compared
to low-order interpolation schemes. Furthermore,
straightforward extension to high-order interpola-
tion, typically from second-order to fourth-order
Lagrangian interpolation, does not guarantee a bet-
ter solution. Possible overshoots in the interpola-
tion polynomials may have a devastating impact on
the interpolation accuracy. The applied interpolation
scheme should therefore be evaluated for the spe-
cific flow problem at hand. For overset grid imple-
mentations, several interpolation schemes are avail-
able. In this study two such schemes are compared:
bi-linear Lagrangian interpolation and bi-quadratic
spline interpolation. Together with high-order low-
pass filtering, the resulting computations were both
stable and accurate. This topic is further discussed in
Section 2.

If several body-fitted grids overlap, the overset grid
computations become increasingly difficult, particu-
larly in regards to the communication between the
different grids. For the purposes of this paper, the dis-
cussion is limited to a single body-fitted grid on top
of a Cartesian background grid (for a more general



discussion on overset grids, see Meakin 1995 or
Chesshire and Henshaw 1990). A recent development
of multiple-grid systems using overset grids can be
found in the work by Vreman (2016) and Vreman and
Kuerten (2018), where DNS simulations of spherical
fully resolved particles are achieved by an individual
spherical grid attached to each particle. Applications to
DNS of particle-laden flows are indeed the purpose of
our method as well, but due to the high count of small
particles required for our deposition simulations, fully
resolved particles are not an option at present. Hence,
we restrict the use of overset grids to the solid surface
onto which the particles are impinging.

1.2. Particle impaction

When considering particle deposition on a surface,
two mechanisms are required for a particle to deposit.
The particle must first impact the surface, that is, it
must physically contact the surface, and then it must
adhere to the surface. Only the first of these two mech-
anisms will be the focus of this study. Hence, all par-
ticles that come into contact with the bluff body are
considered to have been absorbed by it. Further, only
inertial impaction is considered. Any other particle
impaction mechanisms including Brownian motion,
thermophoresis and turbulent diffusion are omitted.
Note that this is not an acceptable omission in non-
isothermal flows, where the effects of temperature will
be large on small particles (see Beckmann et al. 2016;
Garcia Pérez, Vakkilainen, and Hyppéinen 2016).

The impaction efficiency 7 = Njpp/Nins is a mea-
sure of the cylindrical object’s ability to capture the
particles that are initially incident on the cylinder. The
number of impacting particles is given by Njp,, while
Niys is the count of particles with a centre of mass that
is initially moving in the direction of the solid object.
Note that following this convention maylead ton > 1,
even if no forces act on the particles, since a particle
may follow a path close enough to be intercepted by
the object, due to its finite size, even though the centre
of mass does not hit the object.

A fluid flow will be deflected by the object, and par-
ticles in the flow will experience a drag force. This force
will accelerate the particles along the fluid trajectory,
leading particles away from the bluff body. The particle
Stokes number, St = T/ 75, where T and Ty are particle
and fluid time scales, respectively (details in Section 4),
can be considered a measure of particle inertia. Hence,
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particles with a small Stokes number follow the flow
to a larger extent than particles with a large Stokes
number. By using potential flow theory to compute the
flow past a circular cylinder, Israel and Rosner (1982)
determined a relation for the impaction efficiency as
a function of the Stokes number. The predictions by
Israel and Rosner (1982) are inaccurate in predicting
particle impactions for flows where the viscous bound-
ary layer of the cylinder plays a significant role. This
is because potential flow theory assumes inviscid flow.
In particular, this theory is insufficient at predicting
impactions for particles with small Stokes numbers,
and for moderate Reynolds number flows. Here, the
Reynolds number is defined as Re = UyD/v, where Uy
is the mean flow velocity, D is the diameter of a cylin-
der (the bluft body in the flow) and v is the kinematic
viscosity of the fluid.

Haugen and Kragset (2010) performed simula-
tions using the Pencil Code to compute inertial
particle impaction on a cylinder in a crossflow
for different Stokes and Reynolds numbers. Later,
similar studies have been performed with multiple
cylinders (Haugen et al. 2013) and with turbulent free-
stream flow (Aarnes, Haugen, and Andersson 2019).
Although the impaction efficiencies obtained by Hau-
gen and Kragset (2010) have been used as bench-
marking results, the mentioned studies were limited
to moderate Reynolds numbers or two-dimensional
flows. Part of the reason for this limitation is the use
of an immersed boundary method that requires a very
fine grid to achieve the necessary accuracy.

1.3. Present contribution

The purpose of this paper is to introduce an over-
set grid method applicable to compressible particle-
laden flows past a circular cylinder, and to assess
its performance in benchmarking cases and a true
particle-laden flow simulation. The method has been
implemented in the open source compressible flow
solver known as the Pencil Code (Brandenburg and
Dobler 2002; The Pencil Code 2018), with the aim to
improve the accuracy in the vicinity of the cylinder and
to reduce the computational cost of particle-laden flow
simulations.

The structure of the paper is as follows: In Section 2
the equations governing the flow and the bluff body
representation are described. An assessment of the
accuracy of the method for steady and unsteady flow
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past a cylinder is given in Section 3. In Section 4 the
capabilities of the overset grid method are demon-
strated by simulating particle-laden flows interacting
with a bluft body at a moderate Reynolds number. The
computational costs and the accuracy of the results are
compared with those of Haugen and Kragset (2010),
before concluding remarks are given in Section 5.

2. Methodology
2.1. Governing equations

The governing equations of the flow are the continuity
equation:

Dp
L = _HV.u, 1
o = PV u (1)
and the momentum equation:
Du
por =—Vp+ V- 2u), 2)

where p, t, u and p are the density, time, velocity vector
and pressure, respectively, and i = pv is the dynamic
viscosity. The compressible strain rate tensor § is given
by:

1 . 1
S_E(Vu—l—(Vu) >—I<§V-u), 3)

where I is the identity matrix. The pressure is com-
puted using the isothermal ideal gas law, p = c2p,
where ¢, is the speed of sound. The flow is isother-
mal and weakly compressible, with a Mach number
of ~ 0.1 for all simulations. With a constant speed of
sound (for the isothermal case) and a constant kine-
matic viscosity, the momentum equation to be solved
on the overset grids is:
Du

Dr = —ch (Inp) +v (Vzu

+§V(V-u)+28-V(lnp)>. (4)

The governing Equations were discretised with sixth-
order finite-differences in space and a third-order
memory efficient Runge-Kutta scheme in time
(Williamson 1980). The flow was simulated on a rect-
angular domain with an inlet at the bottom and flow
in the vertical direction. The circular cylinder was
situated in the centre of the domain, with the follow-
ing boundary conditions: no-slip and impermeability
for velocity, and zero gradient in the radial direction

for the density. The latter condition was derived from
the ideal gas law and the boundary layer approxima-
tion (dp/dn = 0, where nis the wall normal direction)
for an isothermal flow. Note that this is a first-order
approximation, and the physical value of the wall-
normal component of the pressure gradient on the
wall will be nonzero. However, as the density fluctua-
tions are very small near the solid surface, in particular
when compared to the velocity fluctuations, this is not
expected to have a significant impact on the overall
accuracy.

Navier-Stokes characteristic boundary conditions
were used both at the inlet and at the outlet of the flow
domain. This boundary condition is a formulation
that makes use of one-dimensional characteristic wave
relations to allow acoustic waves to pass through the
boundaries (Poinsot and Lele 1992; Yoo et al. 2005).
The remaining domain boundaries were periodic.

2.2. Overset grids

To resolve the flow domain using an overset grid
method, a cylindrical coordinate grid was body-fitted
to the cylinder, and a uniform Cartesian grid was used
as the background grid (see Figure 1(a)). The cylin-
drical grid was stretched in the radial direction. In
the region where fluid data is communicated between
grids, it is beneficial that the grids have similar spac-
ing. The grid stretching enables similar grid spacing in
the interpolation region and a much finer grid near the
cylinder surface.

The compressibility of the flow leads to a strict sta-
bility limit for the Runge-Kutta method, imposing a
very small time step in the simulations. Because the
overset grid method is effectively solving two different
flow problems, coupled only by the communication
between the grids, there is flexibility in the choice of
time step. Choosing a time step on the background
grid that is small enough to guarantee stability for the
Cartesian grid spacing, and choosing a smaller time
step on the cylindrical grid reduces the overall com-
putational cost significantly. The cylindrical grid time
step must be a multiple of the background grid time
step to ensure that the computations on each grid
are synchronised. An implicit solver may be benefi-
cial, if the grid spacing near the cylinder is several
orders of magnitude smaller than that of the back-
ground grid, but that issue is beyond the scope of this
study.
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Figure 1. Overset grid method: (a) Cylinder grid on top of background grid (fringe-points of cylinder grid and background grid points
within cylinder grid radius not shown). (b) Communication between grids, interpolation from Cartesian donor-points to cylindrical fringe-
points. (c) Communication between grids, interpolation from cylindrical donor-points to Cartesian fringe-points. Four donor-points (e )
surround each fringe-point (¢ ) in bi-linear interpolation. Dashed grid lines used to illustrate where the flow variables are not computed

by finite-differences (fringe-points and hole-points).

The communication between the grids in the over-
set grid simulation was completed in two stages for
each time step of the background grid. At each stage
of the communication, the required flow properties
were interpolated from donor-points to fringe-points.
Each grid requires a zone of fringe-points at least three
points deep, such that the seven point central differ-
ence stencil could be used without any special handling
of points adjacent to the fringe-points. For the curvi-
linear grid, the fringe-points were simply the three
outer points at each radial grid line (see Figure 1(b)).
For the Cartesian grid, the fringe-points must be iden-
tified, typically during pre-processing, in order to
include all grid points within a fixed area in the region

covered by both the Cartesian and the cylindrical grid.
This is set by an inner and outer radius defining the
interpolation region, see red lines enclosing fringe-
points on the Cartesian grid in Figure 1(c). Cartesian
grid points that are closer to the solid than the inner
radius of the fringe-point zone (or inside the solid),
are hole-points. The hole-points are not used in the
computations.

In the overset grid method implemented in the Pen-
cil Code, there is no overlap between the two interpola-
tion regions of Figures 1(b,c). That is, no fringe-points
are used as donor-points. Hence, the interpolation is
explicit, not implicit (Chesshire and Henshaw 1990).
Note that if the bluff body enclosed by the body-fitted
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grid were moving, the cost of inter-grid communica-
tion would be significantly increased due to the cost
related to identifying new fringe and donor-points on
the background grid at each new position of the bluff
body.

At present, two types of interpolation are imple-
mented for overset grid communication in the
Pencil Code: bi-linear Lagrangian interpolation and
bi-quadratic spline interpolation. Both methods have
the advantage of avoiding oscillations in the interpo-
lation interval, which is a common problem for high-
order interpolation. The Lagrangian interpolation is a
second-order accurate scheme, while the spline inter-
polation is third-order accurate. The illustration of
donor-points and fringe-points in Figures 1(b,c) is for
Lagrangian interpolation, where each fringe-point on
one grid is interpolated from the 2 x 2 surrounding
donor-points of the other grid. For spline interpola-
tion, a zone of the 3 x 3 closest grid points are used
as donor-points for interpolation of each fringe-point.
Note that the interpolation is bi-linear or bi-quadratic
in both two- and three-dimensions. This is due to the
Cartesian and cylindrical grid having a shared z-axis
((x,y)-plane displayed in Figure 1), hence no interpo-
lation is required in the z-direction.

At the solid-fluid interface, summation-by-parts
finite-difference operators are used to enhance stabil-
ity for time-dependent flow simulations (an unsteady
wake develops for Re > 47). These operators are
third-order accurate for the sixth-order centred finite-
difference method. Details on these operators can be
found in Strand (1994) (first derivatives) and Mattsson
and Nordstrom (2004) (second derivatives).

The centred finite-difference schemes are non-
dissipative, which can be detrimental due to the
potential growth of high-frequency modes, leading to
numerical instability. To some extent, the summation-
by-parts boundary conditions suppress such instabili-
ties, but these operators are not sufficient to suppress
all oscillations in the solution on the curvilinear
stretched grid. In particular, such oscillations are
prominent in the density field. The detrimental effect
of the high-frequency modes increases as the grid
spacing decreases, which may lead to diverging solu-
tions as the grid is refined.

To suppress the high-frequency modes, a high-
order low-pass filter is used on the curvilinear part of
the overset grid. The filter is a 10th order Padé filter,
with boundary stencils of 8th and 6th order. On the

interior of the domain, the filter is given by:

N

i1 + b + iy = Z %(¢i+n + ¢i—n), (5)

n=0

where ¢ and ¢y are components k of the filtered and
unfiltered solution vectors, respectively, of is a free
parameter (|of| < 0.5), 2N is the order of the filter, and
oy are fixed parameters dependent only on o (Visbal
and Gaitonde 1999). Boundary stencils can be found in
Gaitonde and Visbal (2000). The Padé filter is implicit,
and requires the solution of a tri-diagonal linear sys-
tem at grid points in the radial direction, and a cyclic
tri-diagonal system at grid points in the direction tan-
gential to the surface. The free parameter as was set to
0.1, for which filtering the solution once per Cartesian
time step was found to be sufficient for a stable and
accurate solution.

Note that the need for filtering to avoid numeri-
cal growth of high-frequency modes may be due to
the use of a non-staggered grid, which is known to
lead to weak pressure-velocity couplings (Ferziger and
Peric 2002). Switching to a staggered grid, which has a
stronger coupling between pressure and velocity, may
reduce the need for filtering.

3. Performance
3.1. Assessment of accuracy

The spatial accuracy of the overset grid method was
examined by simulating a steady flow past a circular
cylinder at a Reynolds number of 20. A domain of
size Ly x L, = 10D x 10D was used. The diameter of
the curvilinear, body-fitted grid (henceforth called the
cylinder grid) was three times the cylinder diameter.
An indicative measure of the accuracy of the
method can be found by computing solutions on sev-
eral grid refinement levels, and using the finest grid
as the ‘correct solution’ when computing two-norm
errors. The grids used in this accuracy assessment are
listed in Table 1. An odd number of grid points was
used in the directions that were not periodic, in order
to have grid points that are aligned at each refine-
ment level. A fixed (dimensionless) time step At =
0.25 x 10~ was used for the Cartesian grid compu-
tations at all refinement levels. The small time step
ensured that there was no violation of diffusive or
advective time step restrictions on any of the grids.
These restrictions are At < C,A Xélin/ v and AT <



Table 1. Grid refinement levels used in the assessment of accu-
racy of the overset grid method.

Cylinder grid Cartesian grid
Refinement level Ny x Ny Ny x Ny
0 17 x 80 80 x 81
1 33 x 160 160 x 161
2 65 x 320 320 x 321
3 129 x 640 640 x 641

CulA Xmin/(lu| + c;), respectively, where At is the
dimensional time step, A Xpmin is the smallest grid spac-
ing in any direction, and C, and C, are the diffusive
and advective Courant numbers, respectively.

Hyperbolic sine functions were used for the
stretching in the radial direction. The grid stretching
parameters were set such that the ratio between the
grid spacing normal and tangential to the surface was
approximately one, both in the vicinity of the solid sur-
face and in the interpolation region in the outer part
of the cylinder grid. Furthermore, the number of grid
points in the Cartesian and cylindrical grids were set
in order to have similar grid spacings in the region of
inter-grid interpolation. The resulting local time step
on the cylindrical grid was At. = 0.2A¢.

The main objective of the method, is to compute
a very accurate boundary layer around the cylinder.
This is crucial for the application to particle impaction
simulations in Section 4 and in future studies. The L,-
error norms of flow variables are therefore considered
along strips tangential to the cylinder surface as close
as possible to the surface, in order to get an indica-
tion of the accuracy of the scheme in the boundary
layer. Figure 2(a) depicts L,-error norms of the density
and the normal and tangential velocity components
(with respect to the cylinder surface), computed with
the two different interpolation methods. The norms
were computed along a strip around the cylinder, at
the grid point closest to the cylinder for the refine-
ment level 0 (this corresponds to the 2nd point from
the cylinder for refinement level 1, 4th for level 2, etc.).
For certain applications (e.g. multiple-grid systems)
the accuracy in the fringe-point zone can be of crucial
importance. Therefore, equivalent L,-error norms for
the outermost grid point are included in Figure 2(b).
Note that the computations with spline interpolation
did not fully converge to a stable solution at the coars-
est grid level, as indicated by the dashed lines between
the first refinement results in Figure 2.

For both linear and spline interpolation, compu-
tation of the density was third-order accurate, the
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radial velocity component was between third- and
fourth-order and the tangential velocity component
was between second- and third-order accurate, at the
grid point closest to the surface on the coarsest grid.
The results suggest that the difference in accuracy
between the interpolation methods is negligible in the
immediate vicinity of the cylinder. At the outermost
fringe-point the accuracy was somewhat lower than in
the vicinity of the cylinder, with flow variables approx-
imately second-order accurate regardless of interpola-
tion method. For the density the order of accuracy was
approximately half an order higher with spline inter-
polation than with linear interpolation, but negligible
differences can be seen for velocity components.

For a more detailed picture of the formal order of
accuracy of the overset grid method, consider Figure 3.
This figure depicts the formal order of accuracy P, of
the density and velocity components, computed along
strips at increasing distance from the cylinder bound-
ary (cylinder boundary at r, = 0.5). The computations
are based on the assumption that the L,-error norm
on a grid with grid spacing Ax can be expressed as
Ly(Ax) ~ Ax?, such that the order of accuracy P can
be computed by:

P log(L2(Ax)/Ly(Ax/2))
B log2 '

(6)

In principle, the spline interpolation scheme is third-
order accurate while the Lagrangian interpolation a
second-order accurate method. The effect of using
the different methods of interpolation can be seen
in Figure 3. Some effect of the interpolation is seen,
when considering the entire flow domain covered by
the cylindrical grid. The difference is, however, much
smaller than the theoretical difference in accuracy
between the two interpolation schemes. The difference
in order of accuracy of the radial velocity computations
is 0.02-0.56, for which spline interpolation yielded
the highest order (median P = 2.49 with spline inter-
polation, P = 2.42 with Lagrangian interpolation). A
similar difference can be seen for the density. For
the tangential velocity, on the other hand, there is
no obvious best method. In the vicinity of the cylin-
der surface the difference between the Lagrangian and
spline interpolation is negligible. Notice that the radial
velocity component was computed with a very high-
order of accuracy, P~ 5 in this region. This is sig-
nificantly more accurate than the more conservative
suggestion of radial velocity accuracy between third-
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L,-error

(b)

Figure 2. L-error norms of uy, ug and p at varying refinement levels at the grid point (a) closest to the cylinder surface and (b) farthest
away from the cylinder surface (for the coarsest grid). Results are for the computations with bi-linear Lagrangian interpolation (LI) and
bi-quadratic spline interpolation (SI), with Ax (non-dimensional) grid spacing on the Cartesian grid.
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Figure 3. Formal order of accuracy of flow variables computed
along strips tangential to the cylinder surface at non-dimensional
radial position r, for upper refinement levels for flow with Re = 20
with Lagrangian interpolation (LI) and spline interpolation (SI).

and fourth-order, seen in Figure 2(a) (the results in
Figure 2(a) correspond to the second point from the
left in Figure 3).

The consideration of formal order of accuracy
shows that the overset grid method is a high-order
method (P> 2). No obvious distinction among the
two interpolation schemes was found by this analysis,
although the spline interpolation appeared to have a
marginally higher accuracy for the density and radial
velocity component.

3.2. Unsteady flow

The L,-error norms are suggestive of the formal accu-
racy of the numerical method, but do not reveal the
in use accuracy of the method for simulations in the
unsteady flow regime. This must be determined, before
arriving at a full-blown simulation of a particle-laden
flow interacting with a cylinder in this flow regime.

A grid refinement study was performed for Re =
100, where unsteady vortex shedding developed in the
cylinder wake. A domain with L, x L, = 10D x 20D
was used, with the cylinder in the centre of the domain.
The resulting mean drag coefficient (Cp), root-mean-
square lift coefficient (C}) and Strouhal number (Str)
were computed. The pressure and viscous forces on the
cylinder were

Np
Fy=—— f pl dA~ —hra0 Y Bip(ra6),  (7)
i=1

ou
or

>

(re,0)

(8)

Ny
F, = /o|erA ~ vhr.AO ZO,-p(rC, 0;)
i=1

respectively, where / is the height of the cylinder and
o is the shear stress. With flow in the y-direction, the
drag and lift forces, Fp and Fy, were found by tak-
ing the sum of the pressure and shear forces in y- and
x-direction, respectively. These forces can be used to



calculate the drag and lift coefficients as follows:

Fp
Cop=1—5 )
2P0 UGA
Fr
Cp=—"-—+, (10)
2P0 UGA

where pg and Uy are free-stream values of the den-
sity and velocity, respectively, and A = 2hr. is the
projected frontal area of the cylinder. The Strouhal
number is simply the vortex shedding frequency, non-
dimensionalized by the free-stream velocity and cylin-
der diameter.

A grid refinement study of the unsteady flow was
performed with both Lagrangian and spline interpo-
lation on two differently sized overset grids. One had
a cylindrical grid with diameter 3D (the same size
that was used in the assessment of accuracy for the
Re = 20), the other had diameter 5D. Hence, there
was a factor two difference in the radial length (L, =
reg — Tc, Where 1 is the outer cylinder grid radius)
of the two cylindrical grids. At each refinement level,
the smallest spacing in the radial direction was the
same for the two different overset grids. The stretch-
ing properties were the same as that in the Re = 20
flow simulations (approximately quadratic cells in the
vicinity of the surface and the interpolation region, and
approximately equal grid spacing on the Cartesian and
curvilinear grid in the interpolation region). Hence,
the outer grid spacing on the larger cylindrical grid
was larger than the outer grid spacing of the smaller
cylindrical grid. Thus, a coarser Cartesian grid could
be used for the overset grid with the larger cylinder
grid. This, in turn, allowed for a larger time step on the
background grid, but required more sub-cycles on the
cylindrical grid for each Cartesian time step. Details
on the grids used in this refinement study are listed in
Table 2.

Results for the grid refinement at Re = 100 can be
seen in Figure 4 and Table 3. In Figure 4, the dimen-
sionless drag and lift coefficients, and the Strouhal
number have been normalised by the result computed
at the finest grid. Hence, the plots depict the relative
deviation from the result at the 8th grid refinement
level from Table 2. The values of the coefficients com-
puted at this refinement level, for each of the four cases,
are given in Table 3.

The dimensionless numbers converged quite
rapidly for all of the tested cases. The best performance
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Table 2. Grid refinement levels used in the grid refinement study
for flow past a cylinder at Re = 100 with two differently sized
cylindrical grids.

Refinement  Arpin reg = 3rc feg = 5rc

level %102 Ny x Ny Ny x Ny, Ny x Ng Ny x N,

0 4.1 16 x 80 80 x 160 24 % 80 50 x 100
1 27 24x120  120x240 36 x 120 76 x 152
2 2.0 32x 160 160 x 320 48 x 160 100 x 200
3 1.6 40 x 200 200 x 400 60 x 200 128 x 256
4 13 48 x 240 240 x 480 72 x 240 150 x 300
5 097 64x320 320x640 96 x 320 200 x 400
6 0.77 80 x 400 400 x 800 120 x 400 256 x 512
7 0.64 96 x 480 480 x 960 144 x 480 306 x 612
8 048 128 x 640 640 x 1280 192 x 640 408 x 816

Note: grid spacing Ar non-dimensionalized by the cylinder diameter.

Table 3. Mean drag coefficient (Cp), rms-lift coefficient (CZ) and
strouhal number (Str) for Re = 100 computed at a domain L, x
Ly = 10D x 20D with two different overset grids.

reg = 3r¢ Teg = 5rc
Coefficient LI S| LI S|
Cp 1.460 1.458 1.461 1.461
q 0.2509 0.2450 0.2527 0.2522
Str 0.1763 0.1762 0.1763 0.1763

Notes: The resolution is given by the finest refinement levels in Table 2, and
both lagrangian (LI) and spline interpolation (SI) cases are considered.

for grid independency was achieved with Lagrangian
interpolation. Yet, even for the poorest result, the com-
putation of the rms-lift coefficient at the smaller of
the two cylindrical grids with spline interpolation,
deviated less than 0.5% from the finest grid result,
for grid refinement level > 4. Some deviation is also
seen in the lift coefficient of results computed on the
large cylindrical grid with spline interpolation (less
than 0.24% for refinement level > 4). For the cases
where Lagrangian interpolation was used for inter-
grid communication, the deviation from results at
refinement levels four to seven from the finest grid
result is less than 0.15% for all coefficients (if only
drag and Strouhal number are considered, the devia-
tion is less than 0.064% for these cases). The difference
between results obtained with quadratic spline and
linear Lagrangian interpolation was particularly clear
for the smaller cylinder grid. With a larger grid, it is
not surprising that the effects from interpolation were
reduced. Nevertheless, the best results on the larger
grid were also achieved with Lagrangian interpolation.

For the steady flow simulations the spline inter-
polation yielded somewhat higher order of accu-
racy than the Lagrangian interpolation. The sub-par
performance of spline interpolation for unsteady
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Figure 4. Normalized values for mean drag coefficient (Cp), rms-lift coefficient (C}) and Strouhal number (Str) for Re = 100 computed
at different refinement levels (see Table 2) for overset grids with two sizes of radii for the body-fitted cylindrical grid, r¢y. Results are given
for computations with Lagrangian interpolation (upper) and spline interpolation (lower).

simulations may be due to the overshoots for this non-
linear interpolation, or perhaps, a larger mass loss
during interpolation. No further speculation is con-
ducted here, but it should be noted that the Lagrangian
interpolation outperformed the spline interpolation
for simulations of unsteady flow.

By considering the grid independent solutions in
Table 3, used to normalise the grid refinement results,
two particular factors can be noted. Firstly, by com-
paring the results for the two different interpolation
schemes on the domain where the cylindrical grid has
Teg = 5t it is evident that the computed drag, lift
and Strouhal number were independent of the inter-
grid communication. This is in contrast to the r,; =
3r. results, but in accordance with an intuitive under-
standing of the problem: the farther away from the
cylinder boundary the interpolation is performed, the
less it affects computation of quantities at the bound-
ary. Note, however, that even though the drag and lift
forces were computed at the surface boundary, these
coefficients also depend on the flow upstream and
downstream of the cylinder. The results therefore sug-
gest that the flow surrounding the cylinder was neg-
ligibly impacted by the interpolation method selected
when the larger r,; was used for the cylinder grid.

By comparing the results for Cp and C; on
the differently sized cylinder grids, computed with
Lagrangian interpolation, the dependency on cylin-
der grid size was found to be small. There was a
small difference in the computed lift coefficient (some-
what higher for the larger cylinder grid). Although the
results are grid independent, neither of the values are
quantitatively accurate for the drag or lift of a cylin-
der in a cross flow at Re = 100. The small difference in
computed lift may be due to blockage effects.

To confirm that the grid independent solutions
yielded accurate flow predictions a simulation was
also conducted on a large domain, L, X Ly = 50D x
50D, for the two different grid sizes used above. Since
Lagrangian interpolation had the best performance for
the unsteady flow simulations, only this interpolation
procedure was used. The grid spacing corresponding
to grid refinement level five in Table 2 was used on
the large square domain. The computed flow quan-
tities showed good agreement with previous studies
performed on similar domain sizes (see Table 4). Note
that for the simulations on a large square domain there
was a negligible difference between the results from the
different overset grid simulations. Using a larger cylin-
der grid will reduce the total number of grid points in



Table 4. Comparison with previous studies.

) o} St
Liet al. (2009) 1336 - 0.164
Pan (2006) 132 0.23% 0.16
Posdziech and Grundmann (2007) 1.350 0.234%) 0.167
Quet al. (2013) 1326 0.219 0.166
Present, reg = 3rc 1.346 0.235 0.166
Present, reg = 5r¢ 1.346 0.234 0.166

Notes: The studies were performed on domains with streamwise length 60 <
Lx/D < 100 and spanwise length 40 < L,/D < 100.The present study used
Ly = Ly = 50D. Results from the present study are for domains covered by
two differently sized overset grids, with inter-grid interpolation performed
by bi-linear lagrangian interpolation. The asterisk on some values of
denotes where only the amplitude of the lift was given. The asterisk mark
a lift amplitude scaled by 1/+/2 to get the root-mean-square lift coefficient,
a valid scaling for the sinusoidal-like lift coefficient (with mean value zero).

the simulations, which is a major advantage on large
domains.

4. Particle deposition on a circular cylinder in a
laminar cross flow

Direct numerical simulations with a large number of
particles suspended in the flow have been performed
to assess the performance of overset grids on a more
complex and demanding simulation than the simple
flow past a cylinder at low Reynolds numbers.

The particle deposition simulations are based on the
study by Haugen and Kragset (2010), where particle-
laden flow simulations were performed over a range of
Reynolds numbers on a moderately sized flow domain
(6D x 12D). The analysis is not repeated here, but a
brief introduction to the method used for particle rep-
resentation and deposition is included. The particle-
laden flow simulations were performed on a domain
exactly the same size as in Haugen and Kragset (2010),
with Reynolds number 100.

4.1. Particle equations

The particles are tracked using a Lagrangian for-
malism, where the particle velocity and position are
described by:

dvy _Fop (11)
dt mp

de

E = Vp, (12)

where Vp, Xp and m, are the velocity, centre of mass
position and mass of the particle, respectively. The
force Fpp acting upon a spherical particle is the drag
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force:

1
Fop==pCopAplu—vp| (u—vp),  (13)

2C;
where Ay = ndlz) /4 is the cross sectional area of the
particle and

2\
Co=1+= (1.257 + 0.4e(_1'1d1’/2}‘)) . (14)
P
is the Stokes—Cunningham factor (with parameters set
for air) for a particle with diameter d,. The mean
free path A accounts for the fact that for very small
particles, the surrounding medium can no longer be
regarded as a continuum but rather as discrete parti-
cles. The particle drag coeflicient is given by:
24
Cpp= — (1 n 0.15Reg‘687), (15)
Rep
for particle Reynolds number Re, = dy|v, — u|/v <
1000. With this, the particle drag force can be re-

written as

m

Fpp = T—: (u—vp),

(16)

where
o Sdgcc
TS

is the particle response time, with f. = 0.15Re2'687
and S = p,/p. Note that this becomes Stokes drag in
the limit C. = 1 and f. = 0. Using the convention of
Haugen and Kragset (2010), the Stokes number (St =
7p/7f) is defined with a fluid time scale:

(17)

D

= —. 1
Tf Uy (18)

The fluid velocity was interpolated from surrounding
grid points by bi-linear interpolation on the Cartesian
grid and bi-quadratic interpolation on the curvilinear
grid. The order of the interpolation is higher on the
curvilinear grid as the velocity components (the radial,
in particular) are close to quadratic near the cylin-
der surface. For three-dimensional simulations, linear
interpolation is used for the velocity component along
the z-direction (the cylinder’s spanwise direction) on
all grids.

For particles very close to the cylinder surface, spe-
cial handling was used to interpolate the radial com-
ponent of the fluid velocity. Very close to the cylin-
der refers to within one grid point from the surface,
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or alternatively, within the pre-calculated momentum
thickness of the boundary layer. The special handling
in use for particles at such positions was a quadratic
interpolation that guarantees no overshoots. Since all
velocities are zero at the surface, this was achieved by:

2
Urp = Urg ((Srp/érg) , (19)

where u;, and u, ¢ are the radial velocity component
at the position of the particle and at the position of
the interception between a surface normal and the
first grid line away from the surface, respectively. The
distances &7, and dry are from the cylinder surface
to the particle’s centre of mass and to said grid line,
respectively.

4.2, Particleimpaction

After the flow developed into periodic vortex shed-
ding, particles were inserted continuously at the inlet.
The particles were inserted randomly, as a homoge-
neous distribution over a rectangular cross-section
encompassing particle trajectories that could impact
the cylinder. From here the particles were convected
downstream, and removed from the flow either by
impacting the cylinder or by reaching the outlet (see
Figure 5). An impaction was registered (and the par-
ticle removed) if the distance between the cylinder
surface and the particle’s centre of mass was less than

(a) St=0.1

(b) St =1.0

or equal to d,/2. Every particle impaction simula-
tion was run until all particles were removed from the
flow. In total 1.1 x 107 particles were inserted, with
Stokes numbers of 0.01-10 in a progressive particle
distribution with respect to particle radius.

The impaction efficiency (7 = Njup/Nins) can be
split into front- (1) and back-side (n;) impaction.
At the low Reynolds number flow in this study,
back-side impaction rarely occurred so only front-
side impaction was in focus. Figure 6 depicts the
particle front-side impaction, compared to litera-
ture results. The results were computed with grid
spacing defined as refinement level four in Table 2,
for the r, = 3r, case with Lagrangian interpola-
tion. With the Ly x L, = 6D x 12D domain a grid
with (N, x Np) + (Nx x N)) = (48 x 240) + (144 x
288) points was used. The results from Haugen and
Kragset (2010) were computed on an equidistant
grid with 512 x 1024 grid points, using an immersed
boundary method to resolve the cylinder surface.

The particle impaction results from this study agree
very well with the results from the literature, even
though the results of the present study were computed
on a grid with only 10.1% as many grid points as
used by Haugen and Kragset (2010). An additional effi-
ciency improvement was achieved, due to the use of a
time step that was 3.5 times larger. This was possible
because of the time step’s proportionality to the grid

(c) St=10

Figure 5. Particle-laden flow interacting with a circular cylinder at Re = 100. An unhindered particle will cross the flow domain, from the
inlet (bottom) to the outlet (top) in approximately two shedding periods at this Reynolds number. Contours of the streamwise velocity
component make up the background. (a) St =0.1 (b) St = 1.0 (c) St = 10.
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Figure 6. Front-side impaction efficiency (n¢) as a function of
Stokes number (St) for Reynolds number 100. Present results com-
pared to a previous study by Haugen and Kragset (2010).

spacing and the local time step restrictions, though
some extra work was necessary at each time step (com-
putation on two grids, communication of data, filter-
ing on cylinder grid, etc.). Note that for very small
particles, the time step can also be restricted by the
particle time scale, that is, the time step must be small
enough to resolve the time-dependent particle equa-
tions. Particles are updated only at the Cartesian time
step.

4.3. Investigating the accuracy of the computed
impaction efficiencies

The coarseness of the grid used in the computation
of particle impaction efficiencies allow for the assess-
ment of the assumptions that must be made in order to
regard these impaction results as quantitatively accu-
rate. The assumptions are, firstly, that blockage effects
from the limited domain (with Ly x L, = 6D x 12D)
have a negligible impact on the particle impaction.
Secondly, it was assumed that the coarsest resolution
where grid independency of drag and lift coefficients
was reached was sufficiently fine for the particle sim-
ulations, i.e. that the transport of the particles was
dependent on an accurate flow field only.

A critical assessment of these assumptions led to
the expectation of higher impaction for particles on
a domain where the blockage effect is large, due to
a squeezing of the flow field and, consequently, less
particles being directed away from the cylinder. In
particular, this is expected to affect particles that fol-
low the flow to a large extent, i.e. particles with small
Stokes numbers. Further, the flow velocities at particle
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positions are not only dependent on an accurately
computed flow field, but also on accurate interpola-
tion. The latter aspect can be very sensitive to grid
spacing, even if the flow is resolved accurately. Haugen
and Kragset (2010) used linear interpolation to com-
pute flow velocity at particle positions, except within
the grid point closest to the surface, where an expres-
sion similar to that of Equation (19) was used. Lin-
ear interpolation of velocities that are proportional
to (8r)* (as the upstream flow field at the centre-
line through the cylinder is) will lead to a systematic
over-estimation. Hence, an over-prediction in particle
impaction can be expected from their results. What is
important to determine in this respect, is how large this
possible over-prediction is, and for what particle sizes
it occurs.

To investigate the accuracy of the computed
impaction efficiencies particle-laden flow simulations
were conducted at a larger domain size, Ly x L, =
10D x 20D, as used in the grid independence study
of Section 3.2. For this larger domain several refined
grids were used. These utilised refinement levels 4-7
in Table 2, with r.; = 3r.. Thus, from 48 (coarsest) to
96 (finest) grid points were used in the radial direc-
tion on the cylindrical grid, and the background grid
was refined accordingly. The number of inserted par-
ticles was 1.1 x 107, where 7 x 10° were particles with
St < 0.1. The results are seen in Figure 7.

Very few of the smallest particles deposit on the
cylinder. To get sufficient particle impactions at the
smallest Stokes numbers for reliable statistics, particles
with St < 0.1 were only inserted over a region covering
one tenth of the cylinder’s projected area, at its cen-
treline. The inserted particle count was scaled corre-
spondingly (multiplied by 10) during post-processing.
No small Stokes number particles inserted outside the
insertion area would be expected to hit the cylin-
der. To confirm this, a simulation was conducted with
particles with St = 0.05 and 0.1, inserted over the
whole projected cylinder area. The results are included
as black circles (o) in Figure 7. The difference in
impaction efficiency among particles inserted by the
two different methods was negligible.

From Figure 7 it is clear that the blockage effect
from the limited domain size had a significant effect
on the particle impaction efficiencies. For St < 0.5
this effect was larger than 10%, and increased as the
Stokes number decreased. The largest difference in
impaction efficiencies was seen at St = 0.01, where
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Figure 7. Front-side impaction efficiency (1) as a function of Stokes number (St) for Reynolds number 100 for different domain sizes

(left) and grid resolutions (right).

2.7 times more impactions occurred for the small-
est domain size. The resolution played a smaller, but
not insignificant, role in the impaction efficiencies.
Increasing from the coarsest grid, with N, = 48, to
N, = 64, noticeably reduced the impaction efficien-
cies. The reduction was more than 10% for St < 0.3.
A further refinement of the grid had only a small
effect (negligible for N, > 80). Comparing the results
from the larger domain with N, =80 to those by
Haugen and Kragset (2010) suggests that Haugen &
Kragset found a qualitatively correct result, but have
somewhat quantitatively over-predicted the particle
impaction, in particular in the boundary interception
region (where St < 0.3). For the smallest Stokes num-
ber (St = 0.01) the over-prediction is of approximately
a factor 6.3. At St = 0.1 this factor is 2.8. The previ-
ously published results agree with the new results for
St > 0.5.

5. Concluding remarks

In this work, a high-order overset grid method has
been presented. The method uses high-order finite-
difference discretization to solve the compressible
Navier-Stokes equations on several grids, and com-
municates necessary flow data between the grids by
linear or quadratic interpolation. Unique to the over-
set grid implementation described here, is the use of
local time step restriction and summation-by-parts
finite-difference operators. The relaxed time stepping
restriction on the coarser grid is very efficient for a
weakly compressible flow, while the summation-by-
parts operators enhance numerical stability together

with the use of Padé filtering. The purpose of devel-
oping the method was to compute particle impaction
on a cylinder in a cross flow, and for this purpose a
body-fitted cylindrical grid is an appropriate choice to
resolve the boundary layer around the cylinder with
high accuracy.

An investigation of the formal order of accuracy of
the overset grid implementation revealed that high-
order accuracy was indeed reached. Flow variables
where computed with median order P ~ 2.5, regard-
less of the use of bi-linear interpolation or bi-quadratic
interpolation for communication. Near the surface,
the radial velocity component reached an accuracy of
fifth-order. For unsteady flow, the method converged
rapidly to grid independent solutions for the essen-
tial flow variables (drag, lift and Strouhal number). For
these computations, using bi-linear interpolation was
beneficial, yielding the most rapid convergence to grid
independent solutions as the grid was refined. Using
a larger cylindrical grid, with a radius five times as
large as the cylinder radius, decreased the effect of the
inter-grid interpolation.

When applied to the problem of inertial parti-
cles impacting on a cylinder, impaction efficiencies of
previously published results were reproduced at a sig-
nificantly reduced computational cost. A coarser back-
ground grid was utilised to resolve the flow, which
yielded both a much smaller number of grid points
(90% reduction in 2D) and the possibility of using a
larger time step.

A critical assessment of the particle impaction
results revealed that the limited domain size had a
significant impact on impaction, particularly for the



smaller Stokes numbers. Further, although the flow
was deemed grid independent, using a finer grid, and
thus a more accurate interpolation of flow velocity,
reduced the number of particles that hit the cylinder.
The resulting impaction curves suggested that parti-
cle impaction has been over-estimated in the previous
studies, in particular for very small particles where
impaction occurs by boundary interception.

The overset grid method implementation in the
Pencil Code is now ready for three-dimensional sim-
ulations, and DNS studies of particle impactions on a
cylinder with Reynolds number for real-world appli-
cation (a factor 10-20 larger than the investigation
here, for industrial boilers) is within reach. However,
even with the highly accurate and efficient method
presented here, increasing the Reynolds number and
computing three-dimensional flow will be computa-
tionally costly. The magnitude of the Reynolds num-
bers that can be considered will largely depend on the
Stokes numbers of the particles, and the acceptable
accuracy when particle impaction efficiencies are com-
puted. If the focus is not just qualitative trends, but
quantitatively accurate results, a careful assessment of
grid independence is recommended (not just for flow
variables, but for the particle impaction itself), and
great care is required when selecting the domain size
and setting up the simulations.
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