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In this paper, our previous ghost-cell compressible immersed boundary method (Luo et al., 2016) is fur-
ther implemented to solve heat transfer problems in flows with complex solid geometries. Arbitrary 2D-
immersed boundaries are presented by many micro line segments. Each line segment is identified by two
vertices. An extension to 3D situation is straightforward, in which arbitrary surfaces can be divided into
many triangular surface elements. Two different interpolation schemes for the mirror points, namely
inverse distance weighting and bilinear interpolations, are compared. An accurate capture of the sec-
ondary vortex street far behind an elliptical cylinder indicates a successful combination of current IB
method with the fluid solver. Then, forced convective flow over an inclined non-circle cylinder is used
to further validate present method. Finally, Mach > 0.3 cases are studied to demonstrate the essentiality
of taking compressibility into consideration in high-speed thermal flow problems.
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1. Introduction

The CFD (computational fluid dynamics) method has been a
well-developed academic discipline and gradually become an
effective instrument for engineering problems. When it comes to
flows over complex geometries, in a traditional way, a body-
fitted mesh is generated to describe the boundary of the immersed
body. Under this situation, the implementation of boundary condi-
tions is simple and straightforward because grid line and body sur-
face align with each other. However, for arbitrary complex
geometries, the generation process of a high quality body-
conformal grid and its re-meshing process can be very resource-
consuming.

In contrast, a totally different idea had been introduced by
Peskin [2] in 1972. That is ‘‘immersed boundary method (IB meth-
od)”, in which a Cartesian grid was used to resolve blood flow
regardless of the complex geometry of human heart valve. The
effect of elastic heart valve wall on surrounding fluid flow was
taken into consideration through a force term on the right-hand
side of momentum equation. This idea successfully avoids the gen-
eration of an unstructured body-fitted grid to conform complex
geometries and thereby makes simulation of complex structure–
fluid interaction more efficient. Moreover, as a result of using mesh
of simple topology structure, the parallelization of code is straight-
forward and also more efficient.

Since then, IB methods have attracted many researchers’ atten-
tion. Many efforts have been made to improve the accuracy and
broaden the application. Generally, IB methods fall into two differ-
ent categories, i.e., continuous force approach and discrete force
approach [3]. A detailed discussion of IB methods can be found
in [4–7]. IB method was originated to mimic the effect of elastic
boundary on fluid flow and it made a sense that a force term was
to represent the effect since the elastic force model in [1] had a
physic basis. In a similar way, a PID (portion-integral-derivation)
force model was presented for rigid boundary [8]. However, the
free parameters included in this model may degrade numerical
accuracy as well as stability. To overcome this downside, Fadlun
et al. [9] proposed a direct-forcing scheme for rigid immersed
body. They also showed that solving the interpolation formulas
together with discrete momentum equations was equivalent to
applying force term and then the explicit addition of force term
was not required. This is where the original idea of ghost-cell based
immersed boundary (GCIB) method comes from. Compared with
original IB method [1] and direct-forcing method [10,11], no Dirac
delta function is used to distribute the force term from Lagrange
point to underlying Euler grid in GCIB method. Therefore, the
boundary is sharply represented. This is a desirable feature to
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resolve boundary layer in high Reynolds number flows. Besides,
since in GCIB method there is no need to modify the fluid solver
(i.e., the implementation of boundary conditions through this
method can be summarized into a separate module), its combina-
tion with existing solver is very easy. Another point worth of not-
ing is that a high-order interpolation scheme can be constructed
for GCIB method [12,13] to further save computational resource.

The difficulty in GCIB method’s extension to situations with
irregular geometries lies in how to track the boundaries correctly.
Conceptually, two ideas exist to overcome this. An unstructured
triangle surface mesh was used in [14–16]. This mesh can be used
to represent arbitrary geometries and has gained its popularity in
biology fluid mechanics where a very complex body, such as a
bluegill sunfish pectoral fin and a false vocal fold, interacts with
surrounding flows in a two-way coupled manner [17,18]. Another
choice is a standard level-set signed distance function [19,20]. This
strategy also applies to both rigid and deformable structures. We
refer the reader to [14–20] and references therein for detailed
descriptions of these two methods.

Application of IB methods to heat transfer problems was
reported by Kim et al. [21], in which a heat source/sink was intro-
duced into energy conservation equation to account for the effect
of hot/cool boundary wall. Wang et al. [22] proposed a multi-
direct heat source scheme to improve the accuracy of boundary
condition enforcement. Since then, many researchers have made
their efforts to improve IB methods’ capability to various heat
transfer problems [23–29]. In our previous work [1], a second-
order accurate GCIB method was designed for the implementation
of Dirichlet, Neumann and Robin boundary conditions. It also
should be noted that our GCIB method was combined with a com-
pressible fluid solver [30] and study on the effect of compressibility
on heat transfer process was carried out. In this paper, we combine
our previous method [1] with an unstructured surface mesh to
devise a GCIB method for the simulation of heat transfer process
between compressible fluid and irregular boundaries. To our best
knowledge, no such report has ever been presented.

The rest part of the current paper is organized as follows. Sec-
tion 2 gives the numerical methodology, including compressible
governing equations, introduction to GCIB method, construction
strategy for irregular geometry and two different interpolation
procedures for mirror point. Section 3 starts with a test case where
effect of the relative resolution between boundary and background
grid is investigated. Following this is a spatial convergence exam-
ination to check if the present GCIB method still remains a
second-order accuracy. After these, several benchmark cases are
studied to validate our GCIB method’s capability to handle irregu-
lar fluid–solid interface. Furthermore, compressibility effect in high
speed forced convective flow is revealed. Finally, we draw a con-
clusion in Section 4.
2. Numerical methodology

2.1. Governing equations

Mass, momentum and energy conservation equations together
with the equation of state are used to describe the compressible
flows in present paper. The continuity equation reads as follows,

@q
@t

þr � ðq u
!Þ ¼ 0 ð1Þ

where q is fluid density, u
!

is the vector of fluid velocity and t is
time.

In our research, the temperature ratio between solid and fluid is
small. Therefore, we can assume properties of fluid such as
dynamic viscosity l, specific heat cp at constant pressure and heat
conductivity k to be constant. Thus, the momentum and energy
conservation equations can be simplified as,
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In Eq. (2), p is pressure, f
!
vs ¼ r � ð2qmSÞ is viscous force, and

m ¼ l=q is kinematic viscosity. The symbol S represents trace-less

strain rate tensor with Sij ¼ ð@ui=@xj þ @uj=@xiÞ=2� dijr � u! =3. The
last term on the right hand side of energy equation is viscous dis-
sipation source.

The state equation for an ideal gas to close Eqs. (1)–(3), is given
by,

p ¼ qRT ð4Þ
where, R is the specific gas constant and can be calculated from
R ¼ Ru=M. Ru is universal gas constant and M is molar mass.

The above governing equations are solved by a sixth-order cen-
tered finite-difference scheme on a non-staged mesh and an expli-
cit three-stage Runge–Kutta scheme for spatial derivative and time
advancement, respectively. The time step is limited by CFL number
criterion. The sixth-order centered finite-difference scheme can be
expressed as follows,

The first-order derivative:

f 0i ¼ ð�f i�3 þ 9f i�2 � 45f i�1 þ 45f iþ1 � 9f iþ2 þ f iþ3Þ=60dx ð5Þ
The second-order derivative:

f 00i ¼ð2f i�3�27f i�2þ270f i�1�490f iþ270f iþ1�27f iþ2þ2f iþ3Þ=180dx2
ð6Þ

where, dx is the local grid size.
To avoid ‘‘wiggles”, the advection term in Eqs. (1)–(3) is dis-

cretized by a fifth-order upwinding scheme in which the point fur-
thest downwind is excluded from the centered finite-difference
stencil. The fifth-order upwinding stencil can be written as,

�uf 0ðup;5thÞ ¼ �uf 0ðcentr;6thÞ þ
jujDx5
60

f ð6Þ ð7Þ

where Dx is local grid size.
In order to construct the above upwinding scheme, the sixth-

order derivative is needed. And it is straightforward to approxi-
mate such a derivative by Taylor expansion on a uniform mesh.
However, when a stretched grid is used, things become compli-
cated. In this paper, the following chain procedure is proposed to
calculate the sixth-order derivative and thus to construct a fifth-
order upwinding scheme on a stretched grid.

f 0ðxÞ ¼ f 0ðfÞ=x0 ð8Þ
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Fig. 1. Identification of solid points for 2D geometry, ( ) solid points, (h) fluid
points, (s) centroid of line elements, (4) vertex of line elements.

Fig. 2. A confused situation for the classification of solid and fluid points.

100 K. Luo et al. / International Journal of Heat and Mass Transfer 104 (2017) 98–111
f ð6ÞðxÞ ¼ f ð6ÞðfÞ
ðx0Þ6

� 15x00

ðx0Þ2
f ð5ÞðfÞ � 45ðx00Þ2

ðx0Þ4
þ 20x000

ðx0Þ3
" #

f ð4ÞðfÞ

� 15ðx00Þ3
ðx0Þ6

þ 60x00x000

ðx0Þ5 þ 15xð4Þ

ðx0Þ4
" #

f 000ðfÞ

� 15x00xð4Þ

ðx0Þ6
þ 6xð5Þ

ðx0Þ5 þ
10ðx000Þ2
ðx0Þ6

" #
f 00ðfÞ � xð6Þ

ðx0Þ6
f 0ðfÞ ð13Þ

where, f is the index of grid point and x is a given function of f to
stretch/compress the uniform mesh.

2.2. Ghost-cell immersed boundary method

In GCIB method, at first all grid nodes are flagged as fluid points,
solid points or ghost points. Then variable value on ghost point is
interpolated from boundary conditions and fluid variables near
the boundary. Boundary conditions are implicitly incorporated into
flow field through ghost points. Most often, ghost points are solid
points which have at least one neighbor fluid point in the south/
north, east/west or top/bottom direction. To make sure that a dis-
cretization stencil of four or six-order is constructed, two or three
layers of solid points near the immersed boundary should be used
as ghost points [31–34]. However, in accordance with specific con-
dition, ghost points can also be outside solid domain [14,35]. In the
preliminary calculation, a simple linear extrapolation is used to
obtain flow-variables at ghost points, which obviously lies outside
the interpolation stencils. The major drawback of such extrapola-
tion is that large and negative weighting coefficients are often
encountered. Although algebraically correct, they can lead to sev-
ere numerical instability when coupled with flow solver. Introduc-
ing a mirror point inside the flow domain for each ghost point is a
better procedure to ensure suitable weighting coefficients of the
neighboring nodes [36]. The mirror point usually locates some dis-
tance away from the boundary in the boundary-normal direction.
The distance can be either equal to that from ghost point to the
boundary [37] or designated specifically [25,38]. The variable val-
ues on mirror point is interpolated from surrounding four (2D) or
eight (3D) grid points, using a bilinear interpolation scheme (2D
case) or a trilinear scheme (3D case) [15,33,39]. Inverse distance
weighting (IDW) interpolation [40] can also be used. Once the vari-
able values on mirror points are calculated, values of correspond-
ing variable at ghost point can be computed by using a linear
approximation along the boundary normal direction into which
the prescribed boundary conditions are incorporated.

2.3. Boundary construction strategy

In the current method, the immersed boundary is represented
by line segments (2D) or an unstructured surface mesh (3D). Sur-
face mesh with triangle elements is a most popular choice due to
the well simplicity and efficiency balance and also the seamless
integration into GCIB method. This kind of triangulated surface
can be used for an accurate representation of a wide variety of flow
configuration which are of engineering interest.

In the first step, grid points that lie inside solid boundaries are
found out and flagged as solid points. The rest are marked as fluid
points. A straightforward method for the identification is schemat-
ically shown in 2D in Fig. 1. For a given grid point, the closest sur-
face element is determined and then a dot product between the
closest facet’s normal vector and the direction vector extending
from centroid of the closest facet to grid point under consideration
is taken. In this step, the normal vector of every surface facet
should be controlled to point outward when surface mesh is gen-
erated and in a reverse way for an inner flow problem. A negative
dot product then indicates a solid points. To avoid the situation as
shown in Fig. 2, after the assignment of all the grid nodes, for every
grid points marked as ‘‘solid point”, a dot product between the
direction vector connecting it and the centroid of any micro line
segments and the normal vector of the corresponding line segment
is taken. Only those points always giving a negative result are actu-
ally identified as a ‘‘solid point”. However, this strategy only works
for a convex boundary such as those in present paper. For an arbi-
trary boundary, a more efficient but more sophisticated method,
namely ray-method [41], is a better choice.

For stationary boundaries, this detection needs to be done only
at the beginning of the simulation. While for a moving or deform-
ing boundaries, the work needs to be done at every time step. The
moving boundary is limited to travel within one grid size during
one time step. With this constraint, an algorithm can be adopted
to help save computational time and we only need to search over
a square region as shown in Fig. 3 to repeat the classification of
the grid nodes. The length and width if the rectangle search region
can be expressed as,

Lx ¼ xmax � xmin þ 2Dxloc
Ly ¼ ymax � ymin þ 2Dyloc

ð14Þ



Fig. 3. Sketch for the repeating search process with the moving interface, the black
or red dash line rectangle indicating the search region. Solid line denotes the IB at n
time-step and dash line is that at time-step n + 1.
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in which, xmax and xmin indicate the x coordinate of the rightest and
the most left point on the boundary, respectively. ymax and ymin indi-
cate the y coordinate of the topside and the lowest point on the
boundary, respectively. Dxloc and Dyloc mean the local grid size.
Therefore, in both of the static and moving boundary cases, there
is little contribution from the detection to the total CPU time.

Secondly, part of solid points are marked as ghost points. Ghost
points are those solid points which are not far away from the
boundary (when the background grid is fine enough) and have a
neighbor fluid point. To construct a sixth-order central finite differ-
ence stencil, three layer of ghost points are assigned here, as shown
in Fig. 4. Since the proportion of ghost points is small, more layer of
ghost points will contribute very little to the computation time. For
example, in the square cylinder cases below, the number of grid
nodes being used is 1440000 for a 20D * 20D computational
domain and the number of ghost points is 492. Compared with
cases using one layer of ghost points, the incremental percentage
Fig. 4. 2D schematic diagram for ghost points and the method to assign mirror
points, ( ) ghost points, (d) BI points, (�) mirror points.
of computational time by using three layer ghost points is only
492 * 2/3/1440000 * 100% = 0.0228%.

After the assignment of ghost points, a corresponding boundary
intercept (BI) point is determined for every one of them. While
conceptually simple, the implementation can be very complicated
and special attention is needed to find an exactly correct BI point.
Here, we adopt a method building on the robust procedure pro-
posed in [15].

First, the vertex closest to a given ghost point is determined.
Then the set of line/surface elements sharing that vertex can be
identified and a search is carried out among these elements to find
the projective point (which should lies within the line/surface ele-
ments) as BI point (see Fig. 4). For a 2D geometry, there are two line
elements surrounding one vertex. This number is case dependent
for a triangulated 3D surface mesh. The above logic can be utilized
to make the program more efficient and also easy to debug it. Sev-
eral degenerate cases may arise in the search of BI point. For a con-
vex body, the situation with multiple projective points is
frequently encountered. Fig. 5(a) shows this for a 2D boundary
and for a 3D case two more projective points may exist. In such
a situation, the projection which has the shortest intercept is cho-
sen as the BI point. We utilize two strategies in view of the situa-
tion where the multiple projection points are at comparable
distances. For a square corner like that in Fig. 6(a), the strategy is
that the variable value on ghost point GP is extrapolated from mir-
ror point MPx and the corresponding boundary condition for the
calculation of the x direction finite difference stencil at fluid point
FP1 while for the approximation of the y direction finite difference
stencil at fluid point FP2, mirror point MPy and the corresponding
BI point are used to compute the variable value on ghost point GP.
For a triangular sharp corner like that in Fig. 6(b), the extrapolated
values from mirror point MP1 and MP2 are averaged to obtain that
on ghost point GP.

For an indent immersed boundary, situation where there
doesn’t exist a projective point within the element often appears,
as described in Fig. 5(b). When this happens, the search is first
expanded to a larger region into which line/surface elements that
share a common vertex with the original set of elements are
included (see Fig. 5(b)). If it fails again, then the closest point on
the original set of elements is marked as the BI point. Coordinates
of the projective point with the shortest intercept is first calculated
and then the region it falls into determines where we can find the
closest point. For a 2D boundary, the nearest vertex determined at
the beginning is the closest point.

Once BI point is determined for every ghost point, a correspond-
ing mirror point can be obtained uniquely through a symmetric
way or setting a constant distance d away from BI point, as shown
in Fig. 4. The value of d can be assigned as

ffiffiffi
2

p
Dxloc (2D case) orffiffiffi

3
p

Dxloc (3D case) to make sure that even the first layer of mirror
points are surrounded by four (2D) or eight (3D) fluid points. The
drawback of the constant distance method is that a big� is chosen,
and thus some error may be introduced, especially for a turbulent
boundary layer. Therefore, the first method is adopted in this
paper. The calculation of variable values on mirror points is illus-
trated in the following section.

2.4. Interpolation procedure

Two interpolation approaches are presented here. The first one
is called ‘‘inverse distance weighting interpolation (IDW)” [40]. In
this method, a generalized flow quantity on mirror point is repre-
sented by surrounding fluid points in the following way (see Fig. 7),

/m ¼
XN
i¼1

/ið1=di;mÞ2PN
i¼1ð1=di;mÞ2

ð15Þ



Fig. 5. Two degenerate situations, (a) multiple projective points, (b) no projective point within the element.

Fig. 6. Special treatment for situations where multiple projection points are at comparable distances.

Fig. 7. IDW interpolation procedure.

Fig. 8. Local pressure coefficient around the cylinder.
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When a ghost point is close to the immersed boundary, the cor-
responding mirror point may not have four/eight surrounding fluid
points. In such a situation, only contribution from fluid points is
taken into consideration. In Eq. (12), if any d tends to zero which
also means that the mirror point is very close to a fluid point, the
corresponding grid point is used to replace that mirror point to
avoid numerical issue. It is observed in present paper that this
treatment leads to a first-order local spatial accuracy.
Another interpolation scheme of mirror point is known as
bilinear interpolation (2D case) or trilinear interpolation (3D case).
Taking the 2D one as an example, variable values on mirror points
can be written as,

/m ¼ C1xyþ C2xþ C3yþ C4 ð16Þ
The four unknown coefficients can be evaluated by solving the

following equation using Gaussian elimination method,

AC ¼ U ð17Þ
where,



Fig. 9. Variation of L2 with grid of different resolution levels.

Fig. 10. Wake behavior far behind cylinder after the flow gets to a dynamical stea
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C ¼ fC1;C2;C3;C4g ð18Þ
is the vector of unknown coefficients and,

A ¼

x1y1 x1 y1 1
x2y2 x2 y2 1
x3y3 x3 y3 1
x4y4 x4 y4 1

2
6664

3
7775 ð19Þ

is the coordinates-related matrix. The vector U includes the known
generic variable values on surrounding fluid points, that is,

U ¼ f/1; /2; /3; /4g ð20Þ
If there is a non-fluid point surrounding the mirror point, its BI

point is used to replace it, with matrix A and vector U modified
accordingly.

In bilinear interpolation scheme, when mirror point’s surround-
ing points are all fluid ones, the treatment of Neumann and Robin
boundary conditions are the same with that for a Dirichlet one as
shown above. However, situation becomes complicated when
one or more of them are not fluid points. For simplicity, we assume
that the last node is a non-fluid one. Then, the matrix A becomes,
dy state, (a) Ar = 0.5, Re = 150, (b) Ar = 0.25, Re = 150, (c) Ar = 0.25, Re = 100.
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A ¼

x1y1 x1 y1 1
x2y2 x2 y2 1
x3y3 x3 y3 1

n1yBI þ n2xBI n1 n2 0

2
6664

3
7775 ð21Þ

where the vector n
! ¼ ðn1;n2Þ denotes the unit normal vector of the

line segment. Accordingly, the vector U is as follows,

U ¼ f/1; /2; /3; ug ð22Þ
The symbol u indicates the pre-set constant heat flux through

the line segment. For a Robin boundary condition in the following
form,

a
@/
@n

� �
BI
þ b/ ¼ u ð23Þ

We have,

A ¼

x1y1 x1 y1 1
x2y2 x2 y2 1
x3y3 x3 y3 1
X1 X2 X3 X4

2
6664

3
7775 ð24Þ

With

X1

X2

X3

X4

2
6664

3
7775 ¼

aðn1yBI þ n2xBIÞ þ bxBIyBI
an1 þ bxBI
an2 þ byBI

b

2
6664

3
7775 ð25Þ
Fig. 11. Distribution of velocity component u, (a): along x axis at y = 0.0, (b): along y axis a
Re = 150, Ar = 0.5.
At last, a linear interpolation in which a Dirichlet, Neumann or
Robin boundary condition is implicitly involved, is used for the cal-
culation of flow-variables at ghost points, as has been discussed in
our previous work [1].

3. Numerical results

3.1. Effect of relative resolution

For a given mesh, the number of ghost points remains constant
as the number of line segments (triangulated surface elements)
reaches a critical value. However, the division of boundary/surface
may change the normal direction of every line segment (or face
element). This has an influence on the identification of mirror
points and therefore affects the implementation of boundary con-
ditions. Besides, a non-isotropic mesh is ordinarily generated to
resolve a sharp corner or other finer features of the immersed
boundary. Hence a test case is carried out here to investigate the
effect of relative resolution between spatial grid and the surface
mesh.

An isothermal flow in a domain of size 20D� 20D with a fixed
circle boundary immersed in is utilized for this purpose. Partially
reflected Navier–Stokes characteristic boundary conditions
(NSCBC) [42] are applied at both inlet and outlet. Periodic bound-
ary conditions are used for spanwise direction. And on the solid
surface, non-slip (i.e., fixed velocity) and non-impermeable bound-
ary conditions (i.e., zero-gradient pressure) are enforced. Reynolds
number is chosen to be Re ¼ 40. Three cases, with the following
t different x positions (x = 2,4 and 6), Re = 150, Ar = 0.25, (c): Re = 100, Ar = 0.25, (b):
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relative resolution (the background grid resolution is fixed to be
Dg ¼ D=70), Db=Dg ¼ 0:5, Db=Dg ¼ 1:0 and Db=Dg ¼ 2:0, where Db

means the boundary resolution (i.e., the length of the micro line
segments) and Dg means the resolution of the underlying grid,
are considered. Results are presented after the flow gets to a steady
state.

The surface pressure coefficient, which is defined as cp ¼
ðp� p1Þ=ð1=2qU2dÞ, is shown in Fig. 8. Computational results with
the three relative resolutions are not very different from one
another and agree well with the reference data [43].

The reason for above minimal distinction may be that a simple
flow is simulated here. In such a case, fluid variable varies in a lin-
ear way everywhere and so the relative resolution has a little effect
as long as the spatial grid is fine enough. Even though, it’s obvious
that an around one relative resolution is appropriate for the follow-
ing simulations.
3.2. Spatial convergence examination

An examination is conducted in this section to check if this new
IB method remains a local second-order spatial accuracy. Two
interpolation procedures for mirror points are compared. The
immersed boundary is also a circle centered at the origin. The com-
putational domain is of size 10D� 10D and Reynolds number is set
Fig. 12. Corresponding temperature contour, (a) Ar = 0.5, R
to Re ¼ 20. Boundary conditions are the same with that in
Section 3.1. A series of uniform grids (200� 200; 400� 400;
800� 800) are utilized to compute the same flow. The L2 norm
number expressed as follows is used to evaluate the rate of spatial
convergence,

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ð/i � /dÞ2
vuut ð23Þ

Here N is the total number of line segments (sampling points are
middle points of the line segments) and /d is the desirable variable
value on immersed circular cylinder. For Dirichlet boundary condi-
tion, /d is prescribed. While for Neumann or Robin boundary condi-
tion, /d is calculated with the finest background grid.

Fig. 9 shows the logarithm result of L2 norm. As can be seen, the
bilinear interpolation procedure exhibits a second-order accuracy,
while the IDW procedure is of only first-order accuracy. Reason
may be that in IDW procedure contribution from non-fluid point
to the calculation of variable value on mirror point is discarded.
From Fig. 9, we can also know that for bilinear interpolation the
temperature L2 error norm is about 0.007334 when Dg ¼ D=60,
which means that the resolution Dg ¼ D=60 is enough in terms of
L2 error norm. Therefore, in the following example cases, a
Dg ¼ D=60 grid resolution is utilized for spatial discretization.
e = 150, (b) Ar = 0.25, Re = 150, (c) Ar = 0.25, Re = 100.



Table 1
Comparison of computed average data for flow over a square cylinder.

a CD CL Str Nu

0� Present 1.54 0.0 0.205 4.15
Dulhani et al. [45] 1.56 0.0 0.213 4.10

30� Present 1.71 0.069 0.189 5.37
Dulhani et al. [45] 1.74 0.063 0.178 5.21

45� Present 1.85 0.0 0.201 5.42
Dulhani et al. [45] 1.83 0.0 0.211 5.37
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3.3. Wake behavior behind an elliptical cylinder

The wake behind an ellipse cylinder in [44] is studied to vali-
date current IB method in a qualitative way. In this case, the ellip-
tical cylinder is located in a 60D� 20D rectangle domain with a
grid resolution Dg ¼ D=60. Notably, energy equation is coupled in
this paper, which is a supplement to [44]. As shown in Fig. 10,
far behind the cylinder with an aspect ratio (Ar) 0.5, two separating
shear layers form, while the unstable shear layer develops into a
secondary vortex street with Ar decreasing to 0.25. When Reynolds
number decreases to 100, the amplitude of the secondary vortex
street becomes narrow. More energy is fed into the wake by a
strong recirculation due to a sharp geometry, leading to the sec-
ondary vortex street. Our results qualitatively accord well with
that in [44]. Characteristics of this transition flow behavior is
detailed in Fig. 11 in terms of a dimensionless velocity. Distinguish
among the three situations is clearly displayed. Accordingly, tem-
perature contour is presented in Fig. 12. Comparing Fig. 12 with
Fig. 10, a synchronization between the vortex and high tempera-
ture region can be observed.

3.4. Forced convective flow over a non-circular cylinder

To validate present method’s capacity to deal with complex
boundaries, a forced convective problem is studied in this section.
Dirichlet thermal boundary condition is imposed on the immersed
boundary. The cylinder is kept inside a box of size 20D� 20D, hav-
ing a uniform grid of resolution Dg ¼ 1=60 in the unit of the diam-
eter of semi-circle or the edge of a square. The same computational
domain boundary conditions as employed in Section 3.1 are used
here. Prandtl number is kept to Pr ¼ 0:70. In current calculation,
the projected width of the cylinder in the spanwise direction is
taken as a characteristic length, e.g., in the calculation of Reynolds
number.

In the square cylinder case, three different attack angles with
respect to stream-wise direction are considered at the same Rey-
Fig. 13. Instantaneous vorticity and temperature conto
nolds number Re ¼ 100. We neglect the effect of natural convec-
tion, so that Ri (Richardson number) is equal to zero here [45].
Fig. 13 describes the instantaneous vorticity and temperature con-
tour, indicating that details of flow field resulting from sharp cor-
ner are well revealed. The computed time averaged drag and lift
coefficient (CD and CL), time averaged Nusselt number (Nu) and
Strouhal number (dimensionless vortex shedding frequency, Str)
are listed in Table 1. They agree well with tabulated data. For a
non-symmetric situation (30�) even the small non-zero average lift
force is accurately computed.

For a semi-cylinder, three inclination angles relative to the
span-wise direction, a ¼ 30�; 90�; 120�, are considered, corre-
sponding to straight separation zone (SSZ), combine separation
zone (CSZ) and circular separation zone (CRSZ), respectively. Rey-
nolds number is set to Re ¼ 150 as in [46]. Fig. 14 shows the
instantaneous vorticity and temperature contour. The irregular
boundary is accurately captured and a vortex shedding process
can be clearly observed. A hot blob can be seen in the right part
of Fig. 14, detaching from the hot cylinder and gradually being
advected downstream. In Table 2, current computed data is com-
pared with corresponding results in literatures. An excellent agree-
ment shows that present IB method is able to handle such
geometries.
ur around a square cylinder, (a) 0� , (b) 30� , (c) 45� .



Fig. 14. Instantaneous vorticity and temperature contour around a semi-circle cylinder, (a) 30� , (b) 90� , (c) 120� .

Table 2
Comparison of computed time average drag and lift coefficients, Nusselt number and Strouhal number for flow over a semi-circle cylinder.

a CD CL Str Nu

30� Present 1.90 �0.025 0.211 7.81
Bhinder et al. [47] 1.98 �0.077 0.213 7.95
De [46] 1.938 �0.038 0.212 7.869

90� Present 1.12 0.78 0.17 5.05
Bhinder et al. [47] 1.13 0.85 0.178 4.92
De [46] 1.127 0.837 0.18 4.985

120� Present 1.42 �1.34 0.21 6.95
Bhinder et al. [47] 1.47 �1.45 0.211 6.93
De [46] 1.475 �1.471 0.216 6.955

Fig. 15. Mach contour around the NACA0012 airfoil (Mach = 0.5, Re = 5000), left: from [47], right: present result.
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3.5. High-speed flow over a bluff body with heat transfer

In the aforementioned simulations, a very small Mach number
of 0.01 is set for the sake of code validation. In current section,
attention is focused on the investigation of the effect of compress-
ibility on heat transfer process. At first, the present method is fur-
ther validated by a Mach = 0.5 flow over a NACA0012 airfoil. A
stretched grid is used to maintain that even with a small number



Fig. 16. Pressure (right) and skin friction (left) coefficient distribution along the NACA0012 airfoil surface (Mach = 0.5, Re = 5000).

Fig. 17. Average Nusselt number variation with Mach number.
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of grid points the grid resolution is around Dx ¼ Dy ¼ 1=200 (in the
unit of chord length) in the vicinity of the boundary to resolve the
thin trail. The comparison of current result with that based on a
body-conformal method [48] is presented in is Figs. 15 and 16,
where one can see a good agreement.

Then, a semi-circle cylinder is chosen because of its geometry
similarities with an aerospace craft, with which high-speed ther-
mal flow is prevailing. Results with two attack angles, namely,
a ¼ 90� and a ¼ 120�, are presented due to their representative-
ness. The same computational domain size and grid resolution as
in Section 3.3 are employed. While a fixed temperature is pre-
scribed on cylinder, NSCBC and periodic condition are applied at
inlet, outlet and transverse direction, respectively. The Mach num-
ber in this study is 0.3, 0.4 and 0.5. For different Mach numbers, the
Reynolds number remains constant and Prandtl number is kept to
be 0.7.

The influence of Mach number on heat transfer parameters like
averaged Nusselt number is shown in Fig. 17. The increase of Mach
number results in a decrease of the average Nusselt number. To
explore the underlying physical reasons for this phenomenon,
the temperature contour is plotted in Fig. 18. As can be seen, when
compressible fluid flows over a bluff body, it is compressed in the
body’s front side and thereby a high temperature region appears
there. With the increase of Mach number, the high temperature
region goes further upstream, which means a thicker thermal
boundary layer. This thermal boundary layer highly prevents heat
being transferred from the hot cylinder to surrounding cool fluid.
Heat transfer characteristics are much more complicated at the
rear. Like in a ¼ 120� case, other than that fluid is compressed so
much in the strong recirculation zone giving rise to an even higher
temperature than that of the cylinder, a much low temperature
region and thus a very thin thermal boundary layer shows up
(see right part in Fig. 18). The latter may be ascribed to a violent
expansion of fluid after the vortex shedding.

Fig. 19 depicts the distribution of local Nusselt number over the
body’s surface. With boundary layer attaching to the front side,
Nusselt number there decreases with the increase of Mach num-
ber. Under a ¼ 120� situation, corresponding to the very high tem-
perature region and a very thin thermal boundary layer, a negative
local Nusselt number and an increase of local Nusselt number with
the increase of Mach number can be observed. However, this incre-
ment is not enough to compensate the decrease of average Nusselt
number at the front side.

According to analysis above, we can conclude that present
method has the ability to accurately capture flow characteristics
around a complex geometry. Additionally, through the compress-
ible cases, we find that Reynolds number and Prandtl number are
not sufficient to define heat transfer features in a high-speed ther-
mal flow problem, and as supplement Mach number and parame-
ters relevant to geometry should be included. Besides those, when
dealing with body immersing in high temperature compressible
fluid, special attention should be paid to avoid a more serious ther-
mal inhomogeneity and thus heat stress caused by compressibility.

4. Conclusions

In this paper, we extend our previous compressible immersed
boundary method to the simulation of heat transfer between fluid
and irregular geometries, with a stretched underlying mesh and
also the boundaries being sharply represented. An isothermal flow
past a fixed circle cylinder case points out a little influence of rel-
ative resolution as long as the spatial grid is fine enough. Two
interpolation procedures are incorporated into current IB method
to calculate the variable value on mirror points. A spatial conver-
gence test indicates that only the bilinear procedure can obtain a
local second-order accuracy. The present method is validated in a
qualitative way by an accurate capture of the second vortex street
behind an elliptical cylinder. An investigation into the forced con-
vective flow over a semi-cylinder having sharp corners with one
straight edge and one circle edge and a square cylinder with sharp



Fig. 18. Instantaneous temperature contour in different Mach numbers, left: 90� , right: 120� .

Fig. 19. Distribution of local Nusselt number corresponding to Fig. 18.
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corners consisting of two straight edges provides a further quanti-
tative verification. Good agreements with reported data show that
the present method successfully captures main characteristics of
the interaction between fluid flow and irregular boundaries.
Finally, the proposed method is employed to study compressibility
effect on heat transfer process in high-speed flow, which again
demonstrates the essentiality of taking compressibility into con-
sideration. The extension of present method to moving interface
is straightforward, so is the implementation of Robin thermal
boundary conditions, both of which have been previously pre-
sented in our work [1].

To save considerable amount of computation time for a static IB,
a stretched mesh method, has been developed and tested in a 2D
NACA0012 airfoil case. As for a more complex problem (e.g., 3D
deforming elastic member interacting with surrounding flows), a
better choice may be the AMR (adaptive mesh refinement) tech-
nique as in [49]. In addition, since a high order polynomial [12]
can be straightly constructed into ghost-cell IB method for the
implementation of all types of BCs, which is a must to resolve
the turbulent boundary layer where the generic variable varies in
a quite non-linear way even in a very small space, the ghost-cell
IB method has the capability to resolve a thin viscous boundary
layer. This technique further makes the high Reynolds number tur-
bulent 3D simulation be feasible.

Since a fixed Cartesian mesh is utilized to resolve the fluid flow
and there is no need to re-mesh even for a moving irregular bound-
ary, present method has a potential for the simulation of heat
transfer process in multiphase flows laden with non-spherical solid
particles. Besides, thanks to the combination with a compressible
solver, the current method has the ability to study the burning pro-
cess of a solid particle with the surface fully resolved. These works
are in process.
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