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Abstract. We consider gas flow in pipe networks governed by the isothermal Euler
equations. A set of coupling conditions is required to completely specify the Riemann
problem at the junction. The momentum-related condition has no obvious expression and
different approaches have been used in previous work. For the condition of equal momen-
tum flux, Colombo and Garavello [A well posed Riemann problem for the p-system at
a junction, Netw. Heterog. Media 1 (2006) 495–511] proved existence and uniqueness
of solutions globally in time and locally in the subsonic region of the state space. If
the entropy constraint is not considered, we are able to prove existence and uniqueness
globally in the subsonic region for any momentum-related coupling constant satisfying
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a monotonicity requirement. The previously suggested conditions of equal pressure and
equal momentum flux satisfy this requirement, but in general they both fail to fulfill the

entropy constraint. The classical Bernoulli invariant is a natural scalar formulation of
momentum conservation under ideal flow conditions. Our analysis shows that this invari-
ant is monotone and unconditionally leads to solutions satisfying the entropy constraint.
Of the coupling constants considered, this is therefore the only choice that guarantees
the unique existence of entropy solutions to the N-junction Riemann problem for all
initial data in the subsonic region.

Keywords: Gas flow; networks; junctions.

Mathematics Subject Classification 2010: 35L65, 76N15

1. Introduction

This paper is concerned with a particular instance of a more general question; how
to properly define global weak solutions for hyperbolic conservation laws defined on
N segments of the real line, connected by a junction. Such conservation laws are
given by

∂U i

∂t
+

∂

∂x
F (U i) = 0, i ∈ {1, . . . , N}, (1.1)

where in each segment i, we seek the solution U i(x, t) for

t ∈ R
+, (1.2)

x ∈ R
+. (1.3)

The segments are assumed to be connected at the origin, as schematically illustrated
in Fig. 1.

Herein, for any segment i we may instead of (1.3) consider a finite interval
x ∈ (0, bi) if proper boundary conditions may be supplied at x = bi.

k = 1

k = 2

k = 3

k = N − 1

k = N

Fig. 1. An N-junction. The different segments are joined at a vertex, with the positive x-direction
always pointing away from the junction.
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We observe that even in the scalar case, the initial value problem for (1.1)
given by

U i(x, 0) = U i,0(x) ∀ i ∈ {1, . . . , N} (1.4)

is in general incompletely specified; boundary conditions, or coupling conditions,
must be provided at the point x = 0 for all segments. The specification of such
junction coupling conditions for the isothermal Euler equations of gas dynamics
is the topic to be addressed in this paper. In the following, we will provide some
background for this currently active field of research, somewhat related to the recent
study of the coupling between different hyperbolic models at a fixed interface [1–3].

Our approach is similar in spirit to the work of Goudiaby and Kreiss [18] who
considered open channel flow. The reader may also refer to the recent review article
of Bressan et al. [9].

1.1. The Riemann problem generalized to junctions

Problems in the form (1.1)–(1.4) naturally arise in the study of traffic flow [10, 16,
21] and fluid flow in pipe networks [5–7, 11, 14, 19]. Central to the study of the well-
posedness of any such model formulation is the concept of the N -junction Riemann
problem [11, 14, 21], which may be stated as follows: Equations (1.1)–(1.3) are to
be solved given constant initial data in each segment:

U i(x, 0) = Ū i ∀ i ∈ {1, . . . , N}. (1.5)

In general, one must expect that the evolved solutions U i(x, t) depend on all initial
states, Ū i, through their interaction in the junction. One may however introduce a
natural condition: in each segment, the solution should be compatible with a stan-
dard Riemann problem at the segment-junction interface [11, 14, 16]. This condition
may be precisely stated as follows.

C1: For all i ∈ {1, . . . , N}, there exists a state

U∗
i (Ū 1, . . . , ŪN ) = lim

x→0+
U i(x, t) (1.6)

such that U i(x, t) is given by the restriction to x ∈ R
+ of the Lax solution to

the standard Riemann problem for x ∈ R:

∂U i

∂t
+

∂

∂x
F (U i) = 0,

U i(x, 0) =

{
Ū i if x > 0,

U∗
i if x < 0.

(1.7)

In other words, U∗
i is the similarity solution w(x/t) to the Riemann problem (1.7)

evaluated at x/t = 0. This concept of a “half-Riemann problem” was first considered
by Dubois and LeFloch [15], and the Riemann problem for networks was first studied
by Holden and Risebro [21].
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To close the system, a number of additional coupling conditions are needed
to relate the various vectors U∗

i . These conditions should respect the following
somewhat related considerations.

(i) The conditions should adequately represent the underlying physics we seek to
describe by the model.

(ii) The conditions should, in conjunction with C1, lead to a well-posed initial value
problem.

Arguably, (ii) could be considered a necessary requirement for (i).

1.2. The isothermal Euler equations

In this work, we follow the approach of [5, 6, 11, 20, 24, 25] and consider one-
dimensional pipe flow governed by the isothermal Euler equations:

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (1.8)

∂

∂t
(ρv) +

∂

∂x
(ρv2 + p(ρ)) = 0. (1.9)

Here, ρv is the mass flux, ρ is the fluid density and v is the fluid velocity. The
isothermal equations assume the simplified pressure law:

p(ρ) = a2ρ, (1.10)

where a is the constant fluid speed of sound. A more general formulation of (1.10)
gives rise to the isentropic Euler equations considered in [11].

1.3. Coupling conditions used with the isothermal Euler equations

Two different coupling conditions [5, 6, 20] together with an entropy constraint [11]
may be used to completely specify the problem. The first coupling condition is
related to Eq. (1.8) and accounts for the conservation of mass at the junction. As
remarked in [11], this is an obvious requirement. For N pipes of equal cross-section
connected at a junction this may be stated as:

N∑
i=1

ρ∗i (x, t)v∗i (x, t) = 0 for all t > 0, (1.11)

where in the context of (1.6) we have

U∗
i =

[
ρ∗i

ρ∗i v
∗
i

]
. (1.12)

Colombo and Garavello [11] proposed that an entropy selection principle should
apply to solutions through the junction, analogous to the standard admissibility
theory for weak solutions to conservation laws. A number of viable entropy–entropy
flux pairs may be constructed for the one-dimensional equations (1.8) and (1.9) [23].
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Garavello and Piccoli [17] note that for junctions, different entropies do not neces-
sarily select the same solutions.

For isothermal flow, Colombo and Garavello [11] suggested using the mechanical
energy as the entropy function. We will follow this approach as described in Sec. 3.

The final coupling condition is related to the momentum equations, (1.9), and
does not seem to have an obvious expression. Colombo and Mauri [14] observe that
a system described by the full set of Euler equations can in general not conserve
linear momentum at the junction. On the contrary, the total momentum vector is
constrained by the relative position of the pipes. For various flow models, momentum
conservation has been replaced with the condition that some scalar flow parameter,
H̃, remains constant through the junction [6–8, 11, 14, 19, 20]. We will refer to such
scalar parameters as momentum-related coupling constants.

In the recent literature, two approaches are seen to be the most common. These
are the conditions of equal pressure [6, 11, 19, 20]:

p(ρ∗i (x, t)) = H̃p for all i and t > 0, (1.13)

and equal momentum flux [7, 8, 11, 14]:

(ρ∗i v
∗2
i + p(ρ∗i ))(x, t) = H̃MF for all i and t > 0. (1.14)

The choice of equal pressure is made primarily as it is a simple model that is
widely used in the engineering community [6, 22, 24, 25]. The model is expected to
be a fair approximation for low Mach number flows.

Colombo and Garavello [11] introduced (1.14) as a coupling condition. This was
motivated primarily from continuity considerations; the authors wanted to ensure
that a stationary shock infinitesimally close to the junction would remain stationary
if perturbed. This is essential for the problem to be well posed in the strict sense
that the solution should depend continuously on the initial data. The equal pressure
condition (1.13) does not have this property [11].

However, one should note that for pipe networks, the junction itself represents
a discontinuity in the local topology of the problem; hence the physical relevance of
this requirement may be open for debate. In this paper, we will not discuss this issue.
Instead, we focus only on the existence and uniqueness of solutions of the N -junction
Riemann problem with constant initial data in each pipe. In this respect, a main
result of our current paper is that both the conditions (1.13) and (1.14) fail to
provide global existence of solutions if the entropy constraint is taken into account.
Furthermore, we propose an alternative coupling condition where unique global
existence of entropy solutions is guaranteed.

For the N -junction Riemann problem for (1.8) and (1.9), Colombo and Gar-
avello [11] proved the existence and uniqueness of some stationary solutions and
their perturbations when (1.14) is used as coupling condition. The results are shown
to be global in space–time and local in the subsonic region of the state space (ρ, ρv).
These results were extended to non-uniform initial data in [12].
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Similar local results were achieved by Banda et al. [5, 6] for the coupling con-
dition (1.13). Herein, the authors did not consider the entropy constraint through
the junction. A unified framework was presented in [13], providing local existence
and uniqueness of solutions to the Cauchy problem for general coupling conditions.

In [20], numerical simulations were performed in order to evaluate pressure as
momentum-related coupling constant (Eq. (1.13)). The simulations were performed
on a tee-shaped junction, as the analytical solution for piecewise constant initial
data in this kind of geometry was available from earlier work. As prerequisite for
this solution it is stated that for the given geometry and initial data, Eq. (1.7),
(1.11) and (1.13) form a well-posed mathematical problem.

Two different flow configurations were considered in the two-dimensional simu-
lations. The first configuration consisted of one ingoing and two outgoing flows, the
second of two ingoing and one outgoing flow. The simulation results were averaged
and compared to the analytical results. A clear deviance between the simulations
and the analytical results was found for the second configuration. Thus, for this
configuration the use of geometry and flow-dependent empirical pressure loss coef-
ficients was recommended.

In the present work we propose a momentum-related coupling constant by using
the idea of ideal, reversible flow as starting point. Combined with the observation
that conservation of mechanical energy is strongly related to conservation of momen-
tum, we suggest to use the Bernoulli invariant, an energy invariant with constant
value along streamlines. This allows us to prove global existence both in time and
in the subsonic region of state space. Numerical validations of our results have been
presented in [27, 26].

1.4. Outline of the paper

In Sec. 2, we present the conditions defining the N -junction Riemann problem for
the isothermal Euler equations. Further we investigate solutions where the entropy
condition is not taken into account. The main result is presented in Theorem 2.13;
such solutions exist and are unique whenever the momentum-related coupling con-
stant H̃ satisfies a monotonicity property. In particular, the constants pressure
(1.13) and momentum flux (1.14) have this property.

Section 3 deals with the entropy condition. Results are derived for a three-
pipe junction when equal pressure (1.13) and equal momentum flux (1.14) are used
as coupling condition. Theorem 3.1 summarizes the findings, that both conditions
yield solutions violating the entropy condition in certain ranges of pipe flow rates.
Interestingly, there is a perfect duality between these two conditions; for any given
velocity distribution, the entropy productions associated with the two different cou-
pling conditions will be of opposite sign.

In Sec. 4, we propose and analyze a new coupling condition; momentum con-
servation should be replaced with a unique value of the Bernoulli invariant in the
junction. Herein, Theorems 4.3 and 4.4 contain our main result; among the three
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investigated momentum-related coupling constants, only Bernoulli invariant leads
to unique existence of entropy solutions for the entire subsonic region of state space.

2. The Riemann Problem at a Junction of N Pipes

We consider a system of N pipes of equal cross-sectional area, connected at a junc-
tion as illustrated in Fig. 1. In each segment, the flow is governed by the conservation
law (1.1) given by the isothermal Euler equations (1.8) and (1.9). Following [11],
we define the N -junction Riemann problem as follows.

Definition 2.1. A solution to the N -junction Riemann problem (1.5) is a set of
self-similar functions U i(x, t) such that

RP0: For all i ∈ {1, . . . , N}, there exists a state

U∗
i (Ū1, . . . , ŪN ) = lim

x→0+
U i(x, t) (2.1)

such that U i(x, t) is given by the restriction to x ∈ R
+ of the Lax solution

to the standard Riemann problem for x ∈ R:

∂U i

∂t
+

∂

∂x
F (U i) = 0,

U i(x, 0) =

{
Ū i if x > 0,

U∗
i if x < 0.

(2.2)

RP1: Mass is conserved at the junction:
N∑

i=1

ρ∗i v
∗
i = 0. (2.3)

RP2: There is a unique, scalar momentum-related coupling constant at the
junction:

H(ρ∗i , v
∗
i ) = H̃ ∀ i ∈ {1, . . . , N}. (2.4)

Furthermore, entropy solutions are defined as follows.

Definition 2.2. An entropy solution to the Riemann problem (1.5) is a solution
satisfying the conditions RP0–RP2 as well as

RP3: Energy does not increase at the junction, i.e.
N∑

i=1

ρ∗i v
∗
i

(
1
2
(v∗i )2 + a2 ln

ρ∗i
ρ0

)
≤ 0, (2.5)

where ρ0 is some reference density.

Remark 2.3. The condition RP3 is the isothermal version of the entropy condition
proposed in [11]. This will be derived in Sec. 3.1.
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2.1. Uniqueness of solutions

Given subsonic initial data Ū i, and subsonic states U∗
i , the two states in the pipe

are connected by a wave of the second family [11]. ρ∗i is therefore related to v∗i
through an explicit equation [11]. If they are connected by a rarefaction wave, they
are related by

ln
ρ∗i
ρ̄i

= M∗
i − M̄i, ρ∗i ≤ ρ̄i, (2.6)

where we for convenience use the Mach number, M = v/a, instead of velocity. Two
states connected by a 2-shock curve are related by

M∗
i = M̄i +

(√
ρ∗i
ρ̄i

−
√

ρ̄i

ρ∗i

)
, ρ∗i > ρ̄i. (2.7)

Using the appropriate relation, we can express the coupling constant H(ρ∗i , M
∗
i )

as a function of one unknown state variable and the initial data. For example, we
may use the function H∗

i (ρ∗i ; ρ̄i, M̄i), or written in short form, H∗
i (ρ

∗
i ). Before we

show results on the uniqueness of solutions, we define a monotonicity property on
H∗

i .

Definition 2.4. A coupling constant, H∗
i , is said to be monotone if the following

conditions are satisfied:
dH∗

i

dρ∗i

∣∣∣∣
R2

> 0, M∗
i ∈ 〈−1, 1〉 (2.8)

and
dH∗

i

dρ∗i

∣∣∣∣
S2

> 0, M∗
i ∈ 〈−1, 1〉. (2.9)

Herein, the subscript R2 denotes differentiation along the 2-rarefaction curve (2.6)
and S2 denotes differentiation along the 2-shock curve (2.7).

The choice of the variable ρ∗i is here somewhat arbitrary, as demonstrated in the
following lemma.

Lemma 2.5. Monotonicity in ρ∗i is equivalent to monotonicity in M∗
i . More

precisely,

dH∗
i

dρ∗i

∣∣∣∣
R2

> 0 (2.10)

if and only if

dH∗
i

dM∗
i

∣∣∣∣
R2

> 0. (2.11)

Furthermore,

dH∗
i

dρ∗i

∣∣∣∣
S2

> 0 (2.12)
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if and only if
dH∗

i

dM∗
i

∣∣∣∣
S2

> 0. (2.13)

Proof. The relation between M∗
i and ρ∗i along a 2-rarefaction curve in Eq. (2.6)

may be differentiated to give
dM∗

i

dρ∗i
=

1
ρ∗i

> 0. (2.14)

Similarly, the relation along a 2-shock curve in Eq. (2.7) may be differentiated to
give the relation

dM∗
i

dρ∗i
=

1
2
√

ρ∗i ρi

(
1 +

ρi

ρ∗i

)
> 0. (2.15)

The chain rule may then be used to write
dH∗

i

dM∗
i

=
dH∗

i

dρ∗i

dρ∗i
dM∗

i

. (2.16)

The following result may then be stated.

Lemma 2.6. Assume that the state Ū i and a monotone coupling constant H∗
i with

value H̃ are given. Then there is a unique state U∗
i with the following properties :

(1) H(U∗
i ) = H∗

i (ρ
∗
i ) = H̃.

(2) U∗
i is connected to Ū i with a 2-rarefaction curve if H(Ū i) ≥ H̃.

(3) U∗
i is connected to Ū i with a 2-shock curve if H(Ū i) < H̃.

Proof. The monotone coupling constant in the sense of Theorem 2.4 guarantees
that H∗

i (ρ
∗
i ) is a monotone function. Hence the uniqueness of U∗

i is proved. The
monotonicity also enables the selection of the kind of curve connecting the two
states, which is then determined by the Lax-condition. If ρ̄i ≥ ρ∗i they are con-
nected by a rarefaction wave. Otherwise, if ρ̄i < ρ∗i they are connected by a shock
wave.

Remark 2.7. The monotonicity properties assumed in Theorem 2.6 provide the
opportunity to express the unknown state variables by inverted functions. If Ū i

and U∗
i are connected by a 2-rarefaction curve, the functions are denoted by the

subscript R:

ρ∗i = ρR(H∗
i,R2(ρ

∗
i ) = H̃), (2.17)

M∗
i = MR(H∗

i,R2(ρ
∗
i ) = H̃). (2.18)

Similarly, if connected by a 2-shock curve the inverted functions are denoted by the
subscript S:

ρ∗i = ρS(H∗
i,S2(ρ

∗
i ) = H̃), (2.19)

M∗
i = MS(H∗

i,S2(ρ
∗
i ) = H̃). (2.20)
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A stronger result of Theorem 2.6 may be stated when both the initial state, Ū i,
and the coupling constant, H̃ are subsonic.

Proposition 2.8. Assume that the state Ū i and the coupling constant H̃ are given,

where Ū i is subsonic and H̃ satisfies the inequality

H∗
i |R2(M∗

i = −1) < H̃ < H∗
i |S2(M∗

i = 1). (2.21)

Further, assume that the coupling constant is monotone in the sense of Theorem 2.4.
Then, a state U∗

i satisfying RP0 is uniquely defined.

Proof. The results in Theorem 2.6 enable the construction of the functions

ρ∗i (H̃) =




ρR(H̃) if H̃ < H(Ū i),

ρ̄i if H̃ = H(Ū i),

ρS(H̃) if H̃ > H(Ū i),

(2.22)

M∗
i (H̃) =




MR(H̃) if H̃ < H(Ū i),

M̄i if H̃ = H(Ū i),

MS(H̃) if H̃ > H(Ū i).

(2.23)

Note that (2.22) and (2.23) are continuous, monotonically increasing functions, and
that the range of M∗

i is 〈−1, 1〉 in the interval (2.21). Furthermore, the range of
ρ∗i is

ρ∗i ∈ (ρR(H∗
i (M∗

i = −1)), ρS(H∗
i (M

∗
i = 1))). (2.24)

Due to the monotonicity property shown in Eqs. (2.14) and (2.15), this range may
be expressed by Eqs. (2.6) and (2.7). Note that along a 2-shock curve, Eq. (2.7)
may be rearranged to give

ρ∗i =
ρ̄i

4
(M∗

i − M̄i +
√

(M∗
i − M̄i)2 + 4)2. (2.25)

Thus Eq. (2.24) can be rewritten as:

ρ∗i ∈
(

ρ̄i exp (−1 − M̄i),
ρ̄i

4
(1 − M̄i +

√
(1 − M̄i)2 + 4)2

)
. (2.26)

The proof is complete.

The following statement about the solution to the N -junction Riemann problem
may then be made.

Proposition 2.9. Assume that subsonic initial states Ū i are given in each pipe
segment i ∈ {1, . . . , N} and that the momentum-related coupling constant is mono-
tone in the sense of Definition 2.4. Further, assume that a set of solutions, {U∗

i },
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exists and that each of the solutions satisfies RP0–RP2. Then M∗
i ∈ 〈−1, 1〉∀ i if

and only if

max
i

H∗
i |R2(M∗

i = −1) < H̃ < min
i

H∗
i |S2(M∗

i = 1). (2.27)

Proof. First observe that

M∗
i ∈ 〈−1, 1〉 ∀ i (2.28)

implies that H∗
i (ρ

∗
i ) = H̃ must lie in the interval (2.21) for all i, thus establishing

(2.27). Conversely, if (2.27) holds, it follows from Theorem 2.8 that the solutions
{U∗

i } are subsonic.

Note that the assumption that the solution exists is essential here, as (2.27)
together with RP0 and RP2 do not necessarily imply RP1.

The uniqueness of solutions may now be established.

Proposition 2.10. Assume that subsonic initial states Ū i are given in each pipe
segment i ∈ {1, . . . , N} and that the coupling constant is monotone in the sense of
Theorem 2.4. If there is a set of subsonic solutions U∗

i satisfying RP0–RP2, this
set is unique.

Proof. Consider the mass flux as a function of H̃:

(ρM)∗i (H̃) = ρ∗i (H̃)M∗
i (H̃) =




ρR(H̃)MR(H̃) if H̃ < H(Ū i),

ρ̄iM̄i if H̃ = H(Ū i),

ρS(H̃)MS(H̃) if H̃ > H(Ū i).

(2.29)

Along a 2-rarefaction curve, Eq. (2.14) may be inserted to give

d(ρM)∗i = (1 + M∗
i ) dρ∗i . (2.30)

Similarly, along a 2-shock curve, Eq. (2.15) inserted gives

d(ρM)∗i =

(
1 + M∗

i +

(√
ρ∗i −√

ρi

)2
2
√

ρ∗i ρi

)
dρ∗i . (2.31)

It then follows from (2.8) and (2.9) that in the subsonic region, (2.29) is a mono-
tonically increasing function, and in particular the total mass flux

J (H̃) =
N∑

i=1

(ρM)∗i (H̃) (2.32)

is a monotonically increasing function of H̃. This guarantees that there is at most
one valid solution to RP1:

J (H̃) = 0. (2.33)

The proof is complete.
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Although (2.27) is a necessary condition for subsonic solutions to exist, it is not
sufficient. We define the subsonic region of the initial data as follows.

Definition 2.11. Assume that a set {Ū i} of initial data is given. Assume that this
set satisfies the conditions

(1) M̄i ∈ 〈−1, 1〉 ∀ i;
(2) J (H−) < 0, where

H− = max
i

H∗
i |R2(M∗

i = −1); (2.34)

(3) J (H+) > 0, where

H+ = min
i

H∗
i |S2(M∗

i = 1). (2.35)

Such a set of initial data is said to belong to the subsonic region. Herein we have
used the notation of Definition 2.4.

Remark 2.12. Condition (2) and (3) in Theorem 2.11 are important when defining
the subsonic region as there exist states that satisfy (2.27) where

J (H−) > 0, (2.36)

as well as states that satisfy (2.27) where

J (H+) < 0. (2.37)

Hence Definition 2.11 describes precisely the region where both the initial data and
the resulting junction states are subsonic.

The results of this section may be summed up by the following proposition.

Proposition 2.13. Assume that the initial data Ū i belongs to the subsonic region
in the sense of Definition 2.11 and that the momentum-related coupling constant is
monotone in the sense of Theorem 2.4. Then there exists a unique set of subsonic
solutions satisfying RP0–RP2.

Proof. Theorem 2.8 proves the uniqueness of a state U∗
i satisfying RP0 given sub-

sonic initial state, Ū i, and coupling constant, H̃. Theorem 2.10 proves the unique-
ness of the set of solutions U∗

i that satisfies RP0–RP2, given that such a set of
solutions exists. Finally, the definition of the subsonic region in Theorem 2.11 guar-
antees the existence of the unique set of solutions.

Remark 2.14. The analysis so far has not taken into account the entropy con-
dition, (RP3, Eq. (2.5)). According to Theorem 2.13, a set of initial conditions
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satisfying RP0–RP2 (Eqs. (2.2), (2.3) and (2.4)) has the unique solution

U∗
i = Ū i. (2.38)

If this solution does not satisfy the entropy condition, it is impossible to construct
an entropy solution to the N -junction Riemann problem defined by the initial con-
dition. The relation between the solution to RP0–RP2 and the entropy condition
(RP3) is found in Sec. 3.

2.2. Monotonicity of specific coupling constants

Let HMF denote momentum flux as momentum-related coupling constant (1.14).
For the isothermal Euler equations (1.8) and (1.9) this is equivalent to:

HMF = ρ(M2 + 1). (2.39)

Similarly, let Hp denote pressure as coupling constant:

Hp = ρ. (2.40)

The following results may then be stated.

Lemma 2.15. Pressure is a monotone coupling constant in the sense of Theo-
rem 2.4.

Proof. Inserting the condition of pipe section i into (2.40) we have:

H∗
i,p(ρ

∗
i ) = ρ∗i (2.41)

and accordingly

dH∗
i,p

dρ∗i
= 1. (2.42)

Thus the coupling constant is monotone.

Lemma 2.16. In the subsonic region, momentum flux is a monotone coupling con-
stant in the sense of Theorem 2.4.

Proof. Along a 2-rarefaction curve, Eq. (2.6) may be inserted into (2.39) to give

H∗
i,MF(ρ∗i ) = ρ∗i

(
1 +

(
ln

ρ∗i
ρ̄i

+ M̄i

)2
)

, (2.43)

with corresponding derivative

dH∗
i,MF

dρ∗i

∣∣∣∣
R2

=
((

1 + ln
ρ∗i
ρ̄i

)
+ M̄i

)2

> 0. (2.44)
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Along a 2-shock curve, Eq. (2.7) may be inserted to give

H∗
i,MF(ρ∗i ) = ρ∗i


1 +

(
M̄i +

(√
ρ∗i
ρ̄i

−
√

ρ̄i

ρ∗i

))2

 . (2.45)

The derivative is thus

dH∗
i,MF

dρ∗i

∣∣∣∣
S2

=
(

ρ∗i
ρ̄i

− 1
)(

1 + M̄i

√
ρ̄i

ρ∗i

)
+

(
M̄i +

√
ρ∗i
ρ̄i

)2

+
ρ∗i
ρ̄i

> 0,

M̄i, M
∗
i ∈ 〈−1, 1〉, (2.46)

and consequently the coupling constant is monotone.

3. Energy Conservation in a Junction

3.1. The entropy condition

In the previous section, the monotonicity of the two momentum-related coupling
constants pressure (1.13) and momentum flux (1.14) was established to verify the
uniqueness of solutions to RP0–RP2. In this section we will investigate if the solu-
tions obtained when using the coupling constants obey the entropy condition (RP3,
Eq. (2.5)). The investigation will use the case of a junction with three connected
pipes.

The entropy condition originates from the energy flux in the general Euler equa-
tions. Due to the isentropic assumption and the pressure law (Eq. (1.10)), the fun-
damental thermodynamic differential is simplified to

de =
a2

ρ
dρ. (3.1)

Integrating this equation yields:

e = a2 ln
(

ρ

ρ0

)
. (3.2)

We may then express the energy flux as:

v(E + p) = vρ

(
1
2
v2 + a2 ln

(
ρ

ρ0

)
+ a2

)
. (3.3)

For an N -junction, the total energy flux thus becomes:

Q =
N∑

i=1

(
viρi

(
1
2
v2

i + a2 ln
(

ρi

ρ0

)
+ a2

))

=
N∑

i=1

(
viρi

(
1
2
v2

i + a2 ln (ρi)
))

, (3.4)

where the terms a2 and a2 ln(ρ0) in (3.4) cancel due to the conservation of
mass (2.3).
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3.2. Coupling constant: Pressure

By the assumptions N = 3 and pressure as coupling constant, Eqs. (2.40), (2.3)
and (3.4) become:

ρ∗i = ρ̃, (3.5)
3∑

i=1

v∗i = 0 (3.6)

and

Q = ρ̃
3∑

i=1

(
v∗i

(
1
2
(v∗i )2 + a2 ln (ρ̃)

))

=
1
2
ρ̃

3∑
i=1

(v∗i )3 + a2ρ̃ ln (ρ̃)
3∑

i=1

v∗i

=
1
2
ρ̃

3∑
i=1

(v∗i )3, (3.7)

respectively. Equation (3.7) may be expanded to give

Q =
1
2
ρ̃



(

3∑
i=1

v∗i

)3

− 3(v∗1 + v∗2)(v∗2 + v∗3)(v∗1 + v∗3)


 . (3.8)

Inserting (3.6) into (3.8) results in the expression

Q =
3
2
ρ̃v∗1v∗2v∗3 . (3.9)

Hence, the entropy condition is only fulfilled for one ingoing and two outgoing flows,
or for cases with zero flow-rate in one of the pipes.

3.3. Coupling constant: momentum flux

The assumption of equal momentum flux at the junction, ρ∗i (1 + (M∗
i )2) = H̃,

results in the following set of equations:

ρ∗i =
H̃

1 + (M∗
i )2

, (3.10)

3∑
i=1

ρ∗i v
∗
i = H̃a

3∑
i=1

M∗
i

1 + (M∗
i )2

= 0 (3.11)

and

Q =
3∑

i=1

H̃a
M∗

i

1 + (M∗
i )2

a2((M∗
i )2 + 2 ln( 1

1+(M∗
i )2 ))

2

= H̃a3
3∑

i=1

M∗
i

1 + (M∗
i )2

((M∗
i )2 − 2 ln(1 + (M∗

i )2))
2

. (3.12)



April 7, 2015 7:48 WSPC/S0219-8916 JHDE 1550002

52 G. A. Reigstad et al.

As we will see below, the function Q takes the value of zero only when one of the
flow velocities is zero. Further, the function is positive for a certain range of flow
velocities.

Hence both coupling constants results in unphysical solutions at certain ranges
of flow velocities. In addition it should be noted that in the range of flow velocities
yielding physical solutions for one condition, the other condition has unphysical
solutions.

Proposition 3.1. In the case of a three-pipe junction, the energy flux function
for coupling conditions of equal pressure (Eq. (3.9)) and equal momentum flux
(Eq. (3.12)) takes values of opposite sign for all cases with non-zero flow velocities.
In particular, for the equal pressure condition, whenever there are two incoming and
one outgoing flow the entropy constraint is violated. For the equal momentum flux
condition, the entropy constraint is violated whenever there are one incoming and
two outgoing flows.

3.4. Proof of Proposition 3.1

We write (3.12) as

Q̂(Mk) =
3∑

k=1

zk(Mk)bk(Mk), (3.13)

where

zk(Mk) =
Mk

1 + M2
k

, (3.14)

bk(Mk) =
M2

k − 2 ln(1 + M2
k )

2
. (3.15)

Conservation of mass (3.11) may then be expressed as:
3∑

k=1

zk(Mk) = 0. (3.16)

The flux function Q̂ has two obvious values of z1 for which it is zero: z1 = −z2 and
z1 = 0. As bk is a function of M2

k only, bk(zk) = bk(−zk). Thus for z1 = −z2:

z3 = −(z1 + z2) = 0, (3.17)

b(z1) = b1(−z1) = b2(z2), (3.18)

Q̂ = z1b1(z1) + z2b2(z2) + z3b3(z3)

= −z2b2(z2) + z2b2(z2) = 0. (3.19)

And for z1 = 0:

z3 = −z2, (3.20)

Q̂ = z2b2(z2) − z2b2(z2) = 0. (3.21)
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The behavior of Q̂(zk) may then be found by investigating the derivatives. In the
analysis it is assumed that z2 is a constant, hence only variables related to z1 and
z3 are included. Now

dQ̂

dz1
=

dz1

dz1
b1 + z1

db1

dz1
+

dz3

dz1
b3 + z3

db3

dz1

= b1 + z1
db1

dz1
− b3 + z3

db3

dz3

dz3

dz1

= (b1 − b3) +
(

z1
db1

dz1
− z3

db3

dz3

)
(3.22)

and

d2
Q̂

dz1
2

=
d

dz1

[
(b1 − b3) +

(
z1

db1

dz1
− z3

db3

dz3

)]

= 2
(

db1

dz1
+

db3

dz3

)
+ z1

d2
b1

dz1
2

+ z3
d2

b3

dz3
2
. (3.23)

For convenience the derivative dbk

dzk
is found as a function of Mk:

dzk

dMk
=

(1 + M2
k ) − 2M2

k

(1 + M2
k )2

=
1 − M2

k

(1 + M2
k )2

, (3.24)

dMk

dzk
=

(1 + M2
k )2

1 − M2
k

, (3.25)

dbk

dzk
=

dbk

dMk

dMk

dzk

=
(

Mk − 2Mk

1 + M2
k

)(
(1 + M2

k )2

1 − M2
k

)

= −Mk(1 + M2
k ). (3.26)

In the subsonic region, M ∈ 〈−1, 1〉 and z ∈ 〈−1/2, 1/2〉. The derivative in Eq. (3.22)
may be investigated in three different intervals.

3.4.1. Interval 1: z1 ∈ 〈−1/2,−z2] if z2 > 0

If z2 < 0, z1 ∈ [−z2, 1/2〉. In both cases |z1| ≥ |z2| and |z1| > |z3| due to Eq. (3.16).
The symmetry of bk as a function of zk and the sign of its derivative (Eq. (3.26))
gives:

b3(z3) = b3(−z3) > b1(z1), (3.27)

as well as ∣∣∣∣db3

dz3

∣∣∣∣ <

∣∣∣∣ db1

dz1

∣∣∣∣ . (3.28)
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Hence in the first interval

dQ̂

dz1
= (b1 − b3) +

(
z1

db1

dz1
− z3

db3

dz3

)
< 0. (3.29)

3.4.2. Interval 2: z1 ∈ 〈−z2, 0〉 if z2 > 0

If z2 < 0, z1 ∈ 〈0,−z2〉. In this interval, Eq. (3.22) is equal to zero for z1 = z3 = − z2
2 .

Possible additional roots are investigated with the aid of Eq. (3.23). The second
derivative needed in the last two terms in the equation is found as:

d2
bk

dzk
2

=
d

dMk
[−M(1 + M2)]

dMk

dzk
= (−1 − 3M2

k )
(1 + M2

k )2

1 − M2
k

= − (1 + 3M2
k )(1 + M2

k )2

1 − M2
k

< 0 for Mkk ∈ 〈−1, 1〉. (3.30)

Equations (3.16), (3.23), (3.26) and (3.30) give the following result: For z2 > 0

d2
Q̂

dz1
2

> 0 for z1 ∈ 〈−z2, 0〉, (3.31)

hence Q̂(z1 = −z2/2) is the only local minimum for Q̂ in the range z1 ∈ 〈−z2, 0〉
and there are no values of z1 satisfying the equation Q̂(z1) = 0 in the given interval.
For z2 < 0

d2
Q̂

dz1
2

< 0 for z1 ∈ 〈0,−z2〉, (3.32)

hence Q̂(z1 = −z2/2) is the only local maximum for Q̂ in the range z1 ∈ 〈0,−z2〉
and there are no values of z1 satisfying the equation Q̂(z1) = 0 in the given interval.

3.4.3. Interval 3: z1 ∈ [0, 1/2− z2〉 if z2 > 0

If z2 < 0, z1 ∈ 〈−1/2 − z2, 0]. In both cases |z1| < |z3| due to Eq. (3.16). The
symmetry of bk as a function of zk and the sign of its derivative (Eq. (3.26)) gives:

b3(z3) = b3(−z3) < b1(z1), (3.33)

as well as ∣∣∣∣db3

dz3

∣∣∣∣ >

∣∣∣∣db1

dz1

∣∣∣∣ . (3.34)

Hence in region three

dQ̂

dz1
= (b1 − b3) +

(
z1

db1

dz1
− z3

db3

dz3

)
> 0. (3.35)
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3.4.4. Conclusion of proof

To sum up, it is proved that for z2 > 0:

dQ̂

dz1
< 0 for z1 ∈ 〈−1/2,−z2/2〉, (3.36)

dQ̂

dz1
> 0 for z1 ∈ 〈−z2/2, 1/2− z2〉. (3.37)

Accordingly, for z2 < 0:

dQ̂

dz1
> 0 for z1 ∈ 〈−1/2,−z2/2〉, (3.38)

dQ̂

dz1
< 0 for z1 ∈ 〈−z2/2, 1/2− z2〉. (3.39)

Further it is proved that in the interval zk ∈ 〈−1/2, 1/2〉, Q̂(z1) = 0 only for
z1 = −z2 and z1 = 0.

Assume now that z2 > 0 and M2 > 0. The derivation showed that for a coupling
condition of equal momentum flux, the energy flux is non-positive only in the range
z1 ∈ 〈−z2, 0〉. From Eq. (3.14) it may be deduced that M1 = −M2 at z1 = −z2.
Hence, from (3.6) and (3.9) it may be found that the energy flux for the coupling
condition of equal pressure is non-negative only in the range z1 ∈ 〈−z2, 0〉.

For non-positive flows in the second pipe, the argument is similar, but with
opposite signs.

4. Proposal for Coupling Condition: Equal Bernoulli Invariant

As pointed out in [14], for a system modeled by the full set of Euler equations, the
linear momentum of the fluid may not be conserved at the junction. Hence there
is a dependence on the relative position of the pipes. A scalar conserved quantity
derived from the vector momentum conservation would therefore be desirable. In
classical mechanics, this scalar quantity is the Hamiltonian energy function, and its
conservation follows from the underlying symmetries of the equations of motion.
The theory is extendable to fluid mechanics [4, 28]; the Euler equations give rise
to constants of motion known as Bernoulli invariants. For the isothermal Euler
equations, the invariant becomes [29, Eq. (3.76)]:

B = a2

(
ln

ρ

ρ0
+ 1
)

+
1
2
v2. (4.1)

Since a is a constant, an equivalent invariant is:

B = a2 ln
ρ

ρ0
+

1
2
v2. (4.2)
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4.1. Existence and uniqueness of solutions when using

Bernoulli invariant as coupling constant

Noticing that ρ0 is a constant, we may simplify the expression for Bernoulli invariant
as coupling constant to:

HBI = ln(ρ) +
1
2
M2. (4.3)

Lemma 4.1. The Riemann problem at a junction with RP2 expressed by Eq. (4.3)
has a unique solution satisfying RP0–RP2 given that the initial data belongs to the
subsonic region in the sense of Theorem 2.11.

Proof. To prove the uniqueness of solutions to the Riemann problem at the junc-
tion it is sufficient to prove that Bernoulli invariant is a monotone coupling constant
in the sense of Theorems 2.4 and 2.5. Existence and uniqueness are then guaranteed
by Theorem 2.13.

Along a 2-rarefaction curve, the coupling constant expressed as a function of
Mach number is

H∗
i,BI (M∗

i ) = M∗
i − M̄i +

1
2
(M∗

i )2 + ln(ρ̄i), (4.4)

with corresponding derivative:

dH∗
i,BI

dM∗
i

∣∣∣∣
R2

= 1 + M∗
i > 0 for M∗

i ∈ 〈−1, 1〉. (4.5)

Along a 2-shock curve, the coupling constant is

H∗
i,BI (M∗

i ) = ln

(
ρ̄i

4

(
M∗

i − M̄i +
√(

M∗
i − M̄i

)2 + 4
)2
)

+
1
2

(M∗
i )2 . (4.6)

The derivative is
dH∗

i,BI

dM∗
i

∣∣∣∣
R2

= M∗
i +

2√(
M∗

i − M̄i

)2 + 4
. (4.7)

The Lax entropy condition for a 2-shock wave is M̄i < M∗
i . Equation (4.7) may only

be negative for negative values of M∗
i and thus only for negative values of M̄i. It is

therefore necessary to prove that Eq. (4.7) is positive for all values of M̄i ∈ 〈−1, 0],
M∗

i ∈ 〈−1, 0] where M∗
i − M̄i > 0. We apply the notation:

f(M∗, M̄) = M∗ +
2√(

M∗ − M̄
)2 + 4

. (4.8)

The end-points for f as a function of M∗ are:

f(M∗ = M̄, M̄) = M̄ + 1 > 0, M̄ ∈ 〈−1, 0] (4.9)

and

f(M∗ = 0, M̄) =
2√

M̄2 + 4
> 0. (4.10)
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If f is a monotone function of M∗ ∈ [M̄, 0], then the function cannot be negative
in this interval. To this end, we find the derivative

∂f

∂M∗ = 1 − 2(M∗ − M̄)
((M∗ − M̄)2 + 4)3/2

. (4.11)

Observing that we now have a function only of (M∗ − M̄), we replace this by
z ∈ [0, 1〉. We want to show that

1 − 2z

(z2 + 4)3/2
> 0, z ∈ [0, 1〉, (4.12)

which results in the calculation:

1 >
2z

(z2 + 4)3/2
,

2z < (z2 + 4)3/2,

4z2 < (z2 + 4)3.

(4.13)

This is easily seen to be true given the possible values of z.

Unlike the two earlier proposed coupling constants, Bernoulli invariant fulfills
the entropy condition in Eq. (3.4).

Proposition 4.2. When using the Bernoulli invariant as coupling constant, the
entropy condition (Eq. (3.4)) is satisfied for all flow conditions in the general case
of N pipes connected at a junction.

Proof. Inserting H̃ defined by Eq. (4.3) into the entropy condition and using
Eq. (2.3) leads to:

Q = a2
N∑

i=1

ρ∗i v
∗
i

(
1
2
(M∗

i )2 +
(
H̃ − 1

2
(M∗

i )2
))

= a2H̃
N∑

i=1

ρ∗i v
∗
i = 0. (4.14)

Finally, the main results may be summed up by the following propositions.

Proposition 4.3. Consider the N -junction Riemann problem for N pipes with
equal cross-sectional areas. With pressure or momentum flux as coupling constant
(RP2) there exists a unique solution satisfying RP0–RP2 provided that the initial
data belongs to the subsonic region in the sense of Theorem 2.11. There does not
exist solutions that satisfy RP3 (entropy solutions) for all initial data in the subsonic
region given by Theorem 2.11.

Proof. Existence and uniqueness is given by Theorem 2.13 together with Theo-
rems 2.15 and 2.16. Theorem 3.1 shows the lack of entropy solutions for certain
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intervals of flow rates for N = 3. We can extend this negative result to arbitrary N

simply by imposing a zero flow velocity in the remaining N − 3 pipes.

Proposition 4.4. Consider the N -junction Riemann problem for N pipes with
equal cross-sectional areas. With Bernoulli invariant as coupling constant (RP2)
there exists a unique entropy solution satisfying RP0–RP3 provided that the initial
data belongs to the subsonic region in the sense of Theorem 2.11.

Proof. Existence and uniqueness is given by Theorems 2.13 and 4.1. The result in
Theorem 4.2 proves that the solution is entropic.
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