
Rankine-Hugoniot-Riemann solver for steady multidimensional
conservation laws with source terms

Halvor Lunda,b,c,∗, Florian Müllera, Bernhard Müllerb, Patrick Jennya

aInstitute of Fluid Dynamics, ETH Zürich, Sonneggstrasse 3, 8092 Zürich, Switzerland
bDept. of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway
cSINTEF Energy Research, NO-7465 Trondheim, Norway

Abstract

The Rankine-Hugoniot-Riemann (RHR) solver has been designed to solve steady multidi-
mensional conservation laws with source terms. The solver uses a novel way of incorpor-
ating cross fluxes as source terms. The combined source term from the cross fluxes and
normal source terms is imposed in the middle of a cell, causing a jump in the solution
according to the Rankine-Hugoniot condition. The resulting Riemann problems at the cell
faces are then solved by a conventional Riemann solver.

We prove that the solver is of second order accuracy for rectangular grids and confirm
this by its application to the 2D scalar advection equation, the 2D isothermal Euler equa-
tions and the 2D shallow water equations. For these cases, the error of the RHR solver is
comparable to or smaller than that of a standard Riemann solver with a MUSCL scheme.
The RHR solver is also applied to the 2D full Euler equations for a channel flow with
injection, and shown to be comparable to a MUSCL solver.

Keywords: finite volume methods, partial differential equations, conservation laws,
Rankine-Hugoniot condition, source terms
2010 MSC: 76M12, 65N08, 35L65

1. Introduction

Our goal has been to develop a numerical method to solve systems of multidimensional
hyperbolic partial differential equations (PDEs) with source terms, with an emphasis on
calculating steady states accurately. Such systems of equations can describe a number of
physical phenomena, e.g. combustion [1], multiphase flow with phase interaction in the
form of mass or heat transfer [2, 3], water/vapor flow in nuclear reactors [4], cavitation [5],

∗Corresponding author. Phone +47 73593803, fax +47 73593580.
Email addresses: halvor.lund@ntnu.no (Halvor Lund), florian.mueller@sam.math.ethz.ch

(Florian Müller), bernhard.muller@ntnu.no (Bernhard Müller), jenny@ifd.mavt.ethz.ch (Patrick
Jenny)
Preprint submitted to Journal of Computational Physics 25th October 2013

shallow water flow over variable topography [6, 7], and fluid flow in a gravity field [8], to
mention a few. In many cases, one can express the equations as balance laws consisting of
a conservation law together with a source term, i.e. as

∂u

∂t
+ ∇ · F(u) = q(u,x), (1)

where u denotes the vector of conserved variables, F(u) the flux tensor and q(u,x) the
source term. The procedure of solving such equations numerically in multiple dimensions
involves a number of challenges compared to solving a one-dimensional homogeneous (q =
0) conservation law. First, the multidimensionality introduces new effects, which may be
difficult to capture accurately by just using standard one-dimensional methods based on
approximate Riemann solvers. Second, a stiff source term with a magnitude similar to the
flux gradients may require a whole new approach, since approximate Riemann solvers for
the numerical flux assume small or vanishing source terms.

One common approach to solving equations of the form (1) is to use a fractional-step or
operator-splitting method, which is based on solving the conservation law ut+∇·F(u) = 0
and the ordinary differential equation (ODE) ut = q(u,x) alternately to approximate the
solution of the full problem (1). The advantage of such a splitting approach is that the
operators can be approximated using well-proven methods developed for homogeneous
conservation laws and for ODEs, respectively. However, as e.g. LeVeque [9, Chap. 17]
points out, such splitting encounters difficulties, especially when the flux gradients and
the source terms nearly or completely balance each other. This drawback of operator
splitting has given rise to the development of well-balanced schemes, whose main aim is to
well approximate the balance of the flux surface integral and the source volume integral in
steady state. Well-balanced schemes have been discussed by a number of authors, including
Bale et al. [7], Bermudez and Vazquez [10], Donat and Martinez-Gavara [11], Gosse [4],
Hubbard and García-Navarro [12], and LeVeque [6, 13]. Murillo and García-Navarro [14]
solve the shallow water equations with source terms by adding an extra wave associated
with the source term in their approximate Riemann solver. Noelle and co-workers [15–
18] have written a number of papers on well-balanced methods, with an emphasis on the
application to the shallow water equations and steady states with moving flow.

LeVeque [6] proposed a method which incorporates the source term as a singular source
in the centre of each grid cell, so that the flux difference exactly equals the source term integ-
ral approximation. This in turn leads to altered Riemann problems at the cell boundaries,
which can be solved using a standard approximate Riemann solver with first or higher order
reconstruction. Jenny and Müller [1] used a similar idea, but rather placed the source term
at the cell boundary. Their work also introduced the concept for 2D problems of treating
the flux gradients in the y direction as source terms when solving the Riemann problems
in the x direction, and vice versa. This solver was coined the Rankine-Hugoniot-Riemann
(RHR) solver, since a Rankine-Hugoniot condition is combined with a Riemann solver to
calculate the new Riemann problem with source term at the cell boundary.

In this paper we build on the idea by Jenny and Müller [1] of treating cross fluxes
as source terms, combined with placing the source term in the cell centre, as proposed

2

by LeVeque [6]. This allows us to develop a numerical scheme with accurate treatment
of multidimensional effects as well as source terms. Some stability problems reported by
Jenny and Müller [1] for two-dimensional cases are eliminated here by introducing a novel
limiter.

Our paper is organized as follows. In Section 2, we explain the Rankine-Hugoniot-
Riemann solver for one and two dimensions. The method can easily be extended to
three-dimensional problems. We then introduce a limiting procedure to preserve TVD-
like properties and to eliminate instabilities. In Section 3 we present an analysis of the
solver properties and show that it is of second order spatial accuracy for rectangular grids.
Numerical investigations are presented in Section 4, where we apply the RHR solver to
steady states for a 2D scalar advection equation, the 2D isothermal Euler equations, the
2D shallow water equations and the 2D full Euler equations. The numerical error is com-
pared to that of a second-order MUSCL scheme. Finally, in Section 5 we draw some
conclusions and outline further work.

2. Rankine-Hugoniot-Riemann solver

We are interested in solving a system of two-dimensional conservation laws with source
terms, formulated in the steady case as

∂f(u)

∂x
+
∂g(u)

∂y
= q(u,x), (2)

where u denotes the vector of conserved variables, f and g the flux vectors in x- and
y-direction, respectively, and q the source term vector. In [1], the RHR solver was applied
to a 1D premixed laminar flame and a 2D laminar Bunsen flame, where the source term
not only depends on the conserved variables u, but also on ∇u. The homogeneous system
is assumed to be hyperbolic, i.e. the matrix nxf ′(q) + nyg

′(q) is diagonalizable with real
eigenvalues for all (nx, ny) ∈ R2. We will build on LeVeque’s idea of implementing the
source term as a singular source in the cell centre [6]. For simplicity and clarity, we shall
first explain the RHR solver in one dimension. Then we continue with two dimensions,
where the concept of cross fluxes as source terms is employed as suggested by Jenny and
Müller [1].

2.1. One-dimensional solver
The Rankine-Hugoniot-Riemann (RHR) solver was first proposed by Jenny and Müller [1],

while a similar method was presented by LeVeque [6]. They can both be applied to solve
a one-dimensional conservation law with a source term, in the steady case written as

∂f(u)

∂x
= q(u, x). (3)

The two methods have the similarity that they incorporate the source term by placing it
as a singular term at either the cell face or the cell centre, and then using the Rankine-
Hugoniot condition to calculate the jump in the solution due to this singular source.

3

In this work we use the source term treatment by LeVeque [6], who distributed the
source term as a singular term to the cell centre. The strength of the source term in cell i
integrated over the whole cell is approximated by ∆xqi. Therefore the Rankine-Hugoniot
condition reads

f(ui,E)− f(ui,W) = ∆xqi, (4)

where ui,W and ui,E are the values in the western and eastern cell parts, respectively,
cf. Fig. 1. To keep the method conservative, we also require that the average of the
conservative variable in the cell is kept constant, i.e. that

1

2
(ui,E + ui,W) = ui. (5)

The reconstruction of u is illustrated in Figure 1. The new half-states are then used to
solve the Riemann problems at each cell face, e.g. the Riemann problem at the face Ii+1/2

is given by ui,E and ui+1,W as the left and right states, respectively.

xxi−1/2 xi+1/2 xi+3/2

ui,W

ui,E

ui

ui+1,W

ui+1,E

ui+1

∆xqi ∆xqi+1

Figure 1: RHR solver in one dimension. The locations of the singular source terms are
illustrated, as well as the cell averaged states (dotted lines) and the reconstruction (solid
lines) of u.

LeVeque [6] demonstrated that this approach is well-balanced, with an emphasis on
the shallow water equations. Bale et al. [7] and LeVeque [19] argue that source term
singularities placed at the cell faces instead of in the cell centres are more robust and
simpler to implement. However, according to our experience, the method with cell centred
singularities introduced in the present section has proven both fruitful and relatively easy
to implement, since one can use a standard Riemann solver at the cell faces.

2.2. Multidimensional solver
We will now extend the ideas presented in Section 2.1 to multidimensional problems,

formulated for steady states. For simplicity, we will derive a solver for two dimensions,
but it is straightforward to extend the method to three dimensions. In two dimensions,

4

a system of conservation laws with source terms can be formulated as written in Eq. (2).
Moving the last left-hand-side term to the right-hand-side yields

∂f(u)

∂x
= −∂g(u)

∂y
+ q(u,x). (6)

From this equation one can readily see that the y-directed flux term may be seen as
a source term when solving the system in the x-direction, and vice versa. This idea of
treating the cross flux as a source term was first introduced by Jenny and Müller [1], who
placed the source terms at the cell faces. We will, however, continue to develop the idea
of the cell centred source term described in Section 2.1, but incorporating both the source
term q and the cross-flux term −∂g(u)/∂y.

yj−1/2

yj+1/2

y

xi−1/2 xi+1/2 x

∆x

∆y
(xi, yj)

Figure 2: Sketch of cell Ci,j

To find a finite volume formulation, we integrate Eq. (6) over a rectangular control
volume Ci,j defined by the opposite corners (xi−1/2, yj−1/2) and (xi+1/2, yj+1/2) = (xi−1/2 +
∆x, yj−1/2 + ∆y), cf. Fig. 2, which yields

1

∆x
(f i+1/2,j − f i−1/2,j) = − 1

∆y
(gi,j+1/2 − gi,j−1/2) + qi,j, (7)

where ui,j and qi,j are the averages of u and q, respectively, over control volume Ci,j. The
approximate averaged fluxes at the western and southern faces are given by

f i−1/2,j ≈
1

∆y

∫ yj+1/2

yj−1/2

f(u(xi−1/2, y)) dy, (8)

gi,j−1/2 ≈
1

∆x

∫ xi+1/2

xi−1/2

g(u(x, yj−1/2)) dx. (9)

The approximation of −∂g(u)/∂y on the right hand side of Eq. (7) quickly reveals that
this term may be treated as a source term, similar to qi,j, when calculating the f -fluxes
in the x-direction, and vice versa. We place this source term as a singular source in the
centre of the cell, in a similar fashion as explained in Section 2.1. Conservativity in control

5

volume Ci,j and the Rankine-Hugoniot conditions can then be expressed as

1

2
(ui,j,W + ui,j,E) = ui,j, (10)

1

2
(ui,j,S + ui,j,N) = ui,j, (11)

1

∆x
(f(ui,j,E)− f(ui,j,W)) = qx,i,j ≡

∆gi,j
∆y

+ qi,j, (12)

1

∆y
(g(ui,j,N)− g(ui,j,S)) = qy,i,j ≡

∆f i,j
∆x

+ qi,j. (13)

where the subscripts N/S/E/W denote the northern/southern/eastern/western parts of
the cell. The flux differences are ∆f i,j = f i−1/2,j − f i+1/2,j and ∆gi,j = gi,j−1/2 − gi,j+1/2.
We have also introduced qx,i,j and qy,i,j to denote the total source term in the x and y
directions, respectively. The relations (10) and (12) defining ui,j,W and ui,j,E are sketched
in Fig. 3. The states ui,j,E and ui+1,j,W then define the Riemann problem at the face
Ii+1/2,j, which in turn can be used to calculate the flux f i+1/2,j using a Riemann solver.

Since the fluxes depend on the adjacent states to be determined, the flux differences
∆gi,j in Eq. (12) and ∆f i,j in Eq. (13) are approximated by their known values at the
previous time step when doing timestepping to reach the steady state, cf. Section 4.1.
Thus, qx,i,j in Eq. (12) and qy,i,j in Eq. (13) are assumed to be known. In general, the
conditions (10)–(13) may need to be solved numerically for ui,j,W, ui,j,E, ui,j,S and ui,j,N,
using e.g. Newton’s method. However, for the 2D scalar linear advection equation and
the 2D isothermal Euler equations presented later in this work, we are able to solve the
conditions (10)–(13) analytically.

ui,j

xi−1/2 xi xi+1/2 x

yj

yj+1/2

y

u

ui,j,W

ui,j,E

(a) Condition (10)

xi−1/2 xi xi+1/2 x

yj

yj+1/2

y

f(u) ∆xqx,i,j

f(ui,j,W)

f(ui,j,E)

(b) Condition (12)

Figure 3: Sketch of the conditions (10) and (12) to define ui,j,W and ui,j,E.

2.3. Limiting
The RHR solver presented by Jenny and Müller [1] was reported to have some sta-

bility problems when applied to two-dimensional balance laws. They handled these in-
stabilities by introducing artificial numerical diffusion, which is rather arbitrary. In this

6

paper we rather follow the ideas of Müller [20] and introduce a limiting of the west-
ern/eastern/southern/northern half-states.

The variables we limit may either be the conserved variables or the primitive variables.
For the isothermal Euler equations, the shallow water equations and the full Euler equa-
tions, we limit the primitive variables, i.e. the velocity components as well as the density
and the water height, respectively. The limited state uL

i,j,E is calculated as follows:

(uL
i,j,E)k = min [max [(ui,j,E)k − (ui,j)k,−|δk|] , |δk|] + (ui,j)k (14)

where δk = minmod((ui+1,j)k−(ui,j)k, (ui,j)k−(ui−1,j)k). Here (·)k denotes the k-th limited
variable (i.e. the k-th component of the vector of the conserved or primitive variables), and
ui,j,E is the unlimited eastern state. The limited western state uL

i,j,W is then given by
Eq. (10), so that the cell average is conserved. The limiter ensures that both (uL

i,j,E)k and
(uL

i,j,W)k lie between (ui−1,j)k and (ui+1,j)k, as long as (ui,j)k also does so. The result
would be completely equivalent if we limited the western state first, and then calculated
the eastern state from this. An analogous requirement applies to the northern state ui,j,N.

Figure 4 illustrates this limiting procedure. Fig. 4a shows an example of a possible
result of solving the RHR relations (10)–(13). In this case, the state ui,W is out of bounds,
since it is larger than both ui−1 and ui+1. The limiter is then applied, which results in the
limited states uL

i,W = ui−1, and uL
i,E = 2ui−uL

i,W (which follows from Eq. (10)), illustrated
in Fig. 4b. A similar case is shown in Figs. 4c–4d, where ui,E is out of bounds, and hence
the limiter reduces this to uL

i,E = ui−1.
In Figure 5a the instabilities without limiting are illustrated for the 2D steady scalar

linear advection equation, i.e.

a
∂u

∂x
+ b

∂u

∂y
= 0, (15)

with constant velocity v = (a, b)> = (1, 0.5)> on a 20 × 20 grid with ∆x = ∆y = 1.8. At
the boundaries x = 0 and y = 0 the scalar u is set according to a Gauss profile given by

u(x, y) = exp

(
−(y − b

a
· x)2

32

)
. (16)

The steady state solution exhibits spurious oscillations propagating downstream on the left
side of the advected crest.

After applying the limiting to the 2D steady scalar linear advection equation, the
spurious oscillations are eliminated, cf. Fig. 5b. Figures 5c and 5d show two cross-sections
of the numerical solutions depicted in Figures 5a and 5b, as well as the exact solution. We
recognize that the limiter causes the oscillations to vanish, but also leads to slightly more
diffusive solutions, e.g. the peak values are smaller than without limiting.

In the setting of the 2D unsteady linear advection equation, i.e.

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0, (17)

7

x

ui−1

ui,W

ui,E

ui

ui+1

(a) Before limiting. ui,W lies outside the in-
terval [ui+1,ui−1] and needs to be limited.

x

ui−1

uL
i,W

uL
i,E

ui

ui+1

(b) After limiting. ui,W is reduced, and
ui,E is increased accordingly to conserve ui,
as stated in Eq. (10).

x

ui−1

ui,W

ui,E

ui

ui+1

(c) Before limiting. ui,E lies outside the in-
terval [ui+1,ui−1] and needs to be limited.

x

ui−1

uL
i,W

uL
i,E

ui

ui+1

(d) After limiting. ui,E is reduced, and
ui,W is increased accordingly to conserve
ui, as stated in Eq. (10).

Figure 4: Illustration of the limiting procedure for the RHR solver for two different cases.

8

0
10

20
30

0
20

0

0.5

1

x
y

u

(a) Without limiting. Spurious oscillations
emerge as the scalar u is advected through the
domain.

0
10

20
30

0
20

0

0.5

1

x
y

u

(b) With limiting.

0 10 20 30

0

0.5

1

y

u

no lim.
with lim.

exact

(c) Cross-section at x = 20.7.

0 10 20 30

0

0.5

1

y

u

no lim.
with lim.

exact

(d) Cross-section at x = 35.1.
Figure 5: Advection of a scalar Gauss profile (16) with velocity (a, b)> = (1, 0.5)>, with
(with lim.) and without limiting (no lim.), on a 20× 20 grid with ∆x = ∆y = 1.8.

9

the RHR solver combined with the proposed limiter complies with the minimum/maximum
principle. Here, the minimum/maximum principle states that for a pure initial value
problem with initial conditions u0(x, y) specified for −∞ < x, y < ∞ we have min(u0) ≤
u ≤ max(u0) for all times t. We first observe that for a locally maximal state ui,j, the limiter
does not allow the corresponding half-states ui,j,N, ui,j,S, ui,j,E and ui,j,W to be different from
ui,j. Moreover, the limiter ensures that the adjacent half-states of the neighboring cells do
not outreach ui,j. Since Riemann problems between the half-states at the cell interfaces
reduce to simple upwinding, we see that the locally maximal state ui,j cannot increase as
time evolves. Certainly, new local maxima can emerge but due to the previous argument,
these new maxima can no longer increase after their creation. Therefore, the upper bound
provided by the initial global maximum is not violated. Along similar lines, the minimum
principle is met. It is emphasized that time integration must be sufficiently accurate for
this reasoning to hold.

3. Analysis of the RHR solver for the 2D steady scalar linear advection equa-
tion

In this section, in order to highlight some important properties of the RHR solver
without limiter, we present an analysis of the solver for the 2D steady scalar linear advection
equation with a linear source term, i.e.

a
∂u

∂x
+ b

∂u

∂y
= cu+ d, (18)

where v = (a, b)> is the (constant) velocity vector and c and d are additional constants.
For this equation, the flux functions are simply given by f(u) = au and g(u) = bu. We
assume without loss of generality that the two velocities are positive, i.e. a, b > 0. In this
case, the numerical fluxes at the faces are simply chosen as the upwind fluxes, i.e.

fi+1/2,j = aui,j,E, and (19)
gi,j+1/2 = bui,j,N . (20)

With the given flux functions and numerical fluxes, the conservativity and Rankine-Hugoniot
conditions from Eqs. (10)–(13) read

1

2
(ui,j,W + ui,j,E) = ui,j, (21)

1

2
(ui,j,S + ui,j,N) = ui,j, (22)

a

∆x
(ui,j,E − ui,j,W) =

b

∆y
(ui,j−1,N − ui,j,N) + cui,j + d, (23)

b

∆y
(ui,j,N − ui,j,S) =

a

∆x
(ui−1,j,E − ui,j,E) + cui,j + d, (24)

10

and the finite volume scheme (7) in the steady case reads

a

∆x
(ui−1,j,E − ui,j,E) +

b

∆y
(ui,j−1,N − ui,j,N) + cui,j + d = 0. (25)

We now wish to show how the stencil for the solution in cell (i, j), ui,j, depends on the
solution in the neighbouring cells. To this end, we solve Eq. (21) for ui,j,W and Eq. (22)
for ui,j,S and substitute the results into Eqs. (23) and (24), respectively, which yields

2a

∆x
(ui,j,E − ui,j) =

b

∆y
(ui,j−1,N − ui,j,N) + cui,j + d, (26)

2b

∆y
(ui,j,N − ui,j) =

a

∆x
(ui−1,j,E − ui,j,E) + cui,j + d. (27)

Using Eq. (25), we replace the right-hand side of Eqs. (26)–(27), which leads to
a

∆x
(ui,j,E + ui−1,j,E − 2ui,j) = 0, (28)

b

∆y
(ui,j,N + ui,j−1,N − 2ui,j) = 0. (29)

Finally, we solve Eq. (28) for ui−1,j,E and Eq. (29) for ui,j−1,N and substitute the results
into Eq. (25), which yields

a

∆x
(ui,j − ui,j,E) +

b

∆y
(ui,j − ui,j,N) +

c

2
ui,j +

d

2
= 0. (30)

We now add the following equations to retrieve a stencil for ui,j: Eqs. (28), (29) and (30),
Eq. (28) with shifted indices (i, j)→ (i, j−1), Eq. (29) with shifted indices (i, j)→ (i−1, j),
Eq. (30) with shifted indices (i, j)→ (i−1, j), Eq. (30) with shifted indices (i, j)→ (i, j−1),
Eq. (30) with shifted indices (i, j) → (i− 1, j − 1). After solving the resulting expression
for ui,j, we get

ui,j =
c∆x∆y + 2a∆y − 2b∆x

2a∆y + 2b∆x− c∆x∆y
ui−1,j +

c∆x∆y − 2a∆y + 2b∆x

2a∆y + 2b∆x− c∆x∆y
ui,j−1

+
c∆x∆y + 2a∆y + 2b∆x

2a∆y + 2b∆x− c∆x∆y
ui−1,j−1 +

4d∆x∆y

2a∆y + 2b∆x− c∆x∆y
. (31)

The stencil may be viewed as an operator which maps the solution to the south, west and
south-west to the location (i, j); note for example that for ∆x

∆y
= a

b
and c = d = 0, the

stencil reduces to
ui,j = ui−1,j−1, (32)

i.e. the RHR solver propagates the solution exactly diagonally to the grid. Figure 6 shows
the numerical results for a case with advection of a Gauss profile given by Eq. (16) on a
10× 10 grid with ∆x = 1.8 and ∆y = 3.6 and 2a = b. As expected the numerical solution
is exact. Although this example of advection with constant velocity is rather trivial, the
result illustrates the capability of the RHR solver to capture fluxes in oblique direction
with respect to the grid orientation.

11

0
100

20

0

0.5

1

x
y

u

Figure 6: Advection of a scalar Gauss profile (16) with 2a = b and ∆x = 1.8 and ∆y = 3.6
on a 10× 10 grid, which is solved exactly by the RHR solver (without limiter).

3.1. Error analysis
In this section, we wish to analyse the spatial order of accuracy of the RHR solver

(without limiter) for the 2D steady advection equation with source term (18). We define
the local error by the difference between the numerical solution ui,j and the exact solution
ũi,j, where the numerical solution is evaluated with the exact solution values ũi−1,j, ũi,j−1

and ũi−1,j−1, i.e.

Elocal =
c∆x∆y − 2a∆y − 2b∆x

2a∆y + 2b∆x− c∆x∆y
ũi,j +

c∆x∆y + 2a∆y − 2b∆x

2a∆y + 2b∆x− c∆x∆y
ũi−1,j

+
c∆x∆y − 2a∆y + 2b∆x

2a∆y + 2b∆x− c∆x∆y
ũi,j−1 +

c∆x∆y + 2a∆y + 2b∆x

2a∆y + 2b∆x− c∆x∆y
ũi−1,j−1

+
4d∆x∆y

2a∆y + 2b∆x− c∆x∆y
, (33)

where we have used the stencil (31) to express ui,j as a function of the exact solution in
the neighbouring cells. We now assume that the solution ũ is sufficiently smooth such that
ũi−1,j, ũi,j−1 and ũi−1,j−1 in Eq. (33) can be expressed as a Taylor series around (xi, yj).
Since ũ is an exact solution of Eq. (18), we find that the y derivative is given by

∂ũ

∂y
= −a

b

∂ũ

∂x
+
c

b
ũ+

d

b
. (34)

We utilize this to replace all y derivatives stemming from the Taylor series expansion in
Eq. (33). This causes the zeroth, first and second order terms to cancel, leaving

Elocal =
∆x∆y

3b2 (2a∆y + 2b∆x− c∆x∆y)

(
− a3∆y2∂

3ũ

∂x3

∣∣∣
i,j

+ ab2∆x2∂
3ũ

∂x3

∣∣∣
i,j

+ 3a2c∆y2∂
2ũ

∂x2

∣∣∣
i,j

− 3ac2∆y2∂ũ

∂x

∣∣∣
i,j

+ c3∆y2ũi,j + c2d∆y2
)

+ higher order terms.

(35)
12

If we assume that the ratio ∆x/∆y is fixed, we find

Elocal = O(∆x3), (36)

i.e. the local spatial error of the RHR solver is of third order. To find the global error, we
realize that in order to advect the solution from the boundary to a certain cell, the stencil
(31) is applied a certain number of times proportional to 1/∆x. Therefore the global error
is of second order,

Eglobal = O(∆x2). (37)

We would like to point out the fact that the scheme achieves second order with a
compact stencil that is only dependent on the solution value and the fluxes in the nearest
neighbouring cells. This is in contrast to e.g. a MUSCL scheme, which requires two cells
in all directions to achieve second order.

In this paper we mainly focus on showing the spatial properties of the RHR solver for
the steady case, thus we do not investigate the temporal properties in detail. The time
integration procedure is outlined in the following section.

4. Numerical investigation

In this section, we numerically investigate how the RHR solver behaves for steady states
for a two-dimensional advection equation, the two-dimensional isothermal Euler equations,
the two-dimensional shallow water equations and the two-dimensional full Euler equations.
We start by describing in a general way how the time-stepping is performed, which we need
to arrive at the steady states.

4.1. Time integration/solution algorithm
In general, we wish to solve a multidimensional system of conservation laws with source

terms. For simplicity, we consider the two-dimensional case, i.e.

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= q(u,x). (38)

For this system of balance laws, the finite volume scheme (7) can (in the unsteady case)
be rearranged as

∂ui,j
∂t

=
1

∆x
(f i−1/2,j − f i+1/2,j) +

1

∆y
(gi,j−1/2 − gi,j+1/2) + qi,j. (39)

From the RHR relations in Eqs. (10)–(13), we see that the system of ordinary differential
equations (ODEs) for ui,j,E and ui,j,W is highly coupled between cells, since the interface
fluxes f i±1/2,j and gi,j±1/2 (in general) depend on the states in neighbouring cells on both
sides. This presents a challenge when implementing a time integration scheme. Hence we
choose to calculate the cross-flow fluxes in the total source terms qx,i,j and qy,i,j based on
the previous time step when solving the RHR relations for the next time step.

We then propose to move the solution forward in time using the following algorithm.
13

1. Calculate the total source terms based on the fluxes from the previous time step:

qnx,i,j =
g
n−1/2
i,j−1/2 − g

n−1/2
i,j+1/2

∆y
+ qni,j, qny,i,j =

f
n−1/2
i−1/2,j − f

n−1/2
i+1/2,j

∆x
+ qni,j (40)

For the first time step, the fluxes at time step n−1/2 are unknown, but are assumed
to be zero.

2. Compute the half-states uni,j,S, uni,j,N, uni,j,W and uni,j,E using Eqs. (10)–(13) based on
uni,j and the total source terms qnx,i,j and qny,i,j given by (40).

3. Calculate the limited states (uL
i,j,N)n and (uL

i,j,E)n according to Eq. (14). The limited
states (uL

i,j,S)n and (uL
i,j,W)n are then given by Eqs. (10) and (11), respectively.

4. Solve the Riemann problems defined by the limited values (uL
i−1,j,E)n and (uL

i,j,W)n,
(uL

i,j,E)n and (uL
i+1,j,W)n, (uL

i,j−1,N)n and (uL
i,j,S)n, (uL

i,j,N)n and (uL
i,j+1,S)n, to obtain

the Riemann fluxes fni−1/2,j, f
n
i+1/2,j, gni,j−1/2 and gni,j+1/2, respectively.

5. Calculate an intermediate state un+1/2 given by

u
n+1/2
i,j = uni,j +

∆t

∆x
(fni−1/2,j − fni+1/2,j) +

∆t

∆y
(gni,j−1/2 − gni,j+1/2) + ∆tqni,j, (41)

6. Compute the half-states un+1/2
i,j,S , un+1/2

i,j,N , un+1/2
i,j,W and un+1/2

i,j,E using Eqs. (10)–(13) based
on un+1/2

i,j and the total source terms qnx,i,j and qny,i,j given by (40).
7. Calculate the limited states (uL

i,j,N)n+1/2 and (uL
i,j,E)n+1/2 according to Eq. (14). The

limited states (uL
i,j,S)n+1/2 and (uL

i,j,W)n+1/2 are then given by Eqs. (10) and (11),
respectively.

8. Solve the Riemann problems defined by the limited values (uL
i−1,j,E)n+1/2 and (uL

i,j,W)n+1/2,
(uL

i,j,E)n+1/2 and (uL
i+1,j,W)n+1/2, (uL

i,j−1,N)n+1/2 and (uL
i,j,S)n+1/2, (uL

i,j,N)n+1/2 and
(uL

i,j+1,S)n+1/2, to obtain the Riemann fluxes fn+1/2
i−1/2,j, f

n+1/2
i+1/2,j, g

n+1/2
i,j−1/2 and gn+1/2

i,j+1/2,
respectively.

9. Advance time by ∆t to reach un+1
i,j , i.e.

un+1
i,j = uni,j +

∆t

2

(
f
n+1/2
i−1/2,j − f

n+1/2
i+1/2,j

∆x
+
g
n+1/2
i,j−1/2 − g

n+1/2
i,j+1/2

∆y
+ q

n+1/2
i,j

+
fni−1/2,j − fni+1/2,j

∆x
+
gni,j−1/2 − gni,j+1/2

∆y
+ qni,j

)
,

(42)

This scheme is quite similar to Heun’s method, a two-stage Runge-Kutta method. In our
scheme, however, the source terms qn, qnx and qny are used in both stages, and are calculated
based on the fluxes in the previous half time step, given by Eq. (40). An alternative to
this scheme would have been a simple first-order forward Euler scheme, i.e. steps 1 to 5
above with half steps n− 1/2 in (40) and n+ 1/2 in (41) replaced by the old and new time
levels n− 1 and n+ 1, respectively. However, the scheme presented above exhibits better

14

stability properties and can handle larger time steps. Whenever a MUSCL scheme was
used for comparison, the time integration was performed with a standard Heun’s method.
A CFL number of C = 0.3 was used for all the numerical computations, which was chosen
as a safe value to avoid any possible instabilities in time, and since our focus was not on
the time integration itself. The CFL number is defined as

C = ∆tmax
p,k

|λp,k|
∆xk

, (43)

where λp,k is the pth eigenvalue in the kth dimension of the hyperbolic system, and ∆xk
is the grid spacing in the kth dimension.

The time stepping scheme presented above is not formally of second order for the RHR
scheme, since the total source terms qnx,i,j and qny,i,j depend on the fluxes at the previous
time step. With this in mind, we may expect that the RHR scheme converges slower in
time than e.g. a MUSCL scheme with a two-step second-order scheme like Heun’s method.
In addition, for the RHR solver each time step involves solving the RHR relations (10)–(13)
which are not solved in the MUSCL scheme, hence we may expect that each time step may
be more costly for the RHR scheme. We will discuss the computational expense of the
RHR scheme for each system of equations in the following sections.

4.2. Method of manufactured solutions
To compute the exact error of a numerical solution, one needs to know the exact solution

to the problem, given the boundary (and possibly initial) conditions. For more complex
systems of PDEs, domains and boundary conditions, an exact solution may be out of reach.
In these cases, the method of manufactured solutions can often be useful [21]. Instead of
searching for the exact solution to the original problem (38), one rather makes the ansatz
that the solution is u∗, which can be an arbitrary sufficiently smooth function, preferably
close to an exact solution. We then assume that the ansatz solves the modified equation

∂f(u∗)

∂x
+
∂g(u∗)

∂y
= q(u∗,x) +R(u∗,x), (44)

where R is the residual, caused by the fact that u∗ is not an exact solution to the original
problem. This residual is simply calculated by inserting u∗ into Eq. (44) and solving for R.
If R were zero, u∗ would be an exact solution to Eq. (2) or the steady version of Eq. (38).
This problem has essentially the same structure as the steady version of the original problem
(38), and can thus be used to investigate the accuracy properties of the numerical method.
We solve Eq. (44) numerically using the modified source term q∗ = q +R, and since we
now know that the manufactured solution u∗ is the exact solution to the modified problem,
we can compute the numerical error exactly. The method of manufactured solutions will
be used to calculate the numerical error for an isothermal Euler case in Section 4.4 and a
shallow water case in Section 4.5.

In the following sections we will present a number of numerical cases, each of which
has either a known exact solution or a manufactured solution, except for the channel flow

15

case in Section 4.6. Knowing the solution, we can set the boundary conditions to the exact
solution, avoiding any possible issues of employing characteristic or non-reflecting boundary
conditions. The characteristic Riemann solvers will automatically take the characteristic
variables from the exterior, i.e. the given boundary conditions, or from the interior, i.e. from
the solution in the adjacent cell at the previous time level or previous stage, depending on
whether the characteristic is entering or leaving the domain.

4.3. Advection of a scalar
In this section we present some findings with the RHR solver applied to a two-dimensional

scalar linear advection case with constant velocity (a, b)>, which in the steady case is given
by

a
∂u

∂x
+ b

∂u

∂y
= 0. (45)

The simplicity of this equation makes it suitable to illustrate some important properties
of the RHR solver.

4.3.1. Numerical order of convergence
As shown in Section 3.1, the RHR solver is expected to be of second order for a smooth

solution. To confirm this numerically, we consider a cosine shaped solution,

u(x, y) = cos(ω0(−bx+ ay)) (46)

where ω0 = π/9, a = 1.0, b = 0.5, and the grid has dimensions [0, 36]× [0, 36]. The solution
(46) is used to set the boundary conditions at x = 0 and y = 0. We solve the equation
using the time integration scheme in Section 4.1 and wait for the solution to reach steady
state. The numerical solution is then compared to the exact solution to determine the
error. For illustration, Figure 7 shows the solution for the RHR solver with and without
limiter and a MUSCL upwind solver with van Albada limiter for a grid of 20×20 cells. We
recognize that the RHR solver with limiter does a significantly better job than MUSCL
in resolving the problem on this grid, while the RHR solver without limiter is even more
accurate. The plot in Figure 8 shows the L2 errors for the RHR solver with and without
limiter, and the MUSCL upwind solver with minmod and van Albada limiters, as functions
of grid size nx = ny, where nx and ny are the number of grid cells in x- and y-direction,
respectively. As seen in the figure, the RHR solver has an error significantly smaller than
that of a MUSCL solver with van Albada limiter, while the RHR solver without limiter is
even more accurate.

Figure 9 shows the L1 norm of the residual as a function of the number of time steps,
given by

Rn =
∑
i,j,k

|(uni,j)k − (un−1
i,j)k|, (47)

where (uni,j)k is the kth component of un at the grid point i, j. We see that all methods
converge to machine precision, although the RHR solver with limiter converges slightly
slower. This may be due to the higher-order nature of the RHR solver, where the fluxes
depend not only on the solution u, but also on the fluxes at the previous time step.

16

0 10 20 30

−1

0

1

y

u

(a) Cross-section at x = 35.1, with 20 × 20
cells. RHR with limiter (◦), RHR without
limiter (×), MUSCL with van Albada lim-
iter (+) and exact solution (solid line).

0
10

20
30

0
20

−1

0

1

x
y

u

(b) Exact solution.

Figure 7: Advection of a scalar cosine-shaped boundary condition (46) with velocity
(a, b)> = (1, 0.5)>, on a 20× 20 grid with ∆x = ∆y = 1.8.

102 103

nx = ny

10−4

10−3

10−2

10−1

E

RHR

Slope 1.92

MUSCL minmod

Slope 1.67

MUSCL van Albada

Slope 1.91

RHR no lim.

Slope 2.00

Figure 8: L2 error E as a function of grid size nx = ny for a case with advection of a cosine
shaped scalar profile.

17

0 50 100 150 200 250 300 350 400
Time steps

10−20

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

R
es

id
u

al

RHR

RHR no lim.

MUSCL van Albada

MUSCL minmod

Figure 9: L1 norm of the residual as a function of the number of time steps for a case with
advection of a cosine shaped scalar profile, for a 10× 10 grid, C = 0.3.

4.3.2. RHR compared to upwind and MUSCL
In this section we present results for scalar linear advection of a Gaussian curve, given

by Eq. (16), in order to illustrate the good properties of the RHR solver when it comes to
transport in directions oblique to the grid lines. Figure 10 shows results calculated with
a first-order upwind method, a MUSCL upwind scheme with van Albada limiter, and the
RHR solver with limiter. The RHR solver is seen to be less diffusive than the other two
methods, which is also illustrated by the scalar cross-section profiles shown in Fig. 10d.

When it comes to the computational cost of each time step for the RHR scheme, it is
not expected to be significantly bigger than for the MUSCL scheme, as solving the RHR
relations (10)–(13) only involves solving two simple linear equations.

4.4. Isothermal Euler equations
As a slightly more complex numerical example, we now present results for the two-

dimensional isothermal Euler equations,

∂

∂t

 ρρu
ρv

+
∂

∂x

 ρu
ρu2 + p
ρuv

+
∂

∂y

 ρv
ρuv

ρv2 + p

 = 0, (48)

where ρ is the density, and u and v are velocity components in the x- and y-directions,
respectively. We close the system with a simple equation of state, p = ρc2, where c is the
constant speed of sound. In the following we first show how the RHR relations are solved
for the isothermal Euler equations, followed by a derivation of the characteristic solver
used to solve the resulting Riemann problems. Finally, we present numerical results for a
manufactured steady solution demonstrating second order.

18

0
10

20
30

0
20

0

0.5

1

x
y

u

(a) Upwind.

0
10

20
30

0
20

0

0.5

1

x
y

u

(b) MUSCL with van Albada limiter.

0
10

20
30

0
20

0

0.5

1

x
y

u

(c) RHR solver with limiter.

0 10 20 30

0

0.5

1

y

u

Exact
RHR

MUSCL
Upwind

(d) Cross-section at x = 35.1 for the three
numerical solutions, together with the exact
solution.

Figure 10: Advection of a scalar Gaussian profile (16) with velocity (a, b)> = (1, 0.5)>, on
a 20× 20 grid with ∆x = ∆y = 1.8.

19

4.4.1. Solving the RHR relations
To calculate the half-states ui,j,E, ui,j,W, ui,j,S and ui,j,N based on qx,i,j and qy,i,j, we

need to solve the RHR relations given by Eqs. (10)–(13). This is a straightforward process
for the advection equation we have considered so far, but slightly more complex for the
isothermal Euler equations.

In the following, we only consider the solution procedure for ui,j,E, as the procedure for
ui,j,N is completely analogous. The states ui,j,W and ui,j,S are then given by Eqs. (10)–(11).
Using Eq. (10), we replace ui,j,W in Eq. (12), which then reads

1

∆x
(f(uE)− f(2u− uE)) = qx, (49)

where we have omitted the spatial indices i and j. The flux function f is given by

f(u) =

 ρu
ρ(u2 + c2)

ρuv

 =

 u2

u2
2/u1 + u1c

2

u2u3/u1

 , (50)

where u1 = ρ, u2 = ρu and u3 = ρv. Substitution into Eq. (49) leads to u2,E

u2
2,E/u1,E + u1,Ec

2

u2,Eu3,E/u1,E

−
 2u2 − u2,E

(2u2 − u2,E)2/(2u1 − u1,E) + (2u1 − u1,E)c2

(2u2 − u2,E)(2u3 − u3,E)/(2u1 − u1,E)

 = ∆xqx. (51)

The first component of Eq. (51) is easily solved for u2,E, i.e.

u2,E =
∆x

2
qx,1 + u2. (52)

Next, we solve the second component of Eq. (51) for u1,E. After substituting ξ = u1− u1,E

one obtains the cubic equation

ξ3+
∆xqx,2

2c2
ξ2+

2u2
2,E − 2u2

1c
2 + 4u2(u2 − u2,E)

2c2
ξ+
−4u2u1(u2 − u2,E)−∆xqx,2u

2
1

2c2
= 0 (53)

for ξ. This equation may be solved either exactly using an analytical approach, or numer-
ically using Newton’s method. Having found ξ and thus u1,E, one can calculate u3,E using
the third component of Eq. (51) and obtains

u3,E =

(2u2−u2,E)2u3
2u1−u1,E + ∆xqx,3
u2,E
u1,E

+
(2u2−u2,E)

2u1−u1,E

. (54)

In summary, Eqs. (52)–(54) yield ui,j,E, and similarly ui,j,N can be calculated.

20

4.4.2. Characteristic solver
Here a characteristic-based Riemann solver, similar to the one by Sesterhenn et al. [22,

23], is employed, which is explained next. To derive the characteristic quantities, we
consider the isothermal Euler equations in one dimension, written in the quasi-linear form[

ρ
ρu

]
t

+

[
0 1

c2 − u2 2u

]
︸ ︷︷ ︸

J

[
ρ
ρu

]
x

= 0. (55)

We now rewrite this system to formulate it using the primitive variables v = [ρ, u]>,[
ρ
u

]
t

+

[
u ρ
c2

ρ
u

]
︸ ︷︷ ︸

J ′

[
ρ
u

]
x

= 0. (56)

The eigenvalues of the Jacobian matrix J ′ are λ1 = u− c and λ2 = u+ c. Solving for the
eigenvectors of J ′ yields the right eigenvector matrix

R(u) =

[
ρ ρ
−c c

]
. (57)

We then determine the inverse (left eigenvector) matrix R−1 and multiply R−1
0 = R−1(v0)

by the primitive variables v = [ρ, u]>, which yields the characteristic variables

w = R−1
0 v =

1

2ρ0c

[
c −ρ0

c ρ0

] [
ρ
u

]
=

1

2ρ0c

[
ρc− ρ0u
ρc+ ρ0u

]
, (58)

where we have evaluated the matrix R−1
0 = R−1(v0) at some point of linearization v = v0.

xxi−1/2

t

C

RL

Figure 11: A Riemann problem at xi−1/2 giving rise to two waves, shown by dashed lines.
The characteristics are shown by solid lines.

In the context of Fig. 11, we calculate the state in the region C by assuming that the
characteristic variables are constant along the solid lines from the regions L and R to region

21

C. The dashed lines are the waves resulting from the Riemann problem. From Eq. (58) we
then derive the approximate relations

ρRc− ρCuR = ρCc− ρCuC, (59)
ρLc+ ρCuL = ρCc+ ρCuC, (60)

which follows from the fact that the characteristic variables (58) are constant along the
characteristics, shown by solid lines in Figure 11. Here we have chosen to linearize w1 and
w2 around v0 = vC. Solving these two relations for uC and ρC yields

ρC =
c(ρR + ρL)

2c+ uR − uL

, (61)

uC =
c(ρL − ρR) + ρCuR + ρCuL

2ρC

. (62)

In two dimensions, the velocity component parallel to the face is simply advected from the
upwind side, i.e. vC = vL if uC > 0, and vC = vR if uC < 0. The Riemann flux is then given
by f(uC).

We have now derived a characteristic Riemann solver for the isothermal Euler equations.
This works well for small Mach numbers, but can be replaced by an exact Riemann solver
or e.g. Roe’s approximate Riemann solver for higher Mach numbers.

4.4.3. Order of convergence
To check the order of convergence of the RHR solver for the isothermal Euler equations,

we apply the solver to a problem with a manufactured solution. For the solution we make
the ansatz

ρ = ρ0 exp[
−1

2
(x2 + y2)B2

c2
], (63)

u = Bx, (64)
v = −By, (65)

where B and ρ0 are some constants; here we chose B = 0.1 and ρ0 = 1.0. For the speed of
sound, we chose c = 1.0. We then insert this into the (steady) isothermal Euler equations
to find the source terms that result from the presented ansatz.

∂

∂x

 ρu
ρ(u2 + c2)

ρuv

+
∂

∂y

 ρv
ρuv

ρ(v2 + c2)

 =

 ρρu
ρv

 B
c2

(v2 − u2) ≡ q. (66)

We have now derived a manufactured solution with a corresponding source term, which we
use to analyze the order of convergence. The potential flow field specified by Eqs. (64)–(65)
is illustrated in Figure 12. When we solve this case numerically, the solution in Eqs. (63)–
(65) is used to set the boundary conditions exactly on all boundaries, while the source

22

0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Figure 12: Velocity field for the 2D isothermal Euler case.

term q is computed from Eq. (66) in all cells. The numerical solution is then compared
with the exact solution to calculate the error.

Figure 13 shows the L2 error for density, ‖ρ − ρexact‖2, as a function of grid size n for
a n× n grid, which demonstrates second order convergence for both the MUSCL upwind
scheme with minmod and monotonized central (MC) limiters, and the RHR solver with
limiter. The error of the RHR solver is clearly smaller that the error of the MUSCL MC
scheme, and almost one order of magnitude smaller than that of the MUSCL minmod
scheme.

101 102

n

10−7

10−6

10−5

10−4

10−3

L
2

er
ro

r

MUSCL MC

Slope -2.04

MUSCL minmod

Slope -2.00

RHR

Slope -2.00

Figure 13: Grid convergence of the L2 error of density for the 2D isothermal Euler equa-
tions.

23

Figure 14 shows the L1 norm of the residual as a function of the number of time steps
for the same case, which shows that all the schemes converge to machine accuracy. The
RHR scheme converges slower than the MUSCL scheme, which may be explained by the
higher-order nature of the RHR solver, where the fluxes depend on both the solution u
and the fluxes at the previous time step.

0 2000 4000 6000 8000 10000
Time steps

10−18
10−17
10−16
10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4

R
es

id
u

a
l

RHR

MUSCL MC

MUSCL minmod

Figure 14: L1 norm of the residual as the function of the number of time steps for the 2D
isothermal Euler equations, 10× 10 grid, C = 0.3.

When it comes to the computational cost of each time step, the RHR scheme is expected
to be slightly more costly than a MUSCL scheme, since solving the RHR relations (10)–
(13) involves (among other operations) solving a cubic equation (53), which may be costly.
One might be able to linearize this cubic equation in some way, thereby reducing the cost
for solving it.

4.5. Shallow water equations
The shallow water equations may include source terms due to bottom topography and

bottom friction. Those source terms have been an important motivation to develop well-
balanced methods. In this section, however, we will focus on solving the homogeneous
shallow water equations to demonstrate how the RHR solver performs to maintain a flux
balance in the steady state. The homogeneous shallow water equations read

∂

∂t

 hhu
hv

+
∂

∂x

 hu
hu2 + 1

2
gh2

huv

+
∂

∂y

 hv
huv

hv2 + 1
2
gh2

 = 0, (67)

where h is the water height above the bottom surface, and u and v are velocity components
in the x- and y-directions, respectively. In the following we first show how the RHR
relations are solved, derive a characteristic solver, and then present numerical results for a
steady case demonstrating the order of convergence.

24

4.5.1. Solving the RHR relations
To calculate the half-states ui,j,E, ui,j,W, ui,j,S, ui,j,N, we need to solve the RHR relations

(10)–(13). For the shallow water equations we choose to linearize these relations. By
writing uE = u+ ε and replacing uW using Eq. (10), we can write Eq. (12) as

f(u+ ε)− f(u− ε) = ∆xqx. (68)

We then linearize this equation, which yields

f ′(u)ε =
∆x

2
qx (69)

where f ′(u) is the Jacobian of f(u),

f ′(u) =

 0 1 0

−u22
u21

+ gu1 2u2
u1

0

−u2u3
u21

u3
u1

u2
u1

 =

 0 1 0
−u2 + gh 2u 0
−uv v u

 , (70)

where u = (u1, u2, u3) = (h, hu, hv). The first component of the equation system (69) can
easily be solved for ε2,

ε2 = ∆x
qx,1
2
. (71)

We then solve for ε1 from the second component of (69),

ε1 =
1

−u2 + gh
(∆x

qx,2
2
− 2uε2) (72)

Finally, the third component of (69) can be solved for ε3,

ε3 =
1

u
∆x

qx,3
2

+ vε1 −
v

u
ε2. (73)

Should u be zero, the Jacobian matrix f ′(u) is singular, and this final equation cannot be
solved, in which case we assume ε3 to be zero. The same applies to u = ±√gh, in which
case we must assume ε1 = 0. Having solved for ε, we can then calculate uE and uW, and
a similar procedure is used to calculate uN and uS.

4.5.2. Characteristic solver
For the shallow water equations, we employ a characteristic based Riemann solver,

similar to the one presented in Section 4.4.2. To derive the characteristic quantities, we
consider the shallow water equations in one dimension, written in the quasi-linear form[

h
hu

]
t

+

[
0 1

gh− u2 2u

]
︸ ︷︷ ︸

J

[
h
hu

]
x

= 0. (74)

25

We then rewrite this system to one formulated using the primitive variables v = [h, u]>,[
h
u

]
t

+

[
u h
g u

]
︸ ︷︷ ︸

J ′

[
h
u

]
x

= 0. (75)

The eigenvalues of the Jacobian matrix J ′ are λ1 = u − √gh and λ2 = u +
√
gh. We

recognize that the quasi-linear formulation of the shallow water equations is identical to
that of the isothermal Euler equations if we only replace c by

√
gh. As in Section 4.4.2,

we derive the characteristic variables

w = R−1
0 v =

1

2h0

√
gh0

[√
gh0 −h0√
gh0 h0

] [
h
u

]
=

1

2h0

√
gh0

[
h
√
gh0 − h0u

h
√
gh0 + h0u

]
, (76)

where we have evaluated the matrix R−1
0 = R−1(v0) at some point of linearization v = v0.

From Eq. (76) we then derive the approximate relations

hC

√
ghR − hRuC = hR

√
ghR − hRuR, (77)

hC

√
ghL + hLuC = hL

√
ghL + hLuL, (78)

where we have linearized w1 and w2 at the right and left state, vR and vL, respectively.
We solve Eqs. (77) and (78) for hC and uC,

hC =

√
hLhR(uL − uR +

√
ghR +

√
ghL)√

ghR +
√
ghL

, (79)

uC =
ghL − ghR +

√
ghRuR +

√
ghLuL√

ghR +
√
ghL

. (80)

In two dimensions, the velocity component parallel to the face is simply advected from the
upwind side, i.e. vC = vL if uC > 0, and vC = vR if uC < 0. The Riemann flux is then given
by f(uC).

4.5.3. Order of convergence
To demonstrate the order of convergence of the RHR solver for the shallow water

equations, we apply the solver to a manufactured solution. We make the ansatz

h = h0 −
B2x2

2g
− B2y2

2g
, (81)

u = Bx, (82)
v = −By, (83)

where B and h0 are some constants; here we chose B = 0.1 and ρ0 = 1.0. By inserting this
ansatz into the steady shallow water equations, we find the source terms associated with
this manufactured solution.

∂

∂x

 hu
hu2 + 1

2
gh2

huv

+
∂

∂y

 hv
huv

hv2 + 1
2
gh2

 =

 1
Bx
−By

 B3

g
(y2 − x2) ≡ q. (84)

26

We will now use the given manufactured solution with the corresponding source term
to investigate the order of convergence. We use the exact solution (81)–(83) to set the
boundary conditions on all boundaries, while the source term q is computed from Eq. (84)
in all cells. The numerical solution is then compared with the exact solution to calculate
the error.

Figure 15 shows the L2 error for height, ‖h− hexact‖2, as a function of grid size n for a
n × n grid, which demonstrates a second order convergence for both the MUSCL scheme
with MC and minmod limiter, and the RHR solver with limiter. The picture is very similar
to that in Fig. 13: The error of the RHR solver is systematically smaller than that of the
MUSCL MC scheme, and almost one order of magnitude smaller than that of the MUSCL
minmod scheme.

101 102

n

10−7

10−6

10−5

10−4

10−3

L
2

er
ro

r

MUSCL MC

Slope -2.04

MUSCL minmod

Slope -2.00

RHR

Slope -2.00

Figure 15: Grid convergence of the L2 error of height for the 2D shallow water equations.

Figure 16 shows the L1 norm of the residual as a function of the number of time steps
for the same case. The RHR converges slower than the MUSCL scheme, similar to what
was seen in Fig. 14. We assume this to be due to the fact that the fluxes of the RHR solver
depend both on the solution u and the fluxes in the previous time step.

When it comes to the computational cost of each time step, the RHR scheme is expected
to be only slightly more expensive than the MUSCL scheme, since the RHR solver has
the extra cost of solving the RHR relations (10)–(13), which involves solving the three
linear equations (71)–(73) for the eastern/western states, and three equivalent ones for the
northern/southern states.

27

0 1000 2000 3000 4000 5000 6000 7000 8000
Time steps

10−18
10−17
10−16
10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5

R
es

id
u

al

RHR

MUSCL MC

MUSCL minmod

Figure 16: Residual as a function of number of time steps for the 2D shallow water equa-
tions, 10× 10 grid, C = 0.3.

4.6. The full Euler equations
In this section, we derive the RHR solver for the full Euler equations, and apply it to

a channel flow case. The full Euler equations are given by

∂

∂t


ρ
ρu
ρv
E

+
∂

∂x


ρu

ρu2 + p
ρuv

u(E + p)

+
∂

∂y


ρv
ρuv

ρv2 + p
v(E + p)

 = 0 (85)

where E = ρ(e + 1
2
(u2 + v2)) is the total energy per unit volume. We use the following

relation for a perfect gas:
E =

p

γ − 1
+
ρ

2
(u2 + v2), (86)

where γ is the ratio of specific heats, which we set for air at standard conditions to 1.4 in
our simulations.

4.6.1. Solving the RHR relations
Similar to the approach for the shallow water equations in Section 4.5.1, we linearize

the RHR relations, and instead solve

f ′(u)ε =
∆x

2
qx, (87)

28

where uE = u+ ε. The Jacobian of the x-flux function f is

f ′(u) =


0 1 0 0

−u2 + γ−1
2

(u2 + v2) (3− γ)u −(γ − 1)v γ − 1
−uv v u 0

−u
ρ
(γE − (γ − 1)ρ(u2 + v2)) 1

ρ
(γE − γ−1

2
ρ(3u2 + v2)) −(γ − 1)uv γu


(88)

The linear system (87) can be solved relatively easily for ε, which also gives the half-states
uE = u+ ε and uW = u− ε.

When solving the linear system (87), one might encounter situations where the Jacobian
f ′(u) is singular or close to singular. This will happen if we are at or close to a sonic point
(|u| = c) or stagnation point (u = 0). For such situations, we introduce a singularity fix.
It simply involves setting ε to zero in those cells where the modulus of the determinant
D = detf ′(u) is smaller than some threshold value δ, i.e. if |D| = |u2(u2− c2)| < δ, which
was tuned to δ = 2 · 107 for the test case presented in the next section. When we set ε to
zero, the RHR solver reduces to the ordinary upwind method. For the channel flow case
presented in the next section, this singularity fix resolved an issue with lack of convergence
around stagnation points in the y-direction when g′(u) is singular for v = 0.

4.6.2. A channel flow case
In this section, we present results for a channel flow with strong incoming cross flow.

The channel is described by a rectangular domain [0.5, 17] × [0.5, 4]. At the left edge
(x = 0.5), there is inflow with velocity u = 20 and density ρ = 1. The upper and lower
edges are solid walls, except in the range 2.25 < x < 9.75, where there is incoming flow
from the lower edge, with a velocity profile given by

v(x) =

{
20 if x < 6,

20− 20
7.52

(2x− 12)2 if x ≥ 6.
(89)

On the outflow boundary (x = 17), the pressure is set to p = 105. The case is illustrated
in Figure 17.

The simulations were run with ∆x = ∆y = 0.5, a CFL number of C = 0.3, and a
characteristic Riemann solver derived along similar lines as in Section 4.4.2. Figures 18,
19 and 20 show streamlines and isocontours for the total pressure ptot = p + 1

2
ρ(u2 + v2)

for an upwind solver, MUSCL with minmod limiter, and the RHR solver, respectively.
In this case, we do not know the exact solution. However, we do know that a correct

solution should have isocontours of total pressure parallel to the streamlines. For the
upwind method, the isocontours do not follow the streamlines very well, while the RHR
solver and the MUSCL scheme seem to have far better agreement. Thus, the RHR solver
performs well regarding the turning of the streamlines of the injected flow, although due
to the singularity fix the RHR solver reduces to the upwind method in the regions where
the flow is parallel or nearly parallel to one of the axes.

29

Inflow
ρ = 1

u = 20, v = 0
Extrapolated

pressure

x = 2.25 x = 9.75
Inflow
ρ = 1
u = 0

v given by Eq. (89)
Extrapolated pressure

Reflecting BC

Outflow
Extrapolated BC

p = 105

Reflecting BC

Figure 17: Channel flow case with boundary conditions (BC).

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16

Figure 18: Contours of total pressure p + 1
2
ρ(u2 + v2) (in red), and velocity vectors, for a

first order upwind scheme on a 66× 14 grid.

30

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16

Figure 19: Contours of total pressure (in red) and velocity vectors, for MUSCL with
minmod limiter on a 66× 14 grid.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16

Figure 20: Contours of total pressure (in red) and velocity vectors, for the RHR solver
with singularity fix on a 66× 14 grid.

31

5. Conclusions

We have developed a Rankine-Hugoniot-Riemann (RHR) solver for steady multidimen-
sional conservation laws with source terms. The cross fluxes are treated as source terms,
which are distributed as singular sources in the middle of each cell, leading to a jump
in the solution given by a Rankine-Hugoniot condition. The resulting Riemann problems
at the cell faces are then solved using a standard Riemann solver. In contrast to many
other schemes treating multidimensionality and source terms, there is no need for special
Riemann solvers. We introduced a limiting procedure similar to a total variation dimin-
ishing (TVD) enforcement, to avoid instabilities.

We were able to prove that on rectangular grids, the RHR solver yields a second or-
der accurate numerical solution for the 2D linear advection equation with a linear source
term, and that the solution can be advected exactly if the advection velocity is diagonal on
the grid. We have also investigated the properties of the RHR solver numerically, which
confirmed that the scheme is of second order accuracy both for the 2D linear advection
equation, the 2D isothermal Euler equations and the 2D shallow water equations. Further-
more, the RHR solver has an error which is smaller than that of a second-order MUSCL
scheme for these cases. The solver was also applied to a channel flow case using the full
Euler equations. A singularity fix was necessary to apply the RHR solver close to sonic or
stagnation points. Future work will hopefully eliminate the need for this singularity fix.

The stencil of the RHR scheme has the advantage of being compact, as the numerical
fluxes of a cell only depend on the numerical solutions of the cell and its neighbours which
have a face or a corner in common with the cell. The basic ideas outlined here for the
isothermal Euler equations, the shallow water equations and the full Euler equations should
carry over to other conservation laws with source terms, such as the shallow water equations
with a topography source term or two-phase flow equations.

Acknowledgements

The first author was financed through the CO2 Dynamics project, and acknowledges
the support from the Research Council of Norway (189978), Gassco AS, Statoil Petroleum
AS and Vattenfall AB.

References

[1] P. Jenny, B. Müller, Rankine–Hugoniot–Riemann solver considering source terms and multidimen-
sional effects, J. Comput. Phys. 145 (1997) 575–610.

[2] H. B. Stewart, B. Wendroff, Two-phase flow: Models and methods, J. Comput. Phys. 56 (1984)
363–409.

[3] H. Lund, P. Aursand, Two-phase flow of CO2 with phase transfer, Energy Procedia 23 (2012) 246–255.
[4] L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems conservation

laws with source terms, Comput. Math. Appl. 39 (2000) 135–159.
[5] R. Saurel, F. Petitpas, R. Abgrall, Modelling phase transition in metastable liquids: application to

cavitating and flashing flows, J Fluid Mech 607 (2008) 313–350.
[6] R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: The

quasi-steady wave-propagation algorithm, J. Comput. Phys. 146 (1998) 346–365.
32

[7] D. S. Bale, R. J. LeVeque, S. Mitran, J. Rossmanith, A wave-propagation method for conservation
laws and balance laws with spatially varying flux functions, SIAM J. Sci. Comput. 24 (3) (2002)
955–978.

[8] R. J. LeVeque, D. S. Bale, Wave propagation methods for conservation laws with source terms, in:
International Series of Numerical Mathematics, Vol. 130, Birkhäuser, 1999.

[9] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
[10] A. Bermudez, M. E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms,

Comput. Fluids 23 (8) (1994) 1049–1071.
[11] R. Donat, A. Martinez-Gavara, Hybrid second order schemes for scalar balance laws, J. Sci. Comput.

48 (2011) 52–69.
[12] M. E. Hubbard, P. García-Navarro, Flux difference splitting and the balancing of source terms and

flux gradients, J. Comput. Phys. 165 (2000) 89–125.
[13] R. J. LeVeque, A well-balanced path-integral f-wave method for hyperbolic problems with source

terms, J. Sci. Comput. 48 (2011) 209–226.
[14] J. Murillo, P. García-Navarro, Weak solutions for partial differential equations with source terms:

Application to the shallow water equations, J. Comput. Phys. 229 (2010) 4327–4368.
[15] S. Noelle, N. Pankratz, G. Puppo, and J. R. Natvig, Well-balanced finite volume schemes of arbitrary

order of accuracy for shallow water flows. J. Comput. Phys. 213 (2006) 474–499.
[16] S. Noelle, Y. Xing, and C.-W. Shu. High-order well-balanced finite volume WENO schemes for shallow

water equation with moving water. J. Comput. Phys. 226 (2007) 29–58.
[17] S. Noelle, Y. Xing, and C.-W. Shu. High-order well-balanced schemes. In G. Puppo and G. Russo,

editors, Numerical Methods for Balance Laws. Quaderni di Matematica 24 (2010), pages 1–66.
[18] Y. Xing, C.-W. Shu, and S. Noelle. On the advantage of well-balanced schemes for moving-water

equilibria of the shallow water equations. J. Sci. Comput. 48 (2011) 339–349.
[19] R. J. LeVeque, M. Pelanti, A class of approximate Riemann solvers and their relation to relaxation

schemes, J. Comput. Phys. 172 (2001) 572–591.
[20] F. Müller, Rankine-Hugoniot-Riemann solver for two-dimensional conservation laws, Master’s thesis,

ETH Zürich (2010).
[21] P. J. Roache, Verification and Validation in Computational Science and Engineering, Hermosa Pub-

lishers, Albuquerque, USA, 1998.
[22] J. Sesterhenn, B. Müller, H. Thomann, A simple characteristic flux evaluation for subsonic flow, in:

2nd ECCOMAS CFD Conf., Wiley, Chichester, 1994, p. 57.
[23] J. Sesterhenn, Zur numerischen Berechnung kompressibler Strömungen bei kleinen Mach-Zahlen,

Ph.D. thesis, ETH Zürich, diss. ETH Nr. 11334 (1995).

33

