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ABSTRACT

When losses are ignored, elementary solutions for the classical
models of self sustained instruments, such as reed or bowed string
instruments, are pure square or ”rectangular” signals, called Helm-
holtz motion. When losses are introduced, round corner signals
are obtained, and the calculation becomes delicate. Ab initio cal-
culation is possible, but methods limited to the steady-state regime
make it easier to study the influence of the parameters on the spec-
trum and the playing frequency: the harmonic balance is well
known, but, because losses are small, another iterative technique is
suggested. Considering e.g. reed instruments, the Fourier compo-
nents of the input pressure signal can be divided into two parts: the
components with high input impedance, and those with low input
impedance (corresponding to the missing harmonics of the rectan-
gular signal). A perturbation method can be obtained by starting
from infinite and zero impedances, respectively. A key point is
that at each step, frequency is fixed in order to calculate the per-
turbation, then a new value is calculated using any equation of the
harmonic balance system, an excellent candidate being the reac-
tive power defined by Boutillon. In this preliminary study, results
are compared for a simplified problem to those of the harmonic
balance method, and they are very interesting, especially far from
the oscillation thresholds.

1. INTRODUCTION

Since Helmholtz, it is well known that the most common sounds
of bowed string instruments correspond to a signal close to a pure
square or ”rectangular” shape (for the signal of the string velocity).

When losses are ignored, solutions of elementary models are
pure square or ”rectangular” signals, called Helmholtz motion.
When losses are introduced, round corner signals are obtained,
and the calculation becomes more delicate (see e.g. Woodhouse
[1]). Complete computation in the time domain is possible, but
taking into account the simplicity of the solutions when no losses
are present, an interesting question is whether it is possible to de-
duce the result with losses from the result without losses by using
a perturbation method. The present paper gives a preliminary an-
swer for a similar, but simpler problem: the steady-state, periodic
regime of the internal pressure signal for a cylindrical, clarinet-
like instrument. It is simple because the nonlinear characteristic,
assumed to be independent of time, can be written as a polynomial
of the third order, at least at rather low levels of excitation, and
because, if the playing frequency is much smaller than the eigen-
frequency of the reed, the reed can be regarded as a simple spring
without mass and damping. With some classical, complementary

hypotheses (see e.g. Kergomard [2]), the system to be solved is
a system of two equations relating the acoustic volume velocity
u(t) at the input of the resonator to the acoustic pressure in the
mouthpiece p(t). One of them describes the nonlinear excitation
mechanism, while the other one describes the resonator, assumed
to be linear, as follows:

u = u00 + Ap + Bp2 + Cp3 (1)

u = h ∗ p, (2)

where h(t) is the impulse response of the resonator, whose Fourier
Transform is the input admittance Y (ω), the second equation often
being written in the frequency domain:

U(ω) = Y (ω)P (ω). (3)

(The capital characters are used for the Fourier transform of the
quantities of the time domain noted in small characters).

When no losses are considered, the input admittance is infinite
for anti-resonance frequencies, and zero for resonance frequencies.
If in addition the resonator is cylindrical and radiation entails only
a length correction, the anti-resonances correspond to the even har-
monics of the oscillation and the resonances to the odd harmonics.
With these two conditions, the steady-state solution of the system
is a pure square signal, the oscillation frequency being the classi-
cal value c/4`, where c is the speed of sound and ` the length of
the resonator.

When losses are present, the maxima and minima become fi-
nite but the maxima remain large and the minima small as losses
are rather weak. When dispersion is taken into account, or if there
is a small deviation from the pure cylindrical shape of the res-
onator, the oscillation frequency, which is an unknown of the sys-
tem, will in general be close to that of the nondispersive case, and
the values of the admittance will not be strongly modified. Thus it
is intuitive that a perturbation calculation is possible for both the
shape of the signal and the oscillation frequency.

The first step of the reasoning is to avoid infinite or very large
quantities, such as the impedance or admittance maxima in the
frequency domain, or the maxima of the impulse response in the
time domain. A solution consists in considering the frequency do-
main and dividing the harmonics into two classes: those with high
impedance (low admittance) and those with low impedance (high
admittance). The even harmonics of the pressure and the odd har-
monics of the volume velocity are all small quantities, vanishing
for the ideal condition of the pure Helmholtz motion, so they are
good basic quantities for a perturbation calculation.
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Note however that if a small shift in the oscillation frequency
occurs because of dispersion or other causes, a perturbation calcu-
lation can become very bad for higher order harmonics. Thus it is
essential to treat carefully the problem of the frequency shift. This
will be explained in further detail in section 5. In the main part of
the paper, we consider first that neither dispersion nor any other
cause of frequency shift exist. As a consequence, the oscillation
frequency is known and equal to c/4`. Moreover, in order to sim-
plify the study of the problems of convergence for this preliminary
study, the admittance is assumed to remain infinite for the even har-
monics. The zeroth order solution, i.e. the pure Helmholtz motion,
is recapitulated in section 2, then the first and second orders of the
loss parameters are derived analytically in section 3. In section 4
the numerical treatment of the iterative procedure is presented as
well as the results and a discussion about convergence.

2. ZEROTH ORDER SOLUTION: THE PURE

HELMHOLTZ MOTION

The first step of the method is the separation of the even and odd
harmonics of the signal, i.e. the symmetrical and antisymmetri-
cal parts (with indices s and a, respectively). The two following
equations are obtained (see Kergomard et al. [3]) and replace equa-
tion (1):

us = u00 + Aps + B(p2

s
+ p2

a
) + C(p3

s
+ 3psp

2

a
) (4)

ua = Apa + 2Bpspa + C(3pap2

s
+ p3

a
). (5)

The equations replacing the linear equation (2) are obvious.

The even harmonics of the pressure are then ignored (ps = 0),
as explained earlier, and the initial set of equations is replaced by
the following:

ua = Apa + Cp3

a
(6)

and
ua = h ∗ pa. (7)

If no losses are present, since h(t) only contains even harmonics
and pa only contains by definition the odd harmonics of p, equa-
tion (7) leads to ua = 0. Then, eliminating in equation (6) the
static solution pa = 0, the pure Helmholtz motion is found to be

pa = ±
√

−A/C (8)

where C is negative [2]. A = 0 at the threshold of oscillation. The
Fourier components of this square-wave signal are well known.
This is the zeroth order solution, and we will denote it p0.

The volume velocity us is constant (only the d.c. component
exists), and can be deduced by using equation (4).

3. FIRST AND SECOND ORDER SOLUTIONS

The basic principle of the method relies on the hypothesis that, for
the components of h(t) existing in the signals ua and pa, h(t) is
a first order function of a loss parameter. As an example, for pure
cylindrical, sufficiently narrow tubes, h(t) is proportional to the
loss parameter η equal to

√
``v/r, where `v is the characteristic

length of the viscous effects [2] and r the radius of the tube. Ex-
panding the acoustic pressure at successive orders of η i.e. writing

pa = p0 + p1 + p2 + ... , it is possible to solve equations (6)
and (7). At the first order, the following result is obtained:

h ∗ p0 = Ap1 + 3Cp2

0p1. (9)

Using the zeroth order result (8), it can be simplified to

h ∗ p0 = −2Ap1. (10)

This result is extremely simple to write in the frequency domain
since it is linear:

P1n = −1

2

Yn

A
P0n, (11)

the index n corresponding to the nth (odd) Fourier component of
the signal. It is remarkable that the result for the first harmonic is
identical to the result of the “first harmonic method,” which con-
sists in the approximation of the unknown signal by its first com-
ponent only, as follows [2]:
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1

3

√
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C
=

1

3

√

−A

C

(

1 − 1

2

Y1

A
+ O
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Y 2

1

A2

))

.

(12)
The first term on the right-hand side is the value of the result when
no losses exist. The extension of this approximation, called the
“Variable Truncation Method” [3], also gives results for higher or-
der harmonics, but these are different from the result (11), as the
third harmonic, for example, depends on both Y1 and Y3. In any
case, equation (12) allows an intuitive idea of the interest of the
method presented in the present paper. The relevant quantities are
the ratios Yn/A: they are small either if losses are small or if the
excitation level γ, directly related to A, is strong. Near the oscil-
lation threshold, which satisfies exactly A = Y1 (see Grand et al.
[4]), the quantity Y1/A approaches unity, and the series expansion
(12) is thus not of interest.

A conclusion is that the present method is without interest
near the oscillation threshold, and is complementary to the meth-
ods valid near the threshold, i.e. the Small Oscillation Method
(see Worman [5] and reference [4]) or the more general Variable
Truncation Method. We remind that these two methods are ex-
act near the oscillation threshold under conditions related to the
relative height of the first impedance peak and the other peaks.
On the other hand, the present method is particularly well adapted
when Y1/A � 1. For example, when losses are neglected, the
Harmonic Balance Method (see Farner et al. [6]) fails to converge
toward the Helmholtz solution, which is given by order 0 of the
present method.

Another feature concerning the present method is that the quan-
tities Yn/A can be relatively large for the higher order harmonics,
since losses in general increase with frequency, but as convergence
is obtained (see below), this must be explained by the small influ-
ence of the higher order harmonics on the result.

Continuing the procedure, the following nonlinear result is ob-
tained for the second order of the perturbation:

h ∗ p1 = −2Ap2 + 3Cp0p
2

1. (13)

The last term can be computed either in the time domain, using
sampling, or in the Fourier domain, using the product of infinite
series. The second method (with a truncation of the series to a
certain number of harmonics) is used in the following because
the left-hand side of equation (13) is easily calculated in the fre-
quency domain. If the series are truncated to the first harmonic,
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the second-order result is obtained:

P1 = P01

[

1 − Y1

2A
+

Y 2

1

4A2

(

1 − 18

π2

)]

(14)

which differs from that of the first harmonic method (equation (12)).
Nevertheless, this equation can provide some useful analytical ap-
proximations even for a low order of the truncation.

4. HIGHER ORDER SOLUTIONS

Equation (13) shows the general shape of the higher order solu-
tions:

h ∗ pm−1 = −2Apm + C×
(

products of three
lower-order solutions

)

(15)

which need to be computed numerically. The algorithms are rather
simple to establish and therefore not presented here. The product
of three series is reduced to a double product for the calculation of
the amplitude of the harmonics of the order m in the loss parame-
ter.

The first property to study is the convergence for the order m
when the number of harmonics increases. The modulus of a few
odd harmonics of p, divided by their value at 100 harmonics, are
plotted in figure 1 for order m = 5, γ = 0.4, and η = 0.002. It
can be seen that for these parameter values (not too close to the
oscillation threshold and for rather weak losses), the moduli are
converging as the number of harmonics increase.
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Figure 1: Modulus of the first five odd harmonics of p (order 5,
γ = 0.4, η = 0.002) for an increasing number of harmonics,
divided by their value at 100 harmonics

The second property to study is the convergence of the first
harmonic P1 as the order of η increases. As expected, the conver-
gence is rather rapid for high excitation levels γ and for low losses.
Figure 2 shows the first harmonic of the pressure as γ is varied, for
different orders of approximation. Moreover, the solution given by
the Harmonic Balance Method (HBM) is plotted for comparison.
In this case, losses are rather weak (η = 0.002), and excepted in
the vicinity of the oscillation threshold, few orders are required to
converge toward the solution given by the HBM.

Results for the difficult case of rather strong losses (η = 0.02)
are presented in figure 3. As expected, convergence toward the
solution given by the HBM is more questionable near the threshold
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Figure 2: First harmonic of the pressure, when γ is varied, for
different orders of approximation compared to the solution given
by the HBM (η = 0.002, 50 harmonics)
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Figure 3: First harmonic of the pressure, when γ is varied, for
different orders of approximation compared to the solution given
by the HBM (η = 0.02, 50 harmonics)

of oscillation. More surprisingly, however, the converging results
far from the threshold deviate from that of the HBM. This has to
be further investigated.

In order to solve completely the initial set of equations (1) and
(2), it is necessary to calculate the even harmonics, i.e. more gen-
erally the low-impedance components of the signal. This is done
by a straightforward extension of the above-explained principle:
expansion of the volume velocity us at successive orders of the
loss parameters and solving of the set of equations (4) and (5).

5. HOW TO TREAT THE QUESTION OF THE PLAYING
FREQUENCY?

Another important point is how to calculate the (unknown) oscilla-
tion frequency when for instance dispersion occurs. As explained
earlier, it is absolutely necessary that, during each step of the iter-
ation, the frequency does not change, otherwise the perturbation
calculation is impossible (for higher order harmonics, the error
would be unacceptable). Actually, the playing frequency can be
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determined by a parallel calculation. At the zeroth order, the fre-
quency is known to be c/4`, and the solution for the amplitudes
is known by equation (8). For the first and higher orders, one
supplementary equation is necessary. We remark that the ”reac-
tive power” equation (see Boutillon and Gibiat [7]) is an excellent
choice for such a supplementary equation:

∞
∑

n=0

n=m(Yn) |Pn|2 = 0. (16)

(This is based on the fact that the nonlinear characteristic is in-
dependent of time, and is contained in the HBM equations.) After
truncating it to the convenient number of harmonics, the frequency
can be calculated in each step by noting the admittance Yn for the
nth harmonic depends on the frequency. Once the first order ap-
proximation of the frequency is determined, the first order approx-
imation of the amplitudes is calculated using the admittance valid
for the frequency just obtained. Compared to the simplified case
studied in the previous sections, one supplementary step needs to
be solved at each order of the iteration.

6. GENERAL COMMENTS AND CONCLUSION

The method presented in the paper, the perturbation of the Helm-
holtz motion, has shown to be efficient except near the oscillation
threshold, where the signals involve very few harmonics. This is
not a surprise as using a square signal as a starting point is not ap-
propriate for that case so far from a square wave. We notice that
most of the self-sustained oscillation instruments have a behaviour
of inverse bifurcation, i.e. that the solutions near the oscillation
threshold are unstable, thus uninteresting (see e.g. Dalmont et al.
[8]). For instruments like a clarinet, having a direct bifurcation,
other methods need to be used near the threshold.

It remains to take into account both the even harmonics and the
variation of the oscillation frequency with the excitation level. The
extension to conical instruments is in principle easy, by separating
the small and large impedance components. Concerning bowed
string instruments, a generalization is possible, if a nonlinear, time-
independent characteristic exists.

The question of transients should be explored. At least for
resonators with harmonically related resonances, it seems to be
possible to extent the method.

Finally, a major interest for the current method lies in the pos-
sibility to get analytical approximations for such nonlinear sys-
tems, e.g. at the first or second orders. This may be exploited to
study the effect of for instance nonlinear functions that are discon-
tinuous or have a discontinuous derivative, like the violin.
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