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Abstract
Metal losses during remelting is common when recycling alu-

minium. Reduction of these losses could give a substantial

economic gain. Experiments with continuous feeding of alu-

minium plates into molten aluminium have been performed.

A simple steady-state mathematical model has been devel-

oped that gives the temperature profile and the penetration

depth into the melt as a function of the feeding velocity, su-

perheat, and the heat-transfer coefficients from melt to solid

and from a solidified shell to the plate. A criterion for shell

formation is also formulated.

The results can be applied to understand more complex

systems where shredded scrap is fed into molten aluminium.

The model presented could be of direct interest when feeding

rolled scrap into molten aluminium.

1 Introduction
Recycling of aluminium is a growing industry. Partly this is

due to an increasing environmental consciousness, but the

potential profit is high due to its low energy demands com-

pared with primary production [1] and low scrap price rela-

tive to the price of ingot. The challenges are many, and one

of the major concerns is the amount of aluminium that is

lost due to oxidation.

In many recycling plants, aluminium scrap is melted by

charging into molten aluminium in a reverberatory furnace.

Although solid aluminium has higher density than liquid

aluminium, even compacted scrap tends to float on the melt

surface. This can be attributed to air inevitably contained

in the scrap and thereby lowering the bulk density. A strong

oxide skin as well as solidification of melt between the out-

ermost scrap pieces is believed to restrict liquid-aluminium

flow in between the scrap pieces. A hot atmosphere, which

always will contain oxygen, will pre-heat the scrap surfaces

that are above the melt surface, and increase oxidation. The

oxide skin on the scrap surfaces tends to envelop metallic

aluminium when the scrap melts. Metallic aluminium not

released from the oxide is skimmed off as dross. Thus, the

dross contains large amounts of metallic aluminium which

is only partly recovered during a following dross treatment.

Floating scrap has been attempted submerged more or less

successfully by stirring the melt, compacting the scrap, or

pushing it under the melt surface in various ways. Pietsch [2]

investigated rolling of swarf to compacted sheets in order to

increase the density enough for easy submersion. We sug-

gest rolling shredded scrap, feeding it directly into the melt,

and thereby submerging it mechanically in one continuous

movement.

In the current paper, we present experimental results and

a mathematical model for a simplified system where feeding

of a thin aluminium plate into an aluminium melt and the

melting mechanism are investigated.

2 Previous work
The heat-transfer resistance between a solidifying melt and

a cold metal surface has been studied at least since the

1960’s. It has been found to depend on superheat, applied

contact pressure, material properties, surface coatings, and

more [3]. The heat-transfer coefficient h (the inverse of the

heat-transfer resistance) for heat transfer from a solidifying

melt in a cold mould shows an initial peak of 3 to above

10 kW/m2K within the first minute of the casting and then

decreases to a constant value about 10–20% of this, osten-

sibly because the contact pressure of the metal against the

mould decreases when the mould expands and the metal

contracts as it solidifies [4–9]. If the mould material is im-

mersed into a melt, h is observed to increase [10] since the
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metal contracts around the expanding mould. Kim and Lee

confirm this by solidifying the metal between two co-axial

circular mould walls [11].

When a cold alloy addition is immersed in a melt, heat

is extracted from the closest melt which then tends to so-

lidify and form a shell around the addition. This has long

been studied without considering a heat-transfer resistance

between the shell and the addition (represented by the in-

ner heat-transfer coefficient hi). Only the convective heat-

transfer coefficient of the melt [12,13] is considered. Already

in 1980, Mucciardi [14] reported the existence of an inner

heat-transfer resistance, but it seems to have been neglected

in the literature until lately [15, 16]. The value of hi varies

between 1 and 6 kW/m2K and has been measured to 4 and

2.5 kW/m2K for aluminium additions in an aluminium melt

by Røhmen [15] and Goudie and Argyropoulos [16], respec-

tively. The latter authors performed a number of experi-

ments with a variety of addition metals and several different

melts, and correlated hi with the ratio of the expansion co-

efficients of the addition and the melt. Although no reports

of the time dependence of hi have been found for additions

in a melt, these authors made a similar conclusion that the

heat transfer increases with increasing contact pressure of

the shell against the addition.

Furthermore, Goudie and Argyropoulos [16] did also

measure the shell temperature during immersion of alu-

minium in a tin melt with melting point at 232◦C. They

observed that, at 30◦C superheat, the temperature remained

close to the melting point except for a depression of about

30◦C during the first 3 s of totally about 25 s of shell period.
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Fig. 1 Continuous feeding of a metal plate into a melt: (a) the

system and dimensions, and (b) the heat flow.

3 Feeding of a thin plate into a melt
A metal plate ideally extending infinitely far upwards is fed

vertically into a molten metal at a steady velocity (Fig-

ure 1a). After a transient period, the system is assumed

to be in a steady state. Where the plate penetrates the melt

surface, the oxide skin on the surface is pulled down and a

meniscus is formed. In this area, heat starts to flow from

the melt into the cold plate. If the supply of heat from the

melt is lower than the heat flow into the plate, the melt

closest to the plate solidifies and forms a shell on the plate.

This is normally the case. As the plate moves downwards

into the melt, the plate temperature increases, and the shell

grows until the heat flow into and out of the shell balance

each other. From this point on, the shell melts back and

finally vanishes. Heat now flows directly from the melt to

the plate, and after a distance the plate reaches its melt-

ing point and starts to melt. The model now assumes that

the temperature remains at the melting point while the heat

flow from the melt supplies the latent heat of melting. This

final part is modelled as a wedge. The co-ordinate system

and important quantities are shown in Figure 1a.

4 Experimental setup
4.1 Apparatus

A sketch of the experimental setup is shown in Figure 2a.

The feeding apparatus consists of a roller for coiled alu-

minium plate and a feeding mechanism under it. The feed-

ing mechanism is shown in Figure 2b and consists of two

counter-rotating feeding rolls of which one is attached to a

speed-controlled Faulhaber motor, and two rolls below which

straighten out the plate before it continues down into the

melt. The apparatus was placed on the top of a resistance-

heated, 40-cm diameter crucible and shielded against radia-

tion from the melt.
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Fig. 2 Sketches of (a) the full experimental setup and (b) the

feeding mechanism in particular

The crucible was filled with 100 kg of commercially pure

aluminium melt (99.5 %, AA1050). The melt surface was

60 cm below the feeding mechanism. The melting point Tm

of the melt was measured by slowly letting a small ladle

of melt solidify and melt with two thin thermocouples con-

tinuously measuring the temperature. The flat level of the

temperature occurred at about 660◦C. The plate material

was made of the same alloy and thus assumed to have the

same melting point. It was rolled to 0.54mm thickness, cut

to a width of 10.0 cm, and delivered in coils of many me-

tres length. The coils were not cleaned in particular, and

remains of rolling oil could be seen at some places. One

coil was cleaned with ethanol to see whether the oil had any

important effect, but no difference could be detected within

the experimental uncertainties.

Two thermocouples were immersed in the melt, one close

to the crucible wall and one close to where the plate pen-

etrates the melt surface. A few experiments were also per-

formed with thermocouples between two plates. The ther-

mocouples were point-welded to one of the plates 5 cm verti-

cally apart. For these measurements, plates of 200 cm length

were used of which 124 cm could be fed into the melt. The

upper thermocouple was attached so that it was well im-

mersed before the plate was pulled out of the melt.
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4.2 Procedure

Several series of penetration experiments were performed.

Before each series, the melt temperature Tl (measured by

the melt thermocouple closest to the plate) was held con-

stant at temperatures in the range 700 to 800◦C. The oxide

skin was skimmed off the melt surface before each run. A

few runs were performed without skimming for comparison,

but the penetration depth of these runs lined up well with

the other ones. Thus, although the skin thickness may vary

a little with melt temperature and the time between skim-

ming and measurement, the variations can be considered as

negligible within the experimental uncertainties.

The feeding motor was started at a given velocity v (6.4,

9.6, 12.8, or 16.0 cm/s), and the plate was fed for about 15

seconds including the distance down to the melt (60 cm). In

order to retain the penetration depth of the plate and the

shell, the motor was instantly reversed at full speed (about

65 cm/s) so that the plate was quickly withdrawn out of the

melt. After cooling in air, the melted part was cut off for

later analysis. During the feeding, the motor speed and the

melt temperature Tl were measured ten times per second.

In a few experiments, we also video-filmed the plate to be

able to study it in slow motion.

95 runs were performed in series usually of eight runs,

two at each velocity. The bath temperature fell 5◦C at most

within a series, and the melt temperature was changed be-

tween each series. Three runs were also performed with

thicker plates (1.50mm), one at 6.4 and two at 3.2 cm/s.

For the measurements with thermocouples connected to the

plate, only one feeding velocity, v = 9.6 cm/s, was used.

5 Mathematical model
In order to derive a simple semi-analytical mathematical

model (see Figure 1b), several assumptions have been made:

1. A steady state is reached,

2. the material properties are constant,

3. the heat-transfer coefficients (hg and hl) are constant,

4. hl from the bulk melt also accounts for the sensible

heat released from the melt before solidification,

5. a high heat conduction inside the plate gives horizontal

isotherms inside the plate,

6. the temperature in the plate at the penetration point

(y = 0) is constant and equal to Ta,

7. the entire wedge is assumed to be constant at the melt-

ing point of the plate, and

8. the shell is considered to have constant temperature

equal to its melting point.

The last assumption is justified by the shell-temperature

measurements reported by Goudie and Argyropoulos [16]

(see end of Section 2). Note that the plate and melt are of

the same alloy so that the plate and the shell have the same

melting point.

The mathematical model consists of four connected heat

equations: one equation for each of the two regions A and B

of the plate, one for the shell formed outside region A, and

the last for the wedge.

In the plate, the heat balance of a horizontal cross section

of thickness ∆y (see Figure 1b) is governed by the vertical

convective and conductive heat flow qy at the distance y be-

low the surface, and the heat flow qg from the shell over a

gap between the shell and the plate. The heat flow over

the gap can be expressed by Newton’s law of cooling as pro-

portional to the temperature difference over the gap and the

heat-transfer coefficient hg: qg = hg(Tm−Tp). The resulting

balance for the cross section is

−∆

(
−kb

dTp

dy
+ ρcvbTp

)
+ 2hg(Tm − Tp)∆y = 0. (1)

The nomenclature section at the end of the paper gives the

meaning of the symbols. Dividing Equation (1) by ∆y, let-

ting this approach zero, and introducing the dimensionless

quantities defined in the nomenclature section, we obtain the

temperature profile along the plate in region A, with prime

denoting derivative with respect to η:

θ′′p − Pe θ′p − 2Bi (θp − 1) = 0, 0 ≤ η < ΠA. (2)

In region B, where the shell has vanished, the heat flows

directly from the melt into the plate with no gap resistance.

We replace hg with the heat-transfer coefficient hl through

the melt boundary layer, and Tm with Tl:

θ′′p − Pe θ′p − 2Nu (θp − θl) = 0, ΠA ≤ η < ΠB . (3)

The general solutions to the plate-temperature equa-

tions (2) and (3) are

θp(η) = 1 + Aeλ1η + Be−λ2η, 0 ≤ η < ΠA,

θp(η) = θl + A′eλ′1η + B′e−λ′2η, ΠA ≤ η < ΠB ,
(4)

where

λ1 = 1
2
Pe

(√
1 + 8Bi

Pe2 + 1
)

,

λ2 = 1
2
Pe

(√
1 + 8Bi

Pe2 − 1
)

.
(5)

The constants A, B, A′, and B′ are to be determined by the

boundary conditions. To obtain λ′1 and λ′2, Bi is replaced

with Nu.

The heat balance for a cross section of the shell is re-

duced to a one-dimensional problem of the shell thickness

due to the assumption of constant temperature. The heat

flow from the melt is qA
l = hl(Tl − Tm) and differs from qg

into the plate by the latent heat of solidification or melting:

qA
l

√
1 +

(
dxs

dy

)2

− qg + ρvL
dxs

dy
= 0, (6)

where the square root appears because the outer surface of

the shell curves and thereby slightly increases the surface

area through which the heat flows. Equation (6) is easily

solved with respect to dxs/dy, and the sign of the resulting

square root is chosen such that qg = qA
l when dxs/dy = 0.

We rewrite it for convenience with dimensionless quantities:

dξs

dη
=

Bi (1− θp)

Pe Sf
× (7)

×
1−

√
1 +

[
1−

(
Nu (θl−1)

Pe Sf

)2
][(

Nu (θl−1)
Bi (1−θp)

)2

− 1

]

1−
(

Nu (θl − 1)

Pe Sf

)2
.
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Finally, the heat flowing into the wedge from the melt

ought to balance the latent heat of melting of the plate

material convected from region B and the heat conduction

qB = −k dTp/dy into this region. As a consequence of a con-

stant wedge temperature, there are no heat gradients in the

wedge, and we cannot allow any heat conduction through

the wedge or out of it. This leaves qB = 0. The steady-state

heat balance for the wedge becomes

qw
l

√
1 +

(
2(P − PB)

b

)2

= −qB + ρvL, (8)

where P − PB is the vertical length of the wedge (see Fig-

ure 1a) and qw
l = hl(Tl − Tm). The dimensionless form is

Π−ΠB =
1

2

√(
Pe Sf

Nu(θ1 − 1)

)2

− 1. (9)

We now have six unknown constants A, B, A′, B′, ΠA,

and ΠB . The dimensionless penetration depth ΠA of the

shell is determined by integrating Equation (7) numerically

and finding its root. The rest of the constants are deter-

mined with the aid of five boundary conditions. Four of

them demand continuous temperature and derivative of this

between the three regions of the plate. In particular, the

two conditions connecting region B and the wedge, become

θp(η) = 1 and θ′p(η) = 0 when η = ΠB , and the last bound-

ary condition gives the starting temperature of the plate at

the penetration point: θp(η) = 0 when η = 0. The pene-

tration depths ΠA and ΠB of region A and B, respectively,

end up as implicitly given constants while the remaining

four constants are easily solved explicitly, although too long

and laborious to reproduce in this paper. Example plots are

presented in Section 7.

6 Criterion for shell formation
The heat drawn into the plate upon immersion is taken

from the immediately surrounding melt. This heat flow is

restricted by an inner heat-transfer resistance through the

melt/plate interface, which might consist of paint or a gas

film in addition to a phase-boundary resistance. The heat

transport to this surrounding melt from the bulk melt is sim-

ilarly limited by an outer heat-transfer resistance through

the melt boundary layer. If the heat supply from the bulk

melt is lower than the heat drawn into the plate, the im-

mediately surrounding melt solidifies and a shell is formed.

Once a shell is established, the heat-transfer resistances may

change due to the gap that is formed between the shell and

the plate. Shell formation thus requires that the heat flow ql

from the bulk melt must be less than the heat flow qg over

the gap into the plate. This is valid when the heat conduc-

tion inside the shell is so good that the heat-flow resistance

through the shell is negligible (assumption 8). Mathemati-

cally, the criterion for shell formation is

hl(Tl − Tm) < hg(Tm − Ta) (10)

where Ta is the initial temperature of the plate. In dimen-

sionless form we obtain that

θl − 1 <
Bi

Nu
gives shell formation. (11)

This falls directly out of Equation (7) when the initial shell

growth dξs/dη at η = 0 is greater than zero.

We can thus inhibit shell formation by increasing either

the dimensionless superheat, the heat transfer from the melt,

or the gap resistance between the shell and the plate. The

latter does not seem to be a good idea as it will increase

the melting time as well. Increasing the heat transfer from

the melt is an option as it can be attained by stirring. The

dimensionless superheat can be increased by increasing the

melt temperature, but also by pre-heating the plate.

7 Results and discussion

Figure 3 shows two plates after immersion and quick with-

drawal from the melt. To the left, a typical plate with shell

is shown. On the edges of the plate, it can be seen that the

solidified melt reaches higher than on the front surface. This

can be explained by noting that no significant meniscus was

observed on the edges. The shell height on the edges was

thus considered the best way to measure the penetration

point just before withdrawal.

The right plate in Figure 3 is a representative example

of a plate without a solidified shell. Also in these cases there

is an edge shell, which defines the penetration point. Other

heat-transfer conditions on the thin edge surface seems to

be a natural reason for this.

Fig. 3 Photograph of typical immersed plates, with (left) and

without (right) shell.

Often, it was difficult to determine the borders between

the three regions because of a thick oxide skin covering the

immersed plate. Thus the total penetration depth alone was

used for fitting the model to the measured values. The pen-

etration depth was established by taking the average of the

penetration depth at five positions along the plate width:

symmetrically 1 and 3 cm from the edges and the last at the

centre of the plate. It could vary with up to a fifth of the

depth, probably because of the oxide skin making a drop-

like edge as seen in Figure 3. The standard deviation was

calculated and used as weights in the curve fitting. The fit-

ting parameters were the two heat-transfer coefficients, and

all measurements with thin plates (b = 0.54mm) were used;

at all four feeding velocities and all melt temperatures.

The heat-transfer coefficients became hg = 4.4 kW/m2K

(Bi = 0.0107) and hl = 21.6 kW/m2K (Nu = 0.052), and the

fitted curves and the experimental penetration depths are
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shown in Figures 4 and 5 with dimensionless quantities, as

defined in the nomenclature section. The gap heat-transfer

coefficient hg is well within what is previously reported.

The following material properties were used: Tm =

660◦C, L = 396 kJ/kg, k = 224W/mK, c = 1200 J/kgK,

and ρ = 2700 kg/m3. The ambient temperature (the initial
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plate temperature) was assumed to be Ta = 20◦C. Curve

fitting with Ta = 40◦C gave insignificant deviation in Bi and

Nu. The penetration depths for the thicker plates and the

double plate with thermocouples are shown in Figure 6.

For the thin plates, the penetration depth was quite eas-

ily correlated to feeding velocity and superheat even though

hl was presumed independent of the feeding velocity. But

for the thicker plates and the double plates, the penetration

depth was larger than calculated with the obtained heat-

transfer coefficients, which are not expected to change with

plate thickness. This disagreement is probably due to the

assumption that the plate had to be thin in order to yield

approximately horizontal isotherms. The heat needs more

time to enter the centre of thicker plates, and the isotherms

will be curved like U’s, also in the wedge region. Slower

heating and melting of the plate and thereby a larger pene-

tration depth is expected. It should however be noted that

the discrepancy is roughly the same for double and almost

triple thickness, so more experiments with thick plates are

required to quantify the deviation.

Figure 7 shows measured and calculated temperature

profiles and calculated shell thickness for one of the double-

plate measurements with thermocouples. The measurement

must be considered as preliminary, but is included for com-

pleteness. In the figure, the horizontal axis ends at the

measured penetration depth for the plate, and similarly the

calculated temperature ends at the theoretical penetration

depth. Measurement time was transformed to dimensionless

penetration distance by multiplying with v/b, and its zero

point was set at the point where the temperature started to

increase. T1 is the temperature of the upper thermocouple

which was the last one to enter the melt. Of course only

the temperature points measured before the plate was with-

drawn, are shown.
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Fig. 7 The measured temperature profile of a sandwich of two

thin plates (b = 2× 0.54mm) with a thermocouple between com-

pared with a theoretical curve for b = 1.08mm.

With the attained values of the heat-transfer coefficients,

the criterion for shell formation should be θl < 1.206, i.e.

Tl ' 792◦C. This is seen as a break in the curve at this

temperature in Figures 4 to 6. By pre-heating the plate to

300◦C, which should only give a negligible increase in oxida-

tion, the melt temperature need not be higher than about
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734◦C, provided, of course, that the heat-transfer coefficients

do not vary with the superheat. Absence of shell was ob-

served in several cases below this limit, but mostly on one

side only. Above the limit, shell growth was rather frequent,

although only a very few had a shell on both sides. Thus,

it is obvious that other important mechanisms control shell

formation as well.

8 Conclusions
A simple one-dimensional mathematical model of melting of

thin metal plates (a model of rolled scrap) has been devel-

oped and compared with experiments. The mathematical

model gives the penetration depth and temperature profile

down along the plate. For plates of uniform thickness, the

fit was good, but it seems to deviate when plate thickness is

increased.

A criterion is presented for when a solidified shell is not

formed.

Probably, to describe systems when a thick plate such

as rolled scrap is added, numerical methods must be em-

ployed. The present model can be used as a reference for

such calculations.

9 Further work
Experiments with painted (lacquered) plates should be car-

ried out to vary the inner heat-transfer coefficient hg. The

flow conditions should also be varied and the feeding velocity

be considered in predicting and fitting the melt-to-shell heat-

transfer coefficient hl. Heat flow upwards in the plate above

the melt as well as how the meniscus affects heat transfer

from the melt should be taken into account. This will be

dealt with in a doctor thesis soon to be submitted [17].
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Nomenclature

Description Dimensionless

b Plate thickness 1

c Specific heat of solid (J/kgK)

hg Gap heat-transfer coeff. (W/m2K) Bi = hgb/k

hl Heat-transfer coeff. in liquid (W/m2K) Nu = hlb/k

k Thermal conductivity of solid (W/mK)

L Latent heat (J/kg) Sf = L
c(Tm−Ta)

PA Penetration depth of region A (m) ΠA = PA/b

PB Penetration depth of region B (m) ΠB = PB/b

P Total penetration depth (m) Π = P/b

q Heat flow (W/m2)

ρ Density of solid (kg/m3)

Tp Plate temperature (K,◦C) θp =
Tp−Ta

Tm−Ta

Tm Melting point (K,◦C) θm = 1

Tl Liquid-metal temperature (K,◦C) θl (see θp)

Ta Ambient/initial plate temperature (K,◦C) θa = 0

v Feeding velocity (m/s) Pe = ρcvb/k

xs Shell thickness (m) ξs = xs/b

y Vertical co-ordinate (m) η = y/b
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