Hjemmeeksamen TTK 4190 NavFart

666412

 $1~{\rm mars}~2004$

Contents

1	Teori						
	1.1	Rotasjonsmatrise	2				
	1.2	Invarians av enhetskaternionen	3				
	1.3	Elementær rotasjon	4				
	1.4	Egenskap til rotasjonsmatrisen	4				
	1.5	Kvarternioner propagering	6				
~			-				
2	Sim	Simulering					
	2.1	Hydrodynamikk	8				
	2.2	Tilstandsrommodell	10				
	2.3	Observerbarhet	11				
		2.3.1 Lineær tilstandsrommodell	11				
		2.3.2 Utvidet målematrise	11				
	2.4	Kalmanfilter	12				
	2.5	Ulineært kalmanfilter	13				
	2.6	Nomoto modell	14				
	2.7	Autopilot design	16				
	2.8	Integralvirkning	16				
	2.9	Tilbakekobling fra \dot{r}	16				

Chapter 1

Teori

1.1 Rotasjonsmatrise

Verifiser at rotasjonsmatrisen til enhetskvarternionen er gitt ved:

$$\mathbf{R}_{b}^{n}(\Theta) = \begin{bmatrix} 1 - 2\left(\varepsilon_{2}^{2} + \varepsilon_{3}^{2}\right) & 2\left(\varepsilon_{1}\varepsilon_{2} - \varepsilon_{3}\eta\right) & 2\left(\varepsilon_{1}\varepsilon_{3} + \varepsilon_{2}\eta\right) \\ 2\left(\varepsilon_{1}\varepsilon_{2} + \varepsilon_{3}\eta\right) & 1 - 2\left(\varepsilon_{1}^{2} + \varepsilon_{3}^{2}\right) & 2\left(\varepsilon_{2}\varepsilon_{3} - \varepsilon_{1}\eta\right) \\ 2\left(\varepsilon_{1}\varepsilon_{3} - \varepsilon_{2}\eta\right) & 2\left(\varepsilon_{2}\varepsilon_{3} + \varepsilon_{1}\eta\right) & 1 - 2\left(\varepsilon_{1}^{2} + \varepsilon_{2}^{2}\right) \end{bmatrix}$$

Property2.1 sier at en rotasjonsmatrise må tilfredsstille

$$\mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I}$$
 og det $\mathbf{R} = 1$

som betyr at ${\bf R}$ er ortogonal. Da er den inverse rotasjonsmatrisen gitt ved

$$\mathbf{R}^{-1} = \mathbf{R}^T$$

Kvarternionene tilfredstiller betingelsen

$$q^T q = \eta^2 + \varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 = 1$$

Rotasjonsmatrisen for kvarternioner er definert som

$$\mathbf{R}_{b}^{n}(q) := \mathbf{R}_{\eta,\varepsilon} = I_{3x3} + 2\eta S\left(\varepsilon\right) + 2S^{2}\left(\varepsilon\right)$$

hvor

$$2\eta S(\varepsilon) = 2\eta \begin{bmatrix} 0 & -\varepsilon_3 & \varepsilon_2\\ \varepsilon_3 & 0 & -\varepsilon_1\\ -\varepsilon_2 & \varepsilon_1 & 0 \end{bmatrix}$$
$$2S^2(\varepsilon) = 2\begin{bmatrix} 0 & -\varepsilon_3 & \varepsilon_2\\ \varepsilon_3 & 0 & -\varepsilon_1\\ -\varepsilon_2 & \varepsilon_1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -\varepsilon_3 & \varepsilon_2\\ \varepsilon_3 & 0 & -\varepsilon_1\\ -\varepsilon_2 & \varepsilon_1 & 0 \end{bmatrix}$$
$$= 2\begin{bmatrix} -\varepsilon_2^2 - \varepsilon_3^2 & \varepsilon_1\varepsilon_2 & \varepsilon_1\varepsilon_3\\ \varepsilon_1\varepsilon_2 & -\varepsilon_1^2 - \varepsilon_3^2 & \varepsilon_2\varepsilon_3\\ \varepsilon_1\varepsilon_3 & \varepsilon_2\varepsilon_3 & -\varepsilon_1^2 - \varepsilon_2^2 \end{bmatrix}$$

Da blir rotasjonsmatrisen

$$\begin{split} \mathbf{R}_{b}^{n}(q) &= I_{3x3} + 2\eta S\left(\varepsilon\right) + 2S^{2}\left(\varepsilon\right) \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + 2\eta \begin{bmatrix} 0 & -\varepsilon_{3} & \varepsilon_{2} \\ \varepsilon_{3} & 0 & -\varepsilon_{1} \\ -\varepsilon_{2} & \varepsilon_{1} & 0 \end{bmatrix} + 2\begin{bmatrix} -\varepsilon_{2}^{2} - \varepsilon_{3}^{2} & \varepsilon_{1}\varepsilon_{2} & \varepsilon_{1}\varepsilon_{3} \\ \varepsilon_{1}\varepsilon_{2} & -\varepsilon_{1}^{2} - \varepsilon_{3}^{2} & \varepsilon_{2}\varepsilon_{3} \\ \varepsilon_{1}\varepsilon_{3} & \varepsilon_{2}\varepsilon_{3} & -\varepsilon_{1}^{2} - \varepsilon_{2}^{2} \end{bmatrix} \\ &= \begin{bmatrix} -2\varepsilon_{2}^{2} - 2\varepsilon_{3}^{2} + 1 & -2\eta\varepsilon_{3} + 2\varepsilon_{1}\varepsilon_{2} & 2\eta\varepsilon_{2} + 2\varepsilon_{1}\varepsilon_{3} \\ 2\eta\varepsilon_{3} + 2\varepsilon_{1}\varepsilon_{2} & -2\varepsilon_{1}^{2} - 2\varepsilon_{3}^{2} + 1 & -2\eta\varepsilon_{1} + 2\varepsilon_{2}\varepsilon_{3} \\ -2\eta\varepsilon_{2} + 2\varepsilon_{1}\varepsilon_{3} & 2\eta\varepsilon_{1} + 2\varepsilon_{2}\varepsilon_{3} & -2\varepsilon_{1}^{2} - 2\varepsilon_{2}^{2} + 1 \end{bmatrix} \end{split}$$

Som er det samme som den gitte rotasjonsmatrisen.

1.2 Invarians av enhetskaternionen

Bevis at enhetskvarternionen er invariant med hensyn til på rotasjonsmatrisen eks.

$$\mathbf{R}(\eta,\varepsilon)\,\varepsilon = \mathbf{R}^{T}(\eta,\varepsilon)\,\varepsilon = \varepsilon$$

En enhetskvarternion tilfredsstiller $\mathbf{q}^T\mathbf{q}=1.$ Sette
tQer definert som

$$Q = \left\{ \mathbf{q} | \mathbf{q}^T \mathbf{q} = 1, \mathbf{q} = \left[\eta, \varepsilon^T \right]^T, \quad \varepsilon \in \mathbb{R}^3 \text{ og } \eta \in \mathbb{R} \right\}$$

For å bevise dette bruker man eks over

$$\begin{split} \mathbf{R}(\eta,\varepsilon)\varepsilon &= \\ &= \begin{bmatrix} 1-2\left(\varepsilon_{2}^{2}+\varepsilon_{3}^{2}\right) & 2\left(\varepsilon_{1}\varepsilon_{2}-\varepsilon_{3}\eta\right) & 2\left(\varepsilon_{1}\varepsilon_{3}+\varepsilon_{2}\eta\right) \\ 2\left(\varepsilon_{1}\varepsilon_{2}+\varepsilon_{3}\eta\right) & 1-2\left(\varepsilon_{1}^{2}+\varepsilon_{3}^{2}\right) & 2\left(\varepsilon_{2}\varepsilon_{3}-\varepsilon_{1}\eta\right) \\ 2\left(\varepsilon_{1}\varepsilon_{3}-\varepsilon_{2}\eta\right) & 2\left(\varepsilon_{2}\varepsilon_{3}+\varepsilon_{1}\eta\right) & 1-2\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right) \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \end{bmatrix} \\ &= \begin{bmatrix} \varepsilon_{2}\left(-2\eta\varepsilon_{3}+2\varepsilon_{1}\varepsilon_{2}\right)+\varepsilon_{3}\left(2\eta\varepsilon_{2}+2\varepsilon_{1}\varepsilon_{3}\right)+\varepsilon_{1}\left(-2\varepsilon_{2}^{2}-2\varepsilon_{3}^{2}+1\right) \\ \varepsilon_{1}\left(2\eta\varepsilon_{3}+2\varepsilon_{1}\varepsilon_{2}\right)+\varepsilon_{3}\left(-2\eta\varepsilon_{1}+2\varepsilon_{2}\varepsilon_{3}\right)+\varepsilon_{2}\left(-2\varepsilon_{1}^{2}-2\varepsilon_{2}^{2}+1\right) \end{bmatrix} \\ &= \begin{bmatrix} (-2\eta\varepsilon_{2}\varepsilon_{3}+2\varepsilon_{1}\varepsilon_{2})+\varepsilon_{3}\left(-2\eta\varepsilon_{1}+2\varepsilon_{2}\varepsilon_{3}\right)+(-2\varepsilon_{1}\varepsilon_{2}^{2}-2\varepsilon_{2}\varepsilon_{3}^{2}+\varepsilon_{1}) \\ (2\eta\varepsilon_{1}\varepsilon_{3}+2\varepsilon_{1}^{2}\varepsilon_{2})+\left(-2\eta\varepsilon_{1}\varepsilon_{3}+2\varepsilon_{2}\varepsilon_{3}^{2}\right)+\left(-2\varepsilon_{1}^{2}\varepsilon_{2}-2\varepsilon_{2}\varepsilon_{3}^{2}+\varepsilon_{1}\right) \\ (2\eta\varepsilon_{1}\varepsilon_{3}+2\varepsilon_{1}^{2}\varepsilon_{2})+\left(-2\eta\varepsilon_{1}\varepsilon_{2}+2\varepsilon_{2}^{2}\varepsilon_{3}\right)+\left(-2\varepsilon_{1}^{2}\varepsilon_{2}-2\varepsilon_{2}\varepsilon_{3}^{2}+\varepsilon_{2}\right) \\ (-2\eta\varepsilon_{1}\varepsilon_{2}+2\varepsilon_{1}^{2}\varepsilon_{3})+\left(2\eta\varepsilon_{1}\varepsilon_{2}+2\varepsilon_{2}^{2}\varepsilon_{3}\right)+\left(-2\varepsilon_{1}^{2}\varepsilon_{2}-2\varepsilon_{2}\varepsilon_{3}^{2}+\varepsilon_{2}\right) \\ (-2\eta\varepsilon_{1}\varepsilon_{2}+2\varepsilon_{1}^{2}\varepsilon_{3})+\left(2\eta\varepsilon_{1}\varepsilon_{2}+2\varepsilon_{2}^{2}\varepsilon_{3}\right)+\left(-2\varepsilon_{1}^{2}\varepsilon_{2}-2\varepsilon_{2}\varepsilon_{3}^{2}+\varepsilon_{2}\right) \\ &= \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \end{bmatrix} \\ \mathbf{R}^{T}(\eta,\varepsilon)\varepsilon &= \\ &= \begin{bmatrix} -2\varepsilon_{2}^{2}-2\varepsilon_{3}^{2}+1 & 2\eta\varepsilon_{3}+2\varepsilon_{1}\varepsilon_{2}-2\eta\varepsilon_{2}+2\varepsilon_{1}\varepsilon_{3} \\ -2\eta\varepsilon_{3}+2\varepsilon_{1}\varepsilon_{2}-2\varepsilon_{2}^{2}-2\varepsilon_{3}^{2}+1 & 2\eta\varepsilon_{1}+2\varepsilon_{2}\varepsilon_{3} \\ 2\eta\varepsilon_{2}+2\varepsilon_{1}\varepsilon_{3}-2\eta\varepsilon_{1}+2\varepsilon_{2}\varepsilon_{3}-2\varepsilon_{2}^{2}-2\varepsilon_{2}^{2}+1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \end{bmatrix} \\ &= \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \end{bmatrix} \\ &= \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \end{bmatrix} \\ \\ &= \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \end{bmatrix} \\ &= \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \end{bmatrix} \\ &= \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \end{bmatrix} \\ &= \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \end{bmatrix} \\ \end{aligned}$$

Dermed er det bevist at enhetskvartionene er invariante.

1.3 Elementær rotasjon

Bevis:

1.4 Egenskap til rotasjonsmatrisen

Bevis likningen

$$RS\left(\omega\right)R^{T} = S\left(R\omega\right)$$

Beviser likningen ovenfor ved å rekne ut venstre side, så høyre side og deretter sammenlikne svarene

Vi benytter en rotasjonsmatrise om x-aksen, $R_{x,\phi},$ for å slippe så store matriser.

Venstre side

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}, R^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{bmatrix}$$
$$S(\omega) = \begin{bmatrix} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{bmatrix}$$
$$RS(\omega) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -r & q \\ r \cos \phi + q \sin \phi & -p \sin \phi & -p \cos \phi \\ -q \cos \phi + r \sin \phi & p \cos \phi & -p \sin \phi \end{bmatrix}$$
$$RS(\omega)R^{T} = \begin{bmatrix} 0 & -r & q \\ r \cos \phi + q \sin \phi & -p \sin \phi & -p \cos \phi \\ -q \cos \phi + r \sin \phi & p \cos \phi & -p \sin \phi \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -r \cos \phi - q \sin \phi & q \cos \phi - r \sin \phi \\ r \cos \phi + q \sin \phi & 0 & -p \cos^{2} \phi - p \sin^{2} \phi \\ -q \cos \phi + r \sin \phi & p \cos^{2} \phi + p \sin^{2} \phi & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & -r \cos \phi - q \sin \phi & q \cos \phi - r \sin \phi \\ -q \cos \phi + r \sin \phi & p \cos^{2} \phi + p \sin^{2} \phi & 0 \end{bmatrix}$$

Høyre side

$$\begin{split} S(R\omega) &= \\ &= S\left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} \right) \\ &= S\left(\begin{bmatrix} p \\ q \cos \phi - r \sin \phi \\ r \cos \phi + q \sin \phi \end{bmatrix} \right) \\ &= \begin{bmatrix} 0 & -(r \cos \phi + q \sin \phi) & q \cos \phi - r \sin \phi \\ r \cos \phi + q \sin \phi & 0 & -p \\ -(q \cos \phi - r \sin \phi) & p & 0 \end{bmatrix} \\ &= \begin{bmatrix} 0 & -r \cos \phi - q \sin \phi & q \cos \phi - r \sin \phi \\ r \cos \phi + q \sin \phi & 0 & -p \\ -q \cos \phi + r \sin \phi & p & 0 \end{bmatrix} \\ &= RS(\omega) R^T \Leftrightarrow S(R\omega) \end{split}$$

Vi ser at vi får samme svar på begge sider. Dermed er det bevist.

Kvarternioner propagering 1.5

Bevis likningen

$$\dot{\eta} = -\frac{1}{2} \varepsilon^{T} \omega$$

$$\dot{\varepsilon} = \frac{1}{2} (\eta I - S(\varepsilon)) \omega$$

Vi starter beviset med å substituere rotasjonsmatrisen R_b^n for kvarternioner inn i likningen for \dot{R}_b^n . Da får vi likningen på formen

$$\dot{q} = T_q(q)\omega_{nb}^b$$

hvor

$$T_q(q) = \frac{1}{2} \begin{bmatrix} -\varepsilon_1 & -\varepsilon_2 & -\varepsilon_3 \\ \eta & -\varepsilon_3 & \varepsilon_2 \\ \varepsilon_3 & \eta & -\varepsilon_1 \\ -\varepsilon_2 & \varepsilon_1 & \eta \end{bmatrix}$$

 $^{\mathrm{og}}$

$$T_q^T(q)T_q(q) = \frac{1}{4}I_{3x3}$$

Da har vi

$$\begin{split} \dot{q} &= T_q(q)\omega_{nb}^b \\ &= \frac{1}{2} \begin{bmatrix} -\varepsilon_1 & -\varepsilon_2 & -\varepsilon_3 \\ \eta & -\varepsilon_3 & \varepsilon_2 \\ \varepsilon_3 & \eta & -\varepsilon_1 \\ -\varepsilon_2 & \varepsilon_1 & \eta \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} \\ &= \begin{bmatrix} -\frac{1}{2}p\varepsilon_1 - \frac{1}{2}q\varepsilon_2 - \frac{1}{2}r\varepsilon_3 \\ \frac{1}{2}p\eta - \frac{1}{2}q\varepsilon_3 + \frac{1}{2}r\varepsilon_2 \\ \frac{1}{2}q\eta + \frac{1}{2}p\varepsilon_3 - \frac{1}{2}r\varepsilon_1 \\ \frac{1}{2}r\eta - \frac{1}{2}p\varepsilon_2 + \frac{1}{2}q\varepsilon_1 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} -\varepsilon_1 & -\varepsilon_2 & -\varepsilon_3 \\ \eta & -\varepsilon_3 & \varepsilon_2 \\ \varepsilon_3 & \eta & -\varepsilon_1 \\ -\varepsilon_2 & \varepsilon_1 & \eta \end{bmatrix} (2S(\varepsilon)\dot{\varepsilon} + 2\eta\dot{\varepsilon} - 2\dot{\eta}\varepsilon) \\ \dot{\mathbf{R}}_b^n(q) &= \mathbf{R}_b^n(q) \mathbf{S} \left(\omega_{nb}^b\right) = \mathbf{R}_b^n(\omega_{nb}^b) \mathbf{S} (q) \end{split}$$

Vi benytter oss av hintet

$$\begin{aligned} \omega &= 2S(\varepsilon)\dot{\varepsilon} + 2\eta\dot{\varepsilon} - 2\dot{\eta}\varepsilon \\ &= 2\begin{bmatrix} 0 & -\varepsilon_3 & \varepsilon_2 \\ \varepsilon_3 & 0 & -\varepsilon_1 \\ -\varepsilon_2 & \varepsilon_1 & 0 \end{bmatrix} \begin{bmatrix} \dot{\varepsilon}_1 \\ \dot{\varepsilon}_2 \\ \dot{\varepsilon}_3 \end{bmatrix} + 2\eta\begin{bmatrix} \dot{\varepsilon}_1 \\ \dot{\varepsilon}_2 \\ \dot{\varepsilon}_3 \end{bmatrix} - 2\dot{\eta}\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{bmatrix} \\ &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + 2\eta\begin{bmatrix} \dot{\varepsilon}_1 \\ \dot{\varepsilon}_2 \\ \dot{\varepsilon}_3 \end{bmatrix} - 2\dot{\eta}\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{bmatrix} \end{aligned}$$

Nå kan vi benytte hint2

$$\dot{\varepsilon}^T \varepsilon = \varepsilon^T \dot{\varepsilon} = -\eta \dot{\eta}$$

Chapter 2

Simulering

Gitt en 3 DOF forsyningskip med modell

$$\dot{\psi} = r$$

$$\begin{aligned} \mathbf{M}\dot{\boldsymbol{\nu}} + \mathbf{D}\boldsymbol{\nu} &= \boldsymbol{\tau} \\ \begin{bmatrix} m_{11} & 0 & 0 \\ 0 & m_{22} & m_{23} \\ 0 & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{r} \end{bmatrix} + \begin{bmatrix} d_{11} & 0 & 0 \\ 0 & d_{22} & d_{23} \\ 0 & d_{32} & d_{33} \end{bmatrix} \begin{bmatrix} u - u_c^b \\ v - v_c^b \\ r \end{bmatrix} &= \begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \end{aligned}$$

Genrelle vektorer i DOF 6

- $\eta = \begin{bmatrix} p^n \\ \Theta \end{bmatrix} = \begin{bmatrix} n & e & d & \phi & \theta & \psi \end{bmatrix}^T \text{ posisjon og eulervinkler}$ $\nu = \begin{bmatrix} v_o^b \\ \omega_{nb}^b \end{bmatrix} = \begin{bmatrix} u & v & w & p & q & r \end{bmatrix}^T \text{ hastighet og rotasjonshastighet}$ $= \begin{bmatrix} f_o^b \\ \sigma \end{bmatrix} = \begin{bmatrix} V & V & T & V & M & N \end{bmatrix}^T \text{ hastighet og rotasjonshastighet}$
- $\tau = \begin{bmatrix} f_o^b \\ m_o^b \end{bmatrix} = \begin{bmatrix} X & Y & Z & K & M & N \end{bmatrix}^T \quad \text{kraft og moment som virker på skip}$

Dette reduseres i DOF3 (1,2,6) til

$$\eta = \begin{bmatrix} \underline{\Theta} \\ \Psi \end{bmatrix} = \begin{bmatrix} \frac{\psi}{l} \\ \mu \end{bmatrix}, \ \nu = \begin{bmatrix} v_o^b \\ \omega_{nb}^b \end{bmatrix} = \begin{bmatrix} u \\ v \\ r \end{bmatrix}, \ \tau = \begin{bmatrix} f_o^b \\ m_o^b \end{bmatrix} = \begin{bmatrix} X \\ \underline{Y} \\ N \end{bmatrix}$$

2.1 Hydrodynamikk

Vi bruker en standard modell for horisontal bevegelse (surge, sway, yaw - u, v, r). Det betyr at vi neglisjerer heave, roll og pitch (w = p = q = 0)

Vi antar lav hastighet slik at coriolismatrisen $C(\nu)\nu$ er neglisjerbar og at treghetsmomentene i xz - planet er

$$I_{xy} = I_{yz} = 0$$

Stivt-legeme dynamikk

$$\mathbf{M}_{RB} = \begin{bmatrix} m & 0 & 0\\ 0 & m & mx_g\\ 0 & mx_g & I_z \end{bmatrix}$$

hvor x_g er en posisjonsvektor fra O til CG dekomponert i surge – retning i BODY.

Hydrodynamikk - added mass

$$\mathbf{M}_{A} = \begin{bmatrix} -X_{\dot{u}} & 0 & 0\\ 0 & -Y_{\dot{v}} & -Y_{\dot{r}}\\ 0 & -Y_{\dot{r}} & -N_{\dot{r}} \end{bmatrix}$$

Total dynamikk

$$egin{array}{lll} \mathbf{M}\dot{oldsymbol{
u}}+\mathbf{D}oldsymbol{
u}&=oldsymbol{ au} \ (\mathbf{M}_{RB}+\mathbf{M}_{A})\,\dot{oldsymbol{
u}}+\mathbf{D}oldsymbol{
u}&=&oldsymbol{ au} \end{array}$$

slik at vi får

$$\mathbf{M} = \begin{bmatrix} m - X_{\dot{u}} & 0 & 0 \\ 0 & m - Y_{\dot{v}} & mx_g - Y_{\dot{r}} \\ 0 & mx_g - Y_{\dot{r}} & I_z - N_{\dot{r}} \end{bmatrix}$$
$$\mathbf{D} = \begin{bmatrix} -X_u & 0 & 0 \\ 0 & -Y_v & -Y_r \\ 0 & -N_v & -N_r \end{bmatrix}$$

hvor \mathbf{D} er en lineær dempematrise og *surge* og *sway* er dekoblet.

$$\begin{bmatrix} m - X_{\dot{u}} & 0 & 0 \\ 0 & m - Y_{\dot{v}} & mx_g - Y_{\dot{r}} \\ 0 & mx_g - Y_{\dot{r}} & I_z - N_{\dot{r}} \end{bmatrix} \dot{\boldsymbol{\nu}} + \begin{bmatrix} -X_u & 0 & 0 \\ 0 & -Y_v & -Y_r \\ 0 & -N_v & -N_r \end{bmatrix} \boldsymbol{\nu} = \boldsymbol{\tau}$$

Man kan også anta at $N_v = Y_r$ slik at $\mathbf{D} = \mathbf{D}^T$ hvis $U \approx 0$ f.eks til dynamisk posisjonering når båten står i ro. Men slik er det ikke her. Det kan vi se på den numeriske matrisen D.

Fysisk forklaring:

 $Y_{\dot{v}}$ = kraft Y pga akselerasjon i sway (y-retning)

 $Y_{\dot{r}} = \text{kraft Y pga akselerasjon i yaw}$

 $N_{\dot{r}}$ = moment N pga akselerasjon i yaw

 I_z = treghetsmoment om z-aksen i BODY

- $Y_v =$ kraft Y pga sway hastighet (y-retning)
- N_v = moment N pga sway has tighet (y-retning)

2.2 Tilstandsrommodell

Vi kan finne en lineær modell hvis vi antar at

$$\begin{array}{rcl} \dot{u}^b_c &=& 0\\ \dot{v}^b_c &=& 0 \end{array}$$

slik at

$$\mathbf{x} = \begin{bmatrix} \psi, u, v, r, u_c^b, v_c^b \end{bmatrix}^T$$

Vi må finne rotasjonsmatrisen om z-aksen

$$\mathbf{R}_b^n(\Theta) = \begin{bmatrix} \cos\psi & -\sin\psi & 0\\ \sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{bmatrix}$$

og Eulervinkel transformasjonen, som her blir

$$\mathbf{T}_{\Theta}(\Theta) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

fordi $\theta = 0$ og $\phi = 0$

Tilstandsrommodell blir da

hvor $u_c^b = V_c \cos(\beta_c - \psi)$ og $v_c^b = V_c \sin(\beta_c - \psi)$ A matrisen blir da

	[0	0	0	1	0	0
	$\cos\psi$	$-\sin\psi$	0	0	0	0
4	$\sin\psi$	$\cos\psi$	0	0	0	0
A :=	0	0	1	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
	L					-

Denne modellen er gyldig når Eulervinklene θ og ϕ er små. Altså når *roll* og *pitch* er liten. Dette er en rimelig antakelse når været er fint som impliserer lite bølger. Vi legger merke til at det ikke er kritisk mhp "Titanic-vinkelen" $\theta = \pm 90^{\circ}$, slik at rotasjonsmatrisen kan bli singulær. Det er fordi den ikke eksisterer her. Videre ser vi at modellen er basert på at båten går med konstant hastighet eller er i ro pga lineariseringen.

2.3 Observerbarhet

Målematrisen er gitt ved

$$\mathbf{z} = \mathbf{H}\mathbf{x} + \mathbf{v}$$

2.3.1 Lineær tilstandsrommodell

Vi har bare en måling, vinkel yaw ψ

 $z = \psi + white \ noise$

Målematrisen blir nå

$$\begin{aligned} \mathbf{z} &= \mathbf{H}\mathbf{x} + \mathbf{v} \\ \mathbf{z} &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \psi \\ u \\ v \\ r \\ u_c^b \\ v_c^b \end{bmatrix} + \mathbf{v} \end{aligned}$$

Hmatrisen er nå

 $H := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$

Observerbarhet

Vi ser med en gang at rangen til matrisen er 4. Matrisen har ikke full rang, og da er systemet ikke observerbart med kun en måling.

2.3.2 Utvidet målematrise

Nå har vi tre målinger slik at

$$z = \begin{bmatrix} \psi \\ u \\ v \end{bmatrix} + white \ noise$$

Målematrisen blir nå

$$\mathbf{z} = \mathbf{H}\mathbf{x} + \mathbf{v}$$
$$\mathbf{z} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \psi \\ u \\ v \\ r \\ u_c^b \\ v_c^b \end{bmatrix} + \mathbf{v}$$

Hmatrisen er nå

$$H := \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Observerbarhet

Fortsatt har matrisen rang = 4, og er ikke observerbar.

Magefølelsen sier meg at denne matrisen skal være observerbar. Hvis den ikke er observerbar kan vi ikke rekonstruere alle tilstandene og vi kan ikke bruke Kalmanfilter.

2.4 Kalmanfilter

kontinuerlig og stasjonær modell

$$\dot{x} = Ax + Bu + Ew$$

$$y = Hx + v$$

$$\dot{x} = A\hat{x} + Bu + K_{\infty}(y - H\hat{x})$$

$$K_{\infty} = P_{\infty}H^{T}R^{-1}$$

hvor kovariansmatrisen $P_{\infty} = P_{\infty}^T > 0$ positiv definitt Riccattilikningen som skal løses er

$$AP_{\infty} + P_{\infty}A^T + EQE^T - P_{\infty}H^TR^{-1}HP_{\infty} = 0$$

```
Q = 10*[eye(3)];
R = 10*[eye(3)];
x0 = [0 \ 0 \ 0 \ 0 \ 2 \ 2];
x0_est = [1 2 3 1 10 1]';
P = [1 \ 0 \ 0 \ 0 \ 0 \ 0
0 1 0 0 0 0
 001000
 0 0 0 1 0 0
 0 0 0 0 1000 0
 0 0 0 0 0 100]*100;
 v = 0.1*randn(1)*[1;1;1];
 w = v;
E = [zeros(1,3); eye(3); zeros(2,3)];
PO = (x0-x0_est)*(x0-x0_est)';
 A = [0 \ 0 \ 0 \ 1 \ 0 \ 0
 1 1 0 0 0 0
 1 1 0 0 0 0
 001000
 0 0 0 0 1 0
 0 0 0 0 0 1];
 H = [1 \ 1 \ 1 \ 0 \ 0 \ 0];
 [K,P] = lqe(A,E,H,Q,R);$\allowbreak $
```

2.5 Ulineært kalmanfilter

Man kan bruke en passiv ulineær DP observer sammen med et kalmanfilter. For å sjekke passivitet kan man bruke Kalman-Yakubovich-Popov kriteriet

$$PA + A^T P = -Q$$
$$B^T P = C$$

hvor $P = P^T, Q = Q^T, A = Hurwitz$, og A, B styrbar og A, C observerbar.

2.6 Nomoto modell

Finn forsterkningen og tidskonstanten i de to modellene

$$\frac{\psi}{\tau_3}(s) = \frac{K(1+T_3s)}{s(1+T_1s)(1+T_2s)} \\ \frac{\psi}{\tau_3}(s) = \frac{K}{s(1+Ts)}$$

Matlabkode:

```
M = [6.7644e6 \ 0 \ 0
     0 1.1341e7 -5.8583e3
     0 -5.8583e3 1.3206e2];
D = [7.7032e4 \ 0 \ 0]
     0 2.5455e5 -3.5015e2
     0 -1.1578e2 1.1414e1];
A = -inv(M) * D;
b = [0; -3.5015e2; 1.1414e1];
b1 = inv(M) * b;
C = [1 \ 1 \ 1];
D = 0;
[n,d] = ss2tf(A,b1,C,D);
sys = tf(n,d)
Transfer function:
         0.08707 s + 0.002949 s
_____
                                         _ _
s<sup>3</sup> + 0.121 s<sup>2</sup> + 0.003205 s + 2.229e-005
```

Transferfunksjonen plottes i et bodediagram

Bodeplot Nomotomodell

Kryssfrekvensen leses av til $0.0108\,{\rm rad/s}$ ved-3dB.Fasemarginen -180° finnes ved $0.0567\,{\rm rad/s}.$ Forsterkning er71.8dB

$$20 \log (K) = 71.8$$

$$K = \log^{-1} \left(\frac{71.8}{20}\right) = 0.78238$$

Ved sprangrespons finnes den dominerende tidskonstanten

Tidskonstanten leses av til $\tau = 162 \,\mathrm{s}$

2.7 Autopilot design

Vi følger oppskriften fra side 232 i lærebok.

- 1. Spesifisert båndbredde: Vi velger ca 10x under kryssfreksvensen $\omega_b=0.005\,\mathrm{rad/s}$
- 2. Berekner naturlig frekvens med $\zeta = 1.0$: $\omega_b \approx 0.64 \omega_n \Rightarrow \omega_n = \frac{\omega_b}{0.64} = \frac{0.005}{0.64} = 0.0078 \,\mathrm{rad/s}$
- 3. Bestemmer designforsterkningen i tilbakekoblingen: $K_m>0$ velges til $K_m=1$
- 4. Berekner P-ledd: $K_p = (m + K_m)\omega_n^2 = \left(\frac{T}{K} + 1\right)\omega_n^2 = \left(\frac{162}{0.78} + 1\right)0.0078^2 = 1.2697 \times 10^{-2}$
- 5. Berekner D-ledd: $K_d = 2\zeta\omega_n (m + K_m) = 2 \cdot 1.0 \cdot 0.0078 \left(\frac{162}{0.78} + 1\right) = 3.$ 2556
- 6. Berekner I-ledd: $K_i = \omega_n \cdot 0.1 \cdot K_p = 0.0078 \cdot 0.1 \cdot 0.0127 = 9.906 \times 10^{-6}$

Simulering utgår herved fra oppgaven.

2.8 Integralvirkning

Vi må ha integraleffekt fordi de fjerner stasjonære feil pga strøm, bølgekrefter og feil i modellen.

2.9 Tilbakekobling fra \dot{r}

Ved å tilbakekoble \dot{r} kan vi oppnå å fjerne hydrodynamisk masse (added mass). Kalles gjerne for akselerasjonstilbakekobling. Å måle akselerasjon er ikke vanskelig. Prinsippet er å feste et lodd til en fjær og måle kraften fra fjæren under akselerasjonen. Men å måle yaw-akselerasjon krever veldig nøyaktig måleutstyr, slik at disse blir veldig dyre. En annen måte er å integrere opp posisjon eller fart gjennom et filter.