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1 Problem 1 (DSRV)
We have the model:

ẋ = U0 cos θ + w sin θ
ż = −U0 sin θ + w cos θ

θ̇ = q
(1)

·
m− Zẇ −Zq̇
−Mẇ Iy −Mq̇

¸ ·
ẇ
q̇

¸
+

· −Zw −Zq
−Mw −Mq

¸ ·
w
q

¸
+

·
0 0
0 −Mθ

¸ ·
z
θ

¸
=

·
ZδS
MδS

¸
δS (2)

No. 1a)
The restoring moment in pitch can according to equation (3.124) of [1], be written

M = BGzW| {z }
−Mθ

sin θ ≈ −Mθ θ.

This gives
Mθ = −BGzW < 0.

No. 1b)
According to equation (3.275) of [1], assume ẇ = w = 0. Then the natural frequency in pitch is

ωθ =

s
BGzW

(Iy −Mq̇)

=

s
−Mθ

(Iy −Mq̇)

=

s
0.156276
U2

0.001925 + 0.001573

=
6.684

U
.

With U = 4.11 (m/s) we get:

ωθ =
6.684

4.11
= 1.63 (rad/s).
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The pitch period for U = 4.11 (m/s) becomes:

Tθ =
2π

ωθ
= 3.85 (s).

For a neutrally buoyant vessel, there is no natural frequency in heave, since it cannot have a “spring force.”

No. 1c)
First we have that 2ξω0 = d

m which gives that

d = 2ξmω0 = 2ξm

r
k

m
= 2ξ

√
km.

We further recall from linear control theory that for a damped system, the poles are in general the complex conjugate
pair p1,2 = −a± jω such that

(s+ a+ jω) (s+ a− jω) = s2 + 2as+ a2 + ω2

= s2 + 2ξω0s+ ω20.

Hence, a = ξω0 and a2 + ω2 = ω20 = a
2 + r2ω20 such that a

2 = (1− r2)ω20 and

ξ =
a

ω0
=
p
1− r2.

Together with the above equation, this gives

d = 2
p
1− r2

√
km.

We have d = 2
√
1− r2√km which gives:

−Mq = 2
p
1− r2

q
−Mθ(Iy −Mq̇)

m

1− r2 =

Ã
−Mq

2
p−Mθ(Iy −Mq̇)

!2
m

r =

vuut1−Ã −Mq

2
p−Mθ(Iy −Mq̇)

!2
.

Plugging in numbers from DSRV.m

r =

s
1−

µ
0.01131

2
√
0.0093 · 0.003498

¶2
= 0.13.

This means that the frequency of the damped system is 13% of the undamped resonans frequency ωθ.
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No. 1d)
The dynamical equation is·

m− Zẇ −Zq̇
−Mẇ Iy −Mq̇

¸ ·
ẇ
q̇

¸
+

· −Zw −Zq
−Mw −Mq

¸ ·
w
q

¸
+

·
0 0
0 −Mθ

¸ ·
z
θ

¸
=

·
ZδS
MδS

¸
δS

and can be written on the form
Mν̇ +Dν +Gη = b1δS .

(Note: we use the approximation U ≈ U0 when defining Mθ) With u = 0 we get the stationary equation:

νss = −D−1Gηss =

= −
· −Zw −Zq
−Mw −Mq

¸−1 ·
0 0
0 −Mθ

¸ ·
zss
θss

¸
= −

"
0

Zq
−ZwMq+ZqMw

Mθ

0 − Zw
−ZwMq+ZqMw

Mθ

#·
zss
θss

¸
.

Therefore

wss =
−Zq

−ZwMq + ZqMw
Mθ θss

qss = − −Zw
−ZwMq + ZqMw

Mθ θss.

Assuming small angles θss = 0 so that
wss = qss = 0,

the kinematic equations (1) for diving (pitch, heave) can be linearized around these stationary values:

ż = −U0 sin θ + w cos θ ≈ −U0θ + w
θ̇ = q

or ·
ż

θ̇

¸
=

·
1 0
0 1

¸ ·
w
q

¸
+

·
0 −U0
0 0

¸ ·
z
θ

¸
.

This gives the state-space model

η̇ = ν +A1η

Mν̇ +Dν +Gη = b1δS (3)

or in traditional notation, letting x := [η> ν>]> = [z, θ, w, q]>, gives

ẋ = Ax+BδS=

·
A1 I

−M−1G −M−1D
¸
x+

·
0

M−1b1

¸
δS . (4)

The numerical values for the system is computed in the file (hydro.m):
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% Hydrodynamic computations for DSRV
%
% Thor I. Fossen - NTNU 18.4.01
U0 = 4.11;

Iy = 0.001925;
m = 0.036391;

Mqdot = -0.001573; Zqdot = -0.000130;
Mwdot = -0.000146; Zwdot = -0.031545;
Mq = -0.01131; Zq = -0.017455;
Mw = 0.011175; Zw = -0.043938;
Mtheta = -0.156276/U0^2;
Mdelta = -0.012797; Zdelta = 0.027695;

M = [m-Zwdot -Zqdot; -Mwdot Iy-Mqdot];
D = [-Zw -Zq; -Mw -Mq ];
G = [0 0; 0 -Mtheta];
A1 = [0 -U0; 0 0];
B0 = [Zdelta; Mdelta];

A = [ A1 eye(2); -inv(M)*G -inv(M)*D ];

damp(A)

%%%%%% Output: %%%%%%
>>

Eigenvalue Damping Freq. (rad/s)

0.00e+000 -1.00e+000 0.00e+000
-4.15e-001 1.00e+000 4.15e-001
-1.73e+000 + 1.06e+000i 8.52e-001 2.03e+000
-1.73e+000 - 1.06e+000i 8.52e-001 2.03e+000

>>

Notice that there is two complex conjugated poles and two real poles

p1 = 0

p2 = −0.42
p3,4 = −1.73± j 1.06

where the zero eigenvalue correspond to the z-mode. The vessel is therefore critically stable under diving. It is intuitive
that the system is only critically stable in heave, since we earlier found that there is no resonans frequancy in this
mode due to no “spring force.” If it was stable in this state, it would have to go to the surface, z(t) → 0 as t → ∞.
We notice that with (w, θ) ≡ 0 then ż ≡ 0 and thus z(t) = z(0), ∀t ≥ 0. The entire positive z-axis therefore becomes
an equilibrium manifold for the linearized system.
In a regulator design, on the other hand, we can easily introduce feedback from z to regulate the depth to any

desired depth.
Notice also that the resonans frequency for pitch in the multivariable system

ωθ = 0.415 (rad/s)

which is higher than what you got in the assumed decoupled model in Problem 1b) and c), that is, 13% of 1.63 rad/s
= 0.22 rad/s. The reason for this is that the frequency is strongly affected by the coupling between heave and pitch.
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The true pitch period is therefore:

Tθ =
2π

0.415
= 15.14 (s).

We may therefore conclude that the assumption of a decoupled model is NOT valid, and hence a regulator design
should be multivariable.

2 Problem 2
We will develop an LQR PID state space regulator in this problem. The model is given by the linear system (4). Let
a reference depth be zr which gives ηr = [zr 0]

>. Let η̃ = η − ηr. This gives
˙̃η = η̇ = ν +A1η = ν +A1η̃ +A1ηr = ν +A1η̃

since A1ηr = 0. To obtain integral action, define the integrator state

ė = z̃ = z − zr ⇒ e(t) =

Z t

0

z̃(τ)dτ

ė = [1 0]η̃ = Jη̃.

Let now the full state be
X =

£
e η̃> ν>

¤>
.

We then have

Ẋ =

 0 J 0
0 A1 I
0 −M−1G −M−1D

X+
 0

0
M−1b1

 δS = AeX+BeδS (5a)

y =
£
I3×3 0

¤
= CeX (5b)

where we view the states e and η̃ as the output. Now we want to find the state feedback gain that minimizes the cost
function

J =

Z ∞
0

£
qee(t)

2 + qz z̃(t)
2 + qθθ(t)

2 + rδS(t)
2
¤
dt

=

Z ∞
0

£
X>(t)C>e QCeX(t) + rδS(t)

2
¤
dt (6)

where Q = diag(qe, qz, qθ). The optimal control is then given by

δs = −1
r
B>e PcX = −KpidX (7)

and Pc is the solution to the Algebraic Riccati Equation (ARE):

PcAe+A
>
e Pc−PBe

1

r
B>e Pc+C

>
e QCe = 0 (8)

which is solved by the command are.m. Recall that for a feasible solution to exist, then (Ae,Be) must be controllable
and (Ce,Ae) must be observable. We get the closed-loop:

Ẋ =(Ae−BeKpid)X

and it is your task to check that this system has negative eigenvalues (which is always true if (Ae,Be) is controllable
and (Ce,Ae) is observable).
A simulation is performed using Simulink, as shown in Figure 1:
Remember that the kontroller δS = −KpidX is based on the linearized model. In the simulation, we use the true

nonlinear plant with saturation on the rudder and nonlinear kinematics. Clearly, going from z = 10m to z = 100m is a
large step. However, using the weight in the cost function, r = 100 000 and Q = diag(0.04, 100, 100) will give adequate
performance. With initial conditions: x(0) = 0, e(0) = 0, and x(0) = [0 0 10 0]> and a step in z : 10m → 100m at
t = 150 s, we get the responses as shown in Figure 2:

5



Figure 1: Block diagram of the PID state feedback closed-loop system.

We see that the rudder is NOT saturating, even for the BIG step. And the response is nice and smooth. The
power of the method is that tuning is easy, since the weights r and Q affects the physical quantities δS and (e, z̃, θ)
directly in the time-domain.
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Figure 2: Output responses: a) z(t) b) θ(t) c) δS(t) d) x(t) vs. z(t)
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3 Problem 3
We will now develop a Kalman filter to estimate all the states of the plant, including the unmeasured states w and
q. Assuming the noise covariance matrices are constant, we use a stationary solution to the Riccati equation in our
Kalman filter. With the augmented integrator state, the linear plant is given by (9):

Ẋ =

 0 J 0
0 A1 I
0 −M−1G −M−1D

X+
 0

0
M−1b1

 δS = AeX+BeδS +Eew(t) (9a)

y =
£
I3×3 0

¤
= CeX+ v(t) (9b)

where w is dynamic (process) disturbances and v is measurement noise (both assumed white noise)

Ee=


0 0 0 0
1 0 0 0
0 π

180 0 0
0 0 1 0
0 0 0 π

180

 , w =


ωz
ωθ
ωw
ωq

 , v =

 υe
υz
υθ



Assume the noise sources are modeled by a Gauss distribution, i.e., w ∼N (0,Qw) og v ∼N (0,Rv) where Qw and Rv

are two weight matrices reflecting the standard deviation of the disturbances. Note that Rv are usually accurately
given by the specifications of the measurement equipment. Qw on the other hand needs knowledge from environmental
disturbance models and statistical data. We assume Rv = E

©
vv>

ª
= diag(r1, r2, r3) and Qw = diag(q1, q2, q3, q4).

In the simulation of Problem 2, we have verified that this system is both controllable and observable. We design
the observer states by copying the plant + an extra injection term Lỹ :

˙̂X = AeX̂+BeδS + L[y − ŷ]
ŷ = CeX̂.

The estimation error is Z = X− X̂ which gives

Ż = AeX+BeδS +Eew(t)−AeX̂−BeδS − L[y − ŷ]
= AeZ− L[CeX+ v(t)−CeX̂] +Eew(t)
= (Ae − LCe)Z− Lv(t) +Eew(t). (10)

Looking at the expected value of (10), we get

E
n
Ż
o

= E {(Ae − LCe)Z− Lv(t) +Eew(t)}
⇓

d

dt
E {Z} = (Ae − LCe)E {Z}−LE {v(t)}+EeE {w(t)}

= (Ae − LCe)E {Z}

since the expected value of white noise is zero (see [2] for details). Consequently, if Ae − LCe is a Hurwitz matrix
(negative eigenvalues), then the expected value of the estimation error is regulated to zero. It follows that as t→∞,
E
n
X̂(t)

o
→ E {X(t)} . In a Luenberger observer, we would choose the gain vector L by pole placement, where the

poles of Ae − LCe should be about 5− 10 times faster than the poles of the state feedback closed-loop Ae−BeKpid.
In the Kalman filter, on the other hand, we calculate L from the Riccati equation

L = Po (t)C
>
e R
−1
v

where

Ṗo = AePo+PoA
>
e −PoC>e R−1v CePo+EeQwE

>
e (11)

Po (0) = E

·³
X (0)− X̂ (0)

´³
X (0)− X̂ (0)

´>¸
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As mentioned above, assuming a stationary solution for (11) we instead solve the algebraic Riccati equation:

AePo+PoA
>
e −PoC>e R−1v CePo+EeQwE

>
e = 0 (12)

Notice that this equation is somewhat different than (8) with respect to transposes, etc. This gives the constant gain
vector L = PoC>e R−1v that is used in the observer.
We have already designed an optimal linear PID controller in Problem 2. Next, we extend that simulation

with the observer we just have developed. See the corresponding simulink model for the entire system in file
“Comp1WithKF.mdl”. Since the estimation introduces extra initial transients and the model now contains heavy
disturbances, we have changed the settings of the PID controller to: r = 108, Q = diag(0.01, 4000, 200). Similarly,
we have for the Kalman filter: Rv = diag(1, 1, π

180) and Qw = 0.5I4×4. To see the rest of the parameters, see the
corresponding simulink model, and the m-file “Comp1WithKF_run.m” that runs the simulation.
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Figure 3: The responses for the total system with a Kalman filter estimating all states. Simulation performed with
noisy measurements and process disturbances.

We clearly see in Figure 3 that the estimated states track the true states. Also we avoid saturation, even for the
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large step zr : 10m→ 100m .
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Figure 4: Heave speed w(t) and pitch rate q(t) and their estimated values ŵ(t) and q̂(t).

In Figure 4 we see that the estimated speeds track the true speed pretty good, at least in the mean, which is the
intention of the Kalman filter.
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Figure 5: Estimation errors for the estimated states
h
ê(t), ẑ(t), θ̂(t), ŵ(t), q̂(t)

i
in the Kalman filter. A large transient

happens when the set-point switches for zr, but are regulated fast back to a neighborhood of zero.

Finally, we see in Figure 5 that the estimation errors are small, and zero in the mean.
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