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Solution 1
The system is given by

φ̇ = R (φ)ω

and

J1ω̇1 = (J2 − J3)ω2ω3 + τ 1

J2ω̇2 = (J3 − J1)ω3ω1 + τ 2

J3ω̇3 = (J1 − J2)ω1ω2 + τ 3

where φ = [φ1 φ2 φ3]
T is the orientation vector, ω = [ω1 ω2 ω3]

T is a vector of
angular velocity along the principal axes, τ = [τ 1 τ 2 τ 3]

T is a vector of torque
inputs applied about the principal axes and Ji are the principal moments of
inertia. Further, we have that R (φ) = RT (φ) and we assume that R (φ) is
non singular in out domain of interest (R (φ) is non singular on Dφ but not
on R3).

1. When analyzing a system it is often preferable to express it in compact
form of vectors and matrixes to reduce the amount of equations one has
to work on. When doing this, working with differential equations on a
compact form, it is important to locate properties of the various vectors
and matrixes involved in order to take advantage of these properties in
the analysis.

(a) The first equation
φ̇ = R (φ)ω

1



TTK4150 Nonlinear Control Systems Solution 6

is already given. Properties connected to this differential equation
is that R (φ) = RT (φ) and that R (φ) is non singular onDφ (which
we assume contains our domain of interest). Our task is therefore
to find M and C (ω). It is easily seen that

M = diag {J1, J2, J3}

and it follows that
M =MT > 0

What remains is to show that

C (ω)ω =

 (J2 − J3)ω2ω3
(J3 − J1)ω3ω1
(J1 − J2)ω1ω2


and that C (ω) = −CT (ω). This implies that

C (ω)ω =

 0 c1 (ω) c2 (ω)
−c1 (ω) 0 c3 (ω)
−c2 (ω) −c3 (ω) 0

 ω1
ω2
ω3


and

c1 (ω)ω2 + c2 (ω)ω3 = (J2 − J3)ω2ω3

= J2ω2ω3 − J3ω2ω3

−c1 (ω)ω1 + c3 (ω)ω3 = (J3 − J1)ω3ω1

= J3ω3ω1 − J1ω3ω1

−c2 (ω)ω1 − c3 (ω)ω2 = (J1 − J2)ω1ω2

= J1ω1ω2 − J2ω1ω2

where it can be recognized that

c1 (ω) = k1ω3

c2 (ω) = k2ω2

c3 (ω) = k3ω1

and

k1 + k2 = J2 − J3

−k1 + k3 = J3 − J1

−k2 − k3 = J1 − J2
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where it is seen that

k1 = −J3
k2 = J2

k3 = −J1
which gives

C (ω) =

 0 k1ω3 k2ω2
−k1ω3 0 k3ω1
−k2ω2 −k3ω1 0


=

 0 −J3ω3 J2ω2
J3ω3 0 −J1ω1
−J2ω2 J1ω1 0


(b) Since we are solving the stabilization problem, we are working

with constant references. The equilibrium of interest is shifted to
the origin according to

e1 = φ− φd
e2 = ω − ωd

= ω

and in order to apply our analyzing tools we will hereafter analyse
the differential equations

ė1 = φ̇− φ̇d
= φ̇

= R (φ)ω

= R (φ) e2

and

ė2 = ω̇

⇒ Mė2 = C (e2) e2 + τ

The stability properties shown for e =
£
eT1 eT2

¤T
= [0 0]T will now

be the same as the stability properties of the point
£
φT ωT

¤T
=£

φTd ωT
d

¤T
.
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2. A storage function is given by

V (e) =
1

2
eT2Me2 +

1

2
eT1Kpe1

where Kp = KT
p > 0.

(a) The storage function may be interpreted as the total energy of
the system, where the term 1

2
eT2Me2 describes the kinetic energy

of the system (related to motion/velocity) and the term 1
2
eT1Kpe1

counts for the potential energy in the system (related to deviation
in position/orientation).

(b) To find a suitable output based on passivity, we start by calculat-
ing the time derivative of the storage function along the solution
of the system

V̇ (e) =
1

2
ėT2Me2 +

1

2
eT2Mė2 +

1

2
ėT1Kpe1 +

1

2
eT1Kpė1

= eT2Mė2 + eT1Kpė1

= eT2 (C (e2) e2 + τ) + eT1KpR (φ) e2

= eT2C (e2) e2 + eT2 τ + eT1KpR (φ) e2

Since C (e2) is skew symmetric we have that eT2C (e2) e2 = 0, this
can be seen by

eT2C (e2) e2 =
1

2
eT2C (e2) e2 +

1

2
eT2C (e2) e2

=
1

2
eT2C (e2) e2 +

1

2
(C (e2) e2)

T ¡eT2 ¢T
=

1

2
eT2C (e2) e2 +

1

2
eT2C

T (e2) e2

=
1

2
eT2C (e2) e2 −

1

2
eT2C (e2) e2

= 0

Further, it can be seen that e2 is a common factor in the remaining
term. Exploiting this leads to the following expression for V̇ (e)

V̇ (e) = eT2 τ + eT1KpR (φ) e2

= eT2 τ +
¡
eT1Kp

¢
(R (φ) e2)

= eT2 τ + (R (φ) e2)
T ¡eT1Kp

¢
= eT2 τ + eT2R

T (φ)KT
p e1

= eT2 τ + eT2R (φ)Kpe1

= eT2 (τ +R (φ)Kpe1)
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This last equation suggests that we may choose to make a control
law with e2 as output, which is the angular velocity of the system.
This is justified by the fact that we may choose τ to cancel the term
R (φ)Kpe1 and leave a fictive control input, making the system
passive from the fictive input to e2. Note that this choice of control
input, τ , does not imply that we are only making use of feedback
from the angular velocity, only that we can achieve some passivity
properties with respect to ω as output (we are possibly making use
of feedback from the orientation to cancel the term R (φ)Kpe1).

(c) Since we do not know anything of the sing of R (φ), it is impossi-
ble to conclude any passivity properties of the system with ω as
output.

3. Using the same storage function as above, we have that

V (e) =
1

2
eT2Me2 +

1

2
eT1Kpe1

and
V̇ (e) = eT2 (τ +R (φ)Kpe1)

Since τ is our control input, we are free to choose it as we wish as long
as it is defined (not infinity).

(a) In the case of making the system lossless from v to e2 we must
choose it such that

V̇ (e) = eT2 v

This implies that the control input, τ , is taken as

τ = −R (φ)Kpe1 + v

where v is our new fictive input.

(b) Since the system is passive with a positive definite storage function

V (e) =
1

2
eT2Me2 +

1

2
eT1Kpe1

≥ 1

2
λmin (M) ke2k22 +

1

2
λmin (Kp) ke1k22

we know that the equilibrium
£
φTd ωT

d

¤T
is stable (Lemma 6.6).
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(c) In the case of making the system output strictly passive from v to
e2 we must choose it such that

V̇ (e) ≤ eT2 v − e2ρ (e2) , e2ρ (e2) > 0∀e2 6= 0
where we desire e2ρ (e2) = δeT2 e2 in order to draw conclusions with
respect to stability. This leads to the choice of

τ = −R (φ)Kpe1 −Kde2 + v, Kp = KT
p > 0

which results in

V̇ (e) = eT2 (τ +R (φ)Kpe1)

= eT2 (−R (φ)Kpe1 −Kde2 + v +R (φ)Kpe1)

= −eT2Kde2 + eT2 v

≤ −λmax (Kd) e
T
2 e2 + eT2 v

and the system is output strictly passive from v to ω with δ =
λmax (Kd).

(d) The control input making the system output strictly passive has
added the term −Kde2. This term may be interpreted as adding
damping to the system with respect to position since it appears
in with respect to the angular velocity ω. In the actual system
equations it will appear together with the skew symmetric matrix

Mė2 = C (e2) e2 + τ

= C (e2) e2 −R (φ)Kpe1 −Kde2 + v

= (C (e2)−Kd)| {z }
adding damping

e2 −R (φ)Kpe1 + v

or
Mω̇ = (C (ω)−Kd)ω −R (φ)Kp (φ− φd) + v

(e) In addition to the stated results due to the property of lossless,
we can conclude that the system is finite gain L2 stable from v
to ω with an L2 gain less than or equal to 1/δ (Lemma 6.5). To
conclude with the stronger result of asymptotically stable, we need
to show that the system is zero-state observable. This is confirmed
by

ω ≡ 0⇔ e2 ≡ 0 and ė2 ≡ 0 and ė1 = 0

⇒ Mė2 = (C (e2)−Kd) e2 −R (φ)Kpe1 = 0

⇒ −R (φ)Kpe1 = 0

⇒ e1 = 0 ∀φ ∈ Dφ
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since R (φ) is non singular on Dφ. Hence, no solution can stay
identical in ω = 0 other than the trivial solution

£
φT (t) ωT (t)

¤T
=£

φTd 0
¤T
. This implies that we can conclude asymptotic stability

of the equilibrium (φ, ω) = (φd, 0) in the system

φ̇ = R (φ)ω

Mω̇ = C (ω)ω + τ

where the control input is given by

τ = −R (φ)Kp (φ− φd)−Kdω

Even though the storage function is positive definite and radially
unbounded, we may not conclude global asymptotic stability of
the equilibrium. This is due to the fact that R (φ) is only guaran-
teed to be non singular on Dφ.

4. This part is solved by considering properties of feedback systems when
both systems possess some passivity properties. Figure 6.11 in Khalil
shows the feedback connection applied to draw conclusions. To avoid
confusion with respect to notation, the signals e1 and e2 in the figure
are replaced by z1 and z2 respectively.

(a) In order to draw conclusions of asymptotic stability (Lyapunov
stability) and robustness (L2 stability), we at least require the two
feedback components to be output strictly passive. This leads to
the choice of the control input

τ = −R (φ)Kpe1 −Kde2 + v

since this turns the system output strictly passive and zero-state
observable with v as input and ω as output. Further, let y1 and y2
in the figure represent v and e2 respectively (systemH2 represents
the spacecraft in closed loop with the control law τ (φ, ω, 0) which
already is shown asymptotically stable). This implies that u1 rep-
resents measurement noise with respect to the rotational velocity
and u2 represents actuator noise with respect to the control law
v.

(b) To improve the steady state behavior of the rotational velocity we
desire some integral effect with respect to e2. This can be achieved
by using the PID control law

hPID (s) = Kpβ
(1 + Tis) (1 + Tds)

(1 + βTis) (1 + αTds)
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where 0 ≤ Td ≤ Ti, 1 ≤ β < ∞ and 0 < α ≤ 1. By choosing
H1 = hPID (s) we are guaranteed integral effect of the rotational
velocity (−e2). Further, the output of H1 is given by v which
we are free to choose. The proposed PID control law is known
to be output strictly passive and zero state observable. Since
both dynamic systems are output strictly passive and zero-state
observable, we conclude that the equilibrium (φ, ω) = (φd, 0) is
asymptotically stable. No global results can be concluded since
R (φ) is non singular only on Dφ.
It is not possible to use the same approach to cope with a steady
state deviation in the orientation. The approach used is based
on a relatively strict passivity property with respect to v and ω.
Since we do not have any passivity properties with respect to v
and (φ− φd) we are not able to use the same approach.

(c) In order to draw any robustness conclusions with respect to un-
certainty in measurements and actuators of the proposed system,
we require that both feedback components impose the property of
output strictly passive with the output strictly part in the form
δyTy. Since we do not know if the PID control law imposes this
property, we are not able to draw any conclusions.

Solution 2 (Exercise 14.30 a) in Khalil)
The system is given by

ẋ1 = x1x2

ẋ2 = x1 + u

where we globally stabilize the origin. If we follow the steps from Khalil, the
design of u is done in six steps

• Step one consists of formulating the system to fit a general backstep-
ping form and then use the input to transform the system into an
integrator backstepping form. Following the notation of Khalil, it can
be recognized that

η = x1

ξ = x2

f (η) = 0

g (η) = η

fa (η, ξ) = η

ga (η, ξ) = 1

8



TTK4150 Nonlinear Control Systems Solution 6

and the system is given by

η̇ = f (η) + g (η) ξ

ξ̇ = fa (η, ξ) + ga (η, ξ)u

The system is transformed into a integrator backstepping form by
choosing the input as

u =
1

ga (η, ξ)
(ua − fa (η, ξ))

= ua − η

where ua is considered the input in the integrator backstepping form.

• Step two consists of designing a control law φ (η) such that the origin
of

η̇ = f (η) + g (η)φ (η)

turns asymptotically stable by using a Lyapunov function. In addition
to this we require that φ (0) = 0. Using a quadratic Lyapunov function,
the stability of the origin is and the choice of φ (η) is found according
to

V (η) =
1

2
η2

V̇ (η) = ηη̇

= η (f (η) + g (η)φ (η))

= η2φ (η)

= −η4
where

φ (η) = −η2

• Step three consists of defining a variable z = ξ−φ (η) which is used to
analyze the fact that ξ differs from φ (η) in the actual system.

• Step four consists of dividing the control input according to
ua = v + φ̇

• Step five consists of choosing the control v according to
v = −∂V

∂η
g (η)− kz

= −ηη − k (ξ − φ (η))

= −η2 − k
¡
ξ + η2

¢
where k > 0.
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• Step five consists of summing up the control law according to

u = ua − η

= v + φ̇− η

= −η2 − k
¡
ξ + η2

¢− 2ηη̇ − η

= −η2 − k
¡
ξ + η2

¢− 2ηηξ − η

= − (1 + k + 2ξ) η2 − η − kξ

= − (1 + k + 2x2)x
2
1 − x1 − kx2

Since V (η) is a radially unbounded Lyapunov function and the results
hold globally, we conclude that the system is globally asymptotically
stable.

Solution 3 (Exercise 14.31 in Khalil)
The system is given by

ẋ1 = x2 + a+
¡
x1 − a1/3

¢3
ẋ2 = x1 + u

As in the previous exercise the system is in the form of (14.53)-(14.54) with

f = a+
¡
x1 − a1/3

¢3
g = 1

fa = x1

ga = 1

Take

φ (x1) = −a− ¡x1 − a1/3
¢3 − x1

V =
1

2
x21

and use (14.56).

Solution 4 (Exercise 14.34 in Khalil)
The system is given by

ẋ1 = −x1 + x2

ẋ2 = x1 − x2 − x1x3 + u

ẋ3 = x1 + x1x2 − 2x3
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1. Since we are evaluating the stability of the origin, let z1 = x1 and x2
be considered as input in the first equation

ż1 = −x1 + x2

= −z1 + φ1 + z2

where
z2 = x2 − φ1

The system is analyzed according to

V1 =
1

2
z21

V̇1 = z1ż1

= z1 (−z1 + φ1 + z2)

= −z21 + z1φ1 + z1z2

by choosing φ1 = 0 we have that the origin of z1 is "stable" with

V̇1 = −z21 + z1z2

The next step consists of including the z2 dynamics in the analysis

V2 = V1 +
1

2
z22

V̇2 = V̇1 + z2ż2

= −z21 + z1z2 + z2
³
ẋ2 − φ̇1

´
= −z21 + z1z2 + z2 (x1 − x2 − x1x3 + u)

= −z21 + z1z2 + z2 (z1 − z2 − z1x3 + u)

= −z21 − z22 + z2 (2z1 − z1x3 + u)

and by choosing

u = −2z1 + z1x3

= −2x1 + x1x3

it can be recognized that the origin is asymptotically stable. By further
investigation we see that the dynamics is globally exponential stable by
our choice of u. This is seen from the Lyapunov function for the system

V =
1

2

¡
x21 + x22

¢
=

1

2
k(x1, x2)k22

V̇ = − k(x1, x2)k22
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2. We have shown that the two first states in the model will converge
exponentially to the origin (even when x3 is unstable). To show that
the overall system is asymptotically stable we must show that the last
dynamic equation is asymptotically stale. To do this we apply the
theory of cascade system and input-to-state stability, where

ẋ3 = x1 + x1x2 − 2x3
= −2x3 + z3

where z3 = x1 + x1x2. Due to the exponential stability of x1 and x2,
we have that

kz3k = kx1 + x1x2k
≤ kx1k+ kx1x2k
= kx1k+ kx1k kx2k
≤ k1 kx1 (0)k e−γ1(t−t0) + k1 kx1 (0)k e−γ1(t−t0)k2 kx2 (0)k e−γ2(t−t0)

which shows that kz3k is exponentially stable (globally asymptotically
stable). Using the theory of cascade systems, we can conclude global
asymptotically stability of the overall system if x3 is input-to-state sta-
ble. We start by noticing that the origin of x3 is globally asymptotically
stable when z3 = 0, which implies that the dynamics may be ISS. The
ISS property is analyzed with a standard quadratic function

V3 =
1

2
x23

V̇3 = x3ẋ3

= x3 (−2x3 + z3)

= −2x23 + x3z3

= −2 (1− θ)x23 − 2θx23 + x3z3

≤ −2 (1− θ) kx3k22 − 2θ kx3k22 + kx3z3k
= −2 (1− θ) kx3k22 − (2θ kx3k2 − kz3k) kx3k2
≤ −2 (1− θ) kx3k22 , ∀2θ kx3k2 ≥ kz3k

which shows that the system is input to state stable (z3 regarded as
input) with

W3 = 2 (1− θ) kx3k22
ρ =

1

2θ
kz3k

0 < θ < 1
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