
TTK4150 Nonlinear Control Systems
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Department of Engineering Cybernetics
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Fall 2003

Solution 1
1. The nonlinear element is given by

ψ (y) = y5

From Figure 1 it can be recognized that the nonlinearity is a time-

Figure 1: ψ (y) = y5

invariant, memoryless and odd function. The describing function is
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calculated as

Ψ (a) =
2

aπ

Z π

0

ψ (a sin (θ)) sin (θ) dθ

=
2

aπ

Z π

0

(a sin (θ))5 sin (θ) dθ

=
2

aπ

Z π

0

a5 sin6 (θ) dθ

=
2a4

π

Z π

0

sin6 (θ) dθ

=
2a4

π

5

16
π

=
5a4

8

2. The nonlinear element is given by

ψ (y) = y3 |y|

From Figure 2 it can be recognized that the nonlinearity is a time-

Figure 2: ψ (y) = y3 |y|

invariant, memoryless and odd function. The describing function is
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calculated as

Ψ (a) =
2

aπ

Z π

0

ψ (a sin (θ)) sin (θ) dθ

=
2

aπ

Z π

0

(a sin (θ))3 |a sin (θ)| sin (θ) dθ

=
2

aπ

Z π

0

a3 sin3 (θ) |a| |sin (θ)| sin (θ) dθ

=
2a3

π

Z π

0

|sin (θ)| sin4 (θ) dθ

=
2a3

π

Z π

0

sin5 (θ) dθ

=
2a3

π

16

15

=
32a3

15π

3. The nonlinear element can be expressed as

ψ (y) = ky +Asgn (y)

and the describing function is found as

Ψ (a) =
2

aπ

Z π

0

ψ (a sin (θ)) sin (θ) dθ

=
2

aπ

Z π

0

(ka sin (θ) +Asgn (a sin (θ))) sin (θ) dθ

=
2

aπ

Z π

0

ka sin (θ) sin (θ) dθ +
2

aπ

Z π

0

Asgn (a sin (θ)) sin (θ) dθ

=
2k

π

Z π

0

sin2 (θ) dθ +
2A

aπ

Z π

0

sin (θ) dθ

=
2k

π

1

2
π +

2A

aπ
2

= k +
4A

aπ

4. When a ≤ ∆ we have that ψ (y) = 0 and consequently Ψ (a) = 0.
When a > ∆ we have that

ψ (y) =

½
0 when 0 ≤ θ ≤ α and π − α ≤ θ ≤ π
A when α < θ < π − α
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where
a sin (α) = ∆

The describing function is found as

Ψ (a) =
2

aπ

Z π

0

ψ (a sin (θ)) sin (θ) dθ

=
2

aπ

Z π/2

α

ψ (a sin (θ)) sin (θ) dθ

=
2

aπ

Z π/2

α

A sin (θ) dθ

=
2A

aπ
cosα

=
2A

aπ

r
1− ∆2

a2

Solution 2
The describing function of the nonlinearity ψ (·) is given by

Ψ (a) =
5a4

8

1. Figure 3 shows a Bode diagram of the transfer function h (s). As can
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Figure 3: Bode diagram of h (s)
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be seen from the figure, the system has a low pass characteristic (h (s)
is strictly proper). This justifies the use of the describing function
method (the simplification of ignoring higher order Fourier coefficients
is valid since the effect of these will be reduced due to the low pass of
the plant).

2. If the harmonic balance equation

h (jω)Ψ (a) + 1 = 0

has a solution, then the closed loop system has a periodic solution (or
at least this is a strong implication of a periodic solution). Using that
Ψ (a) is real, the complex harmonic balance equation is divided in to
two real equations

Re [h (jω)]Ψ (a) + 1 = 0

Im [h (jω)] = 0

where the second equation is solved first to determine possible frequen-
cies of oscillations. For each solution of ω, if any, the first equation is
used to determine the amplitude of the periodic solution a. In our case
we have that

h (jω) =
1− jω

jω (jω + 1)

=
j (1− jω) (−jω + 1)
−ω (ω2 + 1)

=
j (1− j2ω − ω2)

−ω (ω2 + 1)
=

2ω + j − jω2

−ω (ω2 + 1)
=

−2
(ω2 + 1)

+ j
ω2 − 1

ω (ω2 + 1)

Solving the harmonic balance equation with respect to ω results in

Im [h (jω)] =
ω2 − 1

ω (ω2 + 1)
= 0

⇔ ω2 − 1 = 0
⇒ ω = ±1
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and solving the harmonic balance equation with respect to a results in

Re [h (jω)]Ψ (a) + 1|ω=1 =
−2

(ω2 + 1)

¯̄̄̄
ω=1

5a4

8
+ 1

=
−2
2

5a4

8
+ 1

= −5a
4

8
+ 1

= 0

⇒ a =
4

r
8

5
= 1.1247

Hence we have strong implications that a periodic solution exist in this
system, and an estimate of the frequency and amplitude is given by

ω = 1

a = 1.1247

3. From the harmonic balance equation it can be seen that a solution
exists if

h (jω) = − 1

Ψ (a)

for some ω and a. This is usually investigated in a Nichols diagram
where h (jω) is plotted as a function of ω and − 1

Ψ(a)
is plotted as a

function of a. Such diagrams are shown in Figure 4 and Figure 5 where
it can be seen that the point of intersection is consistent with the result
found when using an analytic approach.

4. From the figures it can be seen that the periodic solution is stable.

Solution 3
1. Using the notation in Khalil, we have that

G (s) = hr (s)hp (s)

=
K

s

1

1 + Ts

=
K

s (1 + Ts)

where K > 0 and T > 0. It can be seen that G (s) has law pass char-
acteristic, by which we conclude that the describing function method
can be applied. A bode diagram of G (s) is shown in Figure 6
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Figure 4: Nicols diagram of h (jω) and − 1
ψ(a)

Figure 5: Nicols diagram of h (jω) and − 1
ψ(a)
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Figure 6: Bode plot of G (jω)

2. Using a sin (θ) as an argument in the nonlinearity it can be recognized
that

ψ (a sin (θ)) =

½ −L when 0 ≤ θ ≤ α and π + α ≤ θ ≤ 2π
L when α < θ < π + α

where

a sin (α) = S

Since ψ (y) is not memoryless, the theory from Appendix A is applied.
The describing function is derived according to

z1s =

Z 2π

0

ψ (a sin (θ)) sin (θ) dθ

=
1

π

Z α

0

−L sin (θ) dθ + 1
π

Z π+α

α

L sin (θ) dθ +
1

π

Z 2π

π+α

−L sin (θ) dθ

=
1

π
(L cosα− L) +

1

π
(2L cosα) +

1

π
(L+ L cosα)

=
4L

π
cosα
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and

z1c =

Z 2π

0

ψ (a sin (θ)) cos (θ) dθ

=
1

π

Z α

0

−L cos (θ) dθ + 1
π

Z π+α

α

L cos (θ) dθ +
1

π

Z 2π

π+α

−L cos (θ) dθ

=
1

π
(−L sinα) + 1

π
(−2L sinα) + 1

π
(−L sinα)

= −4L
π
sinα

and

z1 =
q
z21s + z21c

=

sµ
4L

π
cosα

¶2
+

µ
−4L

π
sinα

¶2
=

r
16L2

π2
cos2 α+

16L2

π2
sin2 α

=
4L

π

p
cos2 α+ sin2 α

=
4L

π

and

ϕ = arctan

µ
z1c
z1s

¶
= arctan

Ã
−4L

π
sinα

4L
π
cosα

!

= arctan

µ
− sinα
cosα

¶
= arctan (− tan (α))
= arctan (tan (−α))
= −α
= − arcsin

µ
S

a

¶
9
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Using the preceding calculations the describing function is given by

|Ψ (a, ω)| = z1
a

=
4L
π

a

=
4L

πa

and

∠Ψ (a, ω) = ϕ

= − arcsin
µ
S

a

¶

3. In order to draw − 1
Ψ(a,ω)

in a Nichols diagram as a function of a
S
, we

calculate
¯̄̄
− 1

Ψ(a,ω)

¯̄̄
and ∠− 1

Ψ(a,ω)
as functions of a

S¯̄̄̄
− 1

Ψ (a, ω)

¯̄̄̄
=

¯̄̄̄
1

Ψ (a, ω)

¯̄̄̄
=

1

|Ψ (a, ω)|
=

1
4L
πa

=
πa

4L
(1)

=
πS

4L

³ a
S

´
⇒ L

S

¯̄̄̄
− 1

Ψ (a, ω)

¯̄̄̄
=

π

4

³ a
S

´
and

∠− 1

Ψ (a, ω)
= −180◦ +∠ 1

Ψ (a, ω)

= −180◦ −∠Ψ (a, ω)
= −180◦ + arcsin

µ³ a
S

´−1¶
(2)

Figure 7 shows a Nichols diagram of − 1
Ψ(a,ω)

where the magnitude and
phase are normalized with respect to a

S
, resulting in scaled magnitudes.
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Figure 7: Nichols diagram of − 1
Ψ
as a function of a

S

4. Using the given constants the describing function is given by¯̄̄̄
− 1

Ψ (a, ω)

¯̄̄̄
=

π

4
a

∠− 1

Ψ (a, ω)
= −180◦ + arcsin ¡a−1¢

To investigate and estimate periodic solutions in the system, we first
of all need to solve the harmonic balance equation

h (jω)Ψ (a, ω) + 1 = 0

to establish existence of periodic solution. The harmonic balance equa-
tion can be reformulated as

h (jω) = − 1

Ψ (a, ω)

which is used to investigate periodic solutions in a Nichols diagram.
From Figure 8 it can be seen that a periodic solution exists (the har-
monic balance equation has a solution). By further investigation, esti-
mates of frequency and amplitude are found as

ω ≈ 3

a ≈ 3
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Figure 8: Graphical solution of the harmonic balance equation

5. The periodic solution is stable. This can be established by investigating
Figure 8. The periodic solutions imply that the temperature in the
room will vary around a desired equilibrium with the given amplitude
and frequency according to

y (t) = y0 + 3 sin (0.05t)
◦C

where t is in seconds (not in hours as the model).

6. A simulation of the system is shown in Figure 9 where it can be seen
that a ≈ 3 and

∆T ≈ 8− 5.75 = 2.25
⇒ f =

1

∆T
≈ 0.4

⇒ ω = 2πf ≈ 2.79
which agrees with the results from the describing function method.

7. Figure 10 shows a Nichols diagram of G (jω) and − 1
Ψ
where Ψ is ex-

pressed as a function of a
S
. It can be recognized that there are several

possibilities of reducing the amplitude a

• moving − 1
Ψ
to the left by reducing S (reducing S will only influ-

ence the phase, see (1) and (2))
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Figure 9: Simulation of the thermostat control system
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Figure 10: Nichols diagram of G (jω) and − 1
Ψ
when Ψ is expressed as a

function of α
S
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• moving − 1
Ψ
higher by reducing L (reducing L will only influence

the magnitude, see (1) and (2))

• moving G (jω) lower by reducing K
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