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Solution 1
The system is given by

(1+T;s) (14 Tys)
Tis (14 aTys)

hrl (S) = Kp

where K, > 0,0 < Ty <T; and 0 < o < 1. The system is analyzed in three
steps due to 0 < T, and 0 < « (these constants may be zero). These steps
consists of analyzing three systems

1+ T;
hri(s) = Kp% where T; =0 (1)
1+7T;s)(1+17,
hro(s) = Kp( i S%( + Tas) where Ty # 0 and o = 0 (2)
iS
1+7T;s)(1+T,
hs(s) — &, LD AHTas) o 20 anda 40 (3)

Tis (1 + aTys)
The case in (1) is reformulated as
A3+
ho (s) = Ky———t
11 (5) P Ts
K (21 + 5)

Pos

where K, and z, are positive real constants. Further, since K, is positive
the passivity properties of h.i1(s) = Kp(zl—js) is the same as h,1y (s) =

1
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Solution 5

@. Passivity of h,.11: is proved

value h,11 (jw) is found as

by using Proposition 1.

The complex

) 21+ jw
ho (jw) = M
Jw
 Ja—w
N —w
w
and
Re [h/Tlll (ju))] =1
> 0Vw (4)

The second case, (2), is analyzed in the sam

1+T;s) (

e manner. That is

1 —|— TdS)

hrlg (S) Kp<

Tis

Ti (& +5) Tu (2 +5)

p

T;s

7

1 1
(—_ + S) (- + S)
K, T~ Ta

S

21+ 5) (224 9)

S

where K, z1, and zy are positive real constants. As in the previous case we

continue our analyses on the system h,12 ($)

(z1+5)(22+s)

. Passivity of h,1o

is proved by using Proposition 1. The complex value h,12 (jw) is found as

(21 4 jw) (22

+Jw)

ISP (jw)

Jw

J (a1 +jw) (22 +jw)

—w
J (jwz1 + jw

2o + 2129 — w?)

—Ww
—wz — W2y + j129 — jw?

—Ww

(214 22) — J

(2122 — wW?)
W
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and

Re (b (jw)] = 21+ 2
0 Yw (5)

v

The third case, (3), is analyzed in the same manner. That is

(1+T;s) (14 Tys)
Tis (1 + odys)

l{ﬂ@+§ﬂ(%+g
Tisaly (aLTd + s>
K, (£+5) (& +9)
a s (O%Td + s)
K(Zl +5) (22 + 8)
s (p1+ s)

hrlg (S) = Kp

where K, 2z, z3 and p, are positive real constants. As in the previous case
we continue our analyses on the system h,i3 (s) = %. Passivity of
hy13 is proved by using Proposition 1. The complex value h,13 (jw) is found

as

(21 4 jw) (22 + jw)

T U) = )
_ JEatw) (et iw) (p — jw)
—w (p} + w?)
_Jwpiz + jwpize — jwzize + przize 4 jwt — Wpr + Wz + W)
N —w (pf +w?)
_ —wpiz —wpiz w2z + jpiaze — wt — jw’pr + jwn + jwe
N —w (p} + w?)
 pia i — iz + W _ .P121ze — w’pr + w2 + w?z
B ¥ +?) ’ w (pF+ o)
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and

p121 + p1ze — 2122 + w?

Re [hrlgl (]W)] =

(p? +w?)
> P121 + P122 — 2122
— 2 2
(pl +w )
1
ETD) (p121 + p122 — 2122)
B 1 1 1 . 1 1 11
4w\ T oy Ty Ty
1 1 1 o
(PP +w?) (aTdTi * al? aTde)
1 1 11—«
= +
(pF +w?) ol (pf+w?) (aTdﬂ>
1
> -
(Pt w?)al?
> 0 Vw (6)

Using (4), (5) and (6) we conclude by Proposition 1 that the PID control law
h,1 is passive.

Solution 2
The system is given by

(1+T;s) (1 + Tys)
(14 BT;s) (14 oTys)

hro (s) = Kp3

where K, > 0,0 <T; <T;,0 < a<1and1l < <oo. Analysis is done in
two steps due to 0 < Ty (the constant may be zero). These steps consists of
evaluating two systems

(1+T;s)
(1 + BTis)
(1+Tis) (1 + Tys)
(1+ BTis) (14 oTas)

hro1 (s) = KB where T; = 0

hrao (s) = Kpp where Ty # 0

which both have poles with real parts less than zero. Hence, we will apply
Theorem 1 to study the passivity properties of the control law.
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1. For the first system we have that

|hira1 (jw)

<

1+ jTw
1+ jfTw
1+ jTw
1+ j68Tw
1+ jTiw|

11+ jBTw|

s

K3 \

K,
K5

where we have used 8 > 1. For h,s (s) it can be seen that choosing
T; = 0 is the same as choosing o = 1. Using this we can upper bound

|hro1 (Jw)| as

|hror (jw)| <

K,B

(07

(7)

An upper bound on the magnitude of h,9s (jw) is found as

1+ Tyjw) (1 + jTaw)

h, W = |K ; :
| 22 (J )| ‘ Pﬁ(l +]ﬁﬂw) (1 —i—]oszw)
1+ Tjw || 1+ jTaw
= |Kp5| ; i ]
1+ i8Tiw| |1+ jaTyw
1+ lew 1+ dew
= Kpﬁ . 1 .
1 +]6Tiw a(L+jTw)
B 1+ Tjw | |14+ jTw
- 1+ jpTw| |2 + jTw
Kpﬁ 1+ Tijw | |1+ jThw
1+ jBTw| |+ + jTw
where
1+ Tijw L+ TPw?
1+ BT 1 +/32T¢2W2
<1
since 3 > 1, and
1+ jTyw 1+ T2w?
oIl () 4 The?
< 1
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since (1) > 1. An upper bound on |h,a (jw)| is therefore given by

«

s ()| = 2 0

Using (7)-(8) we conclude that

(1 +Tis) (1 + Tas)

h. =K
2(8) = Kol 3 Te) (1 aT)
satisfies
‘ K5
|2 (jw)| = —F (9)
given the conditions stated in Proposition 3.
2. For the first system we have that
: (1+,jTw)
h. = Kf——m—=
) = )
1+ jTiw) (1 - jBTiw
_ T (10T
1+ 5T w
joT, = jBwT, + fuw?TE + 1
= Ky 272, 2
1+ B Trw
(Bw?T? + 1) + j (WTi — fwTi)
= Kp 2
1+ 5°T2w?
where it can be recognized that
: B Bw?T? + 1
Re [hy21 (Jw)] = Kpﬁm
L BT A
- Pom2 9 | 1
5Tl w? + B
> K, (10)

In the second case we have that

(1 + Tojw) (1 + Tjo)

(14 BTjw) (1 + aTyjw)

(1 + Tijw) (1 + Tyjw) (1 — fTjw) (1 — aTyjw)
(1 + BQTEwQ) (1+ a?T3w?)

hroe (jw) = K,p

= Kpﬁ
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where the numerator is calculated as

(14 Tijw) (1 + Tyjw) (1 — BTijw) (1 — aTyjw) = jwTy+ jwT; — jawTy — jBwT; + 2w*TyT;
— 0w TyT; — B TyT; + j20fw’T,T;
— o T? - PAPTE - ot TET,
_PBRATIT? + PafuTyT? + Pafu’ T,
+jaBwtTIT? + 1
—w?TyT; + aw®*TyT; + Bw?TyT;
= —afwTyT; + aw?T7 + Bw?T?
+aBw*TiT? + 1
wly + wT; — awly — pwT;
+j +awT?T; + BwT,T?
—afwdTyT? — aBwT?T,

The real value of h,95 (jw) is now found as

—W?TyT; + w*TyT; + Bw*TyT; — aBw?T,T;
+aw?T? + Bw?T? + afw*TiT? + 1
(14 B°T2w?) (1 + a2T3w?)
—W*TyT; + aw®TyT; + BT T; — afw?T,T;
+aw?T? + Buw?T? + afwTiT? + 1

L+ F°127) (L + oT3e)

Re [hy22 (jw)] = K,

B

T(w) = nw)—dw)
= B (—wTyT; + aw’T T, + BwTyT; — afw?TyT; + aw?T; + BwT? + afw*TiTE + 1)
-1+ 52T12<,u2) (1+ 042T5w2)
= B — BTyT; + afuwTyT; + afw?T? + B2 TyT; — af*W*TiT; — o*w*T?
+afPWtTT? — 2B TET? — 1

The real value of h (jw) may now be rewritten as

(1+F°T7w?) (1 +0?Tiw?) + 7 (w)

Re [h;22 (jw)] = K, (1 + 52T2w2) (1+ a?T7w?)
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and it can be recognized that to prove
Re [hy22 (jw)] = K

is the same as proving
7 (w) =0

This is done as

y(w) = B = BuTyT; + aBu*TiT; + afw?T? + W TyT; — a2 T T, — oW T?

+afPWtTiT? — 2 BPW T T? — 1

= (B—-1)+ (—ﬁw2 + afw? + [Puw? — a62w2) T,T; + (Ozﬁw2 — 042w2) T2

+ (0462(,04 _ 05262(4)4) TdQﬂQ

— (B=1)+(B—1+a—ap)B?TiTi + (8 — @) aw?T2 + (1 — a) af% 2T}

B-=1)+B-1)(1—a)B’TiT; + (8 — a) aw?T; + (1 — @) a2 T;T?

= (B=1)+(8—1) (1 — ) BTy} + (B — a) awT2 + (1 — a) afW T2T7
—— N N — N—— N——

>0 >0 >0 >0 >0
> 0

by which we conclude that
Re [has (jo)] > K, (1)
Using (10)-(11) we conclude that

(1+T;s) (14 Tys)
(1+ BT;s) (14 aTys)

hyz (s) = K38

satisfies
Re [hna (ju)] = K, (12)

given the conditions stated in Proposition 3.

. To prove that h,q is passive is the same as proving Re [h.2 (jw)] > 0 Vw
(Theorem 1). Since Re [h,2 (jw)] > K, > 0 Vw we conclude that the
control law is passive.

. To prove that h,s is input strictly passive is the same as proving that
Re [hy2 (jw)] > 6 > 0 Vw (Theorem 1) for some positive §. Since
Re[hye (jw)] > K, > 0 Yw we conclude that the control law is input
strictly passive.
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5. To prove that the system is output strictly passive is the same as prov-
ing that Re [hyy (jw)] > € |hy (jw)|° Vw for some positive e. From (9)
and (12) we know that

o ()] < 227
Rells ()] > K,

Using these inequalities, an upper bound on |,y (jw)|* is found as

b )P < (K—ﬁ)

(07

K, 3

— 2 K »

K, 3
042

IN

Re [h2 (jw)]

which is rewritten as

a2

Re [ (jw)] > m |2 (jw)‘g

= & lhe (jw)|”
and output strictly passivity of the control law is concluded.

6. The system is given by

(14 T;s) (1 + Tys)
(1+ BTis) (1 + oTys)

hrg (S) = = Kpﬁ

where e is the input and u is the output. When investigating if a system
is zero-state observable, the system is analyzed with inputs set to zero,
e = 0. This leads to the equation

u(s) _ K3 (1—}—7}53(1—1—Tds)

(14 BT;s) (1 4+ aTys)

u(s)(1+pTis) (14 aTys) = KB (1+Tis) (L +Tys)e(s)
u(s) (14 6T;s) (1 + alys) =0 when e(s) =0

u(s) (1 + BT;s + aTys + 5ﬂaTd82) =0

u+ BTy + oTyu+ BTalyi =0

t o 40

9
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Let zy = u, 29 = u and y = 21, then the control law with zero input
can be expressed as

2"1 = 29

1
o (BT 4 aT
Z2 BEaTd( 21 — (BT + oTy) z2)
y = x

To show that the system is zero-state observable we require that no
solution can stay identical in y = 0 other than the trivial solution
2z = 0. This is done as

y(t) = 02 (1) =0
21<t) = 0:>22<t)50
1
. — 0 I
29 = 29 (6/1_; n aTd) 21
by which we conclude that the PID control law is zero-state observable.

Solution 3
See Theorem 6.3 in Khalil, and comment on necessary requirements.

Solution 4 (Exercise 6.11 in Khalil)
The system is given by

lel = <J2 — Jg) Wols + Ui
:]2w2 = (Jg — Jl)cugwl + U9

J3(/:)3 = (Jl — JQ) WiWsa + Us
where u = [uy ug ug)’ and w = [wy wy ws).

1. Let V (w) = 2 iw? + 2 Jow3 + £ Jsw3 be a candidate for a storage func-

tion. The time derivative along the trajectories of the system is found
as

1% (w) = Jidiwy + Jowows + J3wsws
= ((Jo — J3) wows + uy) wy
+ ((J3 — J1) wawr + u2) wo
+ ((J1 = J2) wiws + ug) ws
= (Jy — J3) wywaws + (J3 — J1) wiwaws + (J1 — J2) wiwaws
+uiwi + Uswso + uUsws
= (Jo—Js+ J3— J1 + J1 — Jo) wiwows + uywy + ugws + usws

= UTCU

10
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which shows that the map from u to w is lossless with the storage
function V' (w).

2. With u = —Kw + v where K = KT where we have that

Vw = vw

(—Kw+v)"w

= —wTKTw+vTw

= vTw—-uw'Kw

v w — Apin (K) wlw

vTw >V (W) + Auin (K) wlw

U IA

From the last equation it can be seen that the system is output strictly
passive from v to w with vTw >V (w) + Amin (K) ww. Hence, the map
from v to w is finite gain Lo stable with Ly gain less than or equal to

/\minl( ) (Lemma 6.5).

3. With u = —Kw, we have that
V() € =Amin (K) wlw
for the system w = f (w, —Kw) = f'(w). Since V' (w) is positive definite
and radially unbounded and V' (w) is negative definite, we conclude that

the system is globally asymptotically stable.

Solution 5 (Exercise 6.14 in Khalil)
Two systems

i]l = T2
H1 . l"g = —X1 — hl (%2) + e
Y1 = T2

and

$3:—$3+62
H, :
2 { Y2 = ho (z3)

are connected as shown in Figure 6.11 in Khalil. The functions h; (-) are
locally Lipschitz and h; (-) € (0,00]. Further, the function hsy (z) satisfies

|ha (2)] > %

1. First the passivity properties of Hy is investigated. Let Vi (xq,x2) =
% (22 + 22) be a candidate for a storage function. The time derivative

11
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along the trajectories of the system is found as

Vi (x1,22) = iy + 2oy
= T1x9+ T2 (—x1 — hy (22) + €1)
= I1%9 — 1122 — hy (X2) Ta + €129
= —hy(x2) 22+ €129
= —hi(y1) y1 + e
= ey = Vi (21, 22) + y1hy (1)

Since hy € (0,00], Hy is output strictly passive. The passivity proper-
ties of H, is investigated by using Vs (x3) = [, ha (2) dz as a candidate
for a storage function. The time derivative along the trajectories of the
system is found as

Va(zy) = a%, (/O hs (2) dz) i
= ha(z3) (23 + €2)

= —Ighg (ZE3) -+ hg (Ig) €9
= —x3hy (x3) + yae2
= yges = Vo (x3) + x3hy (73)

Since hy € (0, 00], Hy is strictly passive. By Theorem 6.1 we conclude
that the feedback connection is passive.

2. Asymptotic stability of the unforced system is shown by using The-
orem 6.3. Since we have one strictly passive system and one output
strictly passive system, we need to show that the system which is out-
put strictly passive also is zero-state observable. It can be recognized
that no solution can stay identical in S = {x3 = 0} other than the
trivial solution (x1,x2) = (0,0). That is

1 = 0&2,=0
Ty = O:>$1:—h1(1'2)20

Hence, the unforced system is asymptotically stable. To prove global
results, we need to show that the storage functions are radially un-
bounded. The first storage function is given by

1
Vi(wy,22) = 5 (23 + 3)

1
= 5 ||(1’179U2)H2
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which clearly is radially unbounded. The second storage function is
given by

Vs (2s) — /0 ho (2) dz

where it can be recognized that V5 (x3) — 00 as |x3| — oo. Hence, the
unforced system is globally asymptotically stable.

Solution 6 (Exercise 6.15 in Khalil)
Two systems

ilz—l’l—f—xg
H12 igz—z?—ﬁg—f—el
Y = X2

and

H21{x3:__x3j62
Y2 = T3

are connected as shown in Figure 6.11 in Khalil.

1. First the passivity properties of H; is investigated. Let Vi (xq,x2) =
171 + 323 be a candidate for a storage function. The time derivative
along the trajectories of the system is found as

* 3 . .
Vi(@,22) = xid + 22d
3 3
= 2} (1 +22) + 22 (—af — 22+ €1)
4, .3 3 2
= —I + LT — LT — Ty + 261
4 2
= —I;— I+ e

= ey = Vi (1, 22) + 7 + 23
Hence, H; is strictly passive with storage function Vi (x1,xs) = ix‘f +
123, First the passivity properties of H, is investigated. Let Vi (z1, z2) =
ix‘{ + %m% be a candidate for a storage function. The passivity prop-
erties of Hy is investigated by using Vs (x3) = ixé as a candidate for

13
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a storage function. The time derivative along the trajectories of the
system is found as

“/2 (1’3) = ZL‘%ZL’;},
= 23 (—x3+ e2)
_ 4, .3
= —X3+ x3€
= —T3+ ey
Hence, H, is strictly passive with storage function V; (x3) = ix%. It
follows from Theorem 6.3 that the origin of the unforced system is as-

ymptotically stable. Moreover, since V;, and V, are radially unbounded
we can conclude that the results holds globally.
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