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Solution 1
1. The function V1 (x1, x2t) is given by

V1 (x1, x2t) = x21 +
¡
1 + et

¢
x22

Since et → ∞ when t → ∞, the term (1 + et) may not be upper
bounded uniformly in t. Hence, the function is not decresent. The
function may however be lower bounded by

V1 (x1, x2t) = x21 +
¡
1 + et

¢
x22

≥ x21 + x22
= W1 (x)

where it can be recognized thatW1 (x) is positive definite. This implies
that the function V1 (x1, x2t) is positive definite.

2. The function V2 (x1, x2t) is given by

V2 (x1, x2t) =
x21 + x22
1 + t

Since 1
1+t
→ 0 when t→∞ the function V2 (x1, x2t) may not be lower

bounded uniformly in t. Hence, the function is not positive definite.
The function may however be upper bounded by

V2 (x1, x2t) =
x21 + x22
1 + t

≤ x21 + x22
= W2 (x)

where it can be recognized thatW2 (x) is positive definite. This implies
that the function V2 (x1, x2t) is decresent.
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3. The function V3 (x1, x2t) is given by

V3 (x1, x2t) =
¡
1 + cos4 t

¢ ¡
x21 + x22

¢
The function may be lower and upper bounded according to

V3 (x1, x2t) =
¡
1 + cos4 t

¢ ¡
x21 + x22

¢
≥ x21 + x22
= W1 (x)

and

V3 (x1, x2t) =
¡
1 + cos4 t

¢ ¡
x21 + x22

¢
≤ 2

¡
x21 + x22

¢
= W2 (x)

Since W1 (x) and W2 (x) are both positive definite, we conclude that
the function V3 (x1, x2t) is positive definite and decresent.

Solution 2
The system is given by

ẋ1 = −x1 − g (t)x2

ẋ2 = x1 − x2

A Lyapunov function candidate is taken as

V (t, x) = x21 + (1 + g (t))x22

By using 0 ≤ g (t) ≤ k we see that

V (t, x) = x21 + (1 + g (t))x22
≤ x21 + (1 + k)x22
≤ kxk22 (1)

= W2 (x)

and

V (t, x) = x21 + (1 + g (t))x22
≥ x21 + x22
= kxk22 (2)

= W1 (x)

2



TTK4150 Nonlinear Control Systems Solution 4

where it can be recognized that W1 (x) and W2 (x) are positive definite, im-
plying that V (t, x) is positive definite and decresent. The time derivative
of the Lyapunov function candidate along the trajectories of the system is
found as

V̇ (t, x) = 2x1ẋ1 + ġ (t)x22 + 2 (1 + g (t))x2ẋ2

= 2x1 (−x1 − g (t)x2) + ġ (t) x22 + 2 (1 + g (t))x2 (x1 − x2)

= −2x21 − 2g (t)x1x2 + ġ (t)x22 + 2x1x2 − 2x22 + 2g (t)x2x1 − 2g (t)x22
= −2x21 + ġ (t)x22 + 2x1x2 − 2x22 − 2g (t) x22
= −2x21 + 2x1x2 − 2x22 − (2g (t)− ġ (t)) x22

It can be recognized that (2g (t)− ġ (t)) ≥ 0 since ġ (t) ≤ g (t). Using this,
the time derivative of V (t, x) is upper bounded by

V̇ (t, x) = −2x21 + 2x1x2 − 2x22 − (2g (t)− ġ (t))x22
≤ −2x21 + 2x1x2 − 2x22
= −xT

·
2 −1
−1 2

¸
x

= −xTQx

where it can be recognized that Q is positive definite, eig (Q) = {1, 3}. This
implies that

V̇ (t, x) ≤ −xTQx
≤ kxk22 (3)

Using (1), (2) and (3) we conclude by Theorem 4.10 that the origin is globally
exponentially stable.

Solution 3
The system is given by

ẋ1 = x2

ẋ2 = −x1 − c (t)x2

A Lyapunov function candidate is taken as

V (x) =
1

2

¡
x21 + x22

¢
(4)
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The time derivative of V (x) along the trajectories of the system is found as

V̇ (x) = x1ẋ1 + x2ẋ2

= x1x2 + x2 (−x1 − c (t) x2)

= x1x2 − x1x2 − c (t)x22
= −c (t)x22
≤ −k1x22 (5)

and it can be seen that V̇ (x) is negative semidefinite. By Theorem 4.8 we
conclude that the origin is uniformly stable (V (x) is positive definite and
decresent). In order to prove that x2 → 0 as t → ∞ we apply Barbalat’s
lemma. Since V̇ (x) = −c (t)x22 where c (t) is some bounded value greater
than zero, V̇ (x) = 0 ⇔ x2 = 0. Following the notation of Lemma 8.2, let
φ (t) = V̇ (t). V̇ (t) is uniformly continuous in t if V̈ (t) is bounded

V̈ (t) = −ċ (t)x22 − 2c (t)x2ẋ2
= −ċ (t)x22 − 2c (t)x2 (−x1 − c (t)x2)

= −ċ (t)x22 − 2c (t)x1x2 − 2c2 (t)x22
Using (4) and (5) it can be recognized that V (t) ≤ V (t0), which implies that
x1 and x2 are bounded. Since x1 and x2 are bounded and it is given that
c (t) and ċ (t) are bounded, it follows that V̈ (t) is bounded. The bound on
V̈ (t) guarantees that V̇ (t) is uniformly continuous. In order to conclude by
Barbalat’s lemma we also need to prove that limt→∞

R t
0
V̇ (τ) dτ exists and

is finite. This is proven according to

lim
t→∞

Z t

0

V̇ (τ) dτ = lim
t→∞

(V (t)− V (0))

= lim
t→∞

V (t)− V (0)

where we know that limt→∞ V (t) = V∞ is a finite number since V (t) ≥ 0∀t
and V̇ (t) ≤ 0∀t.
Solution 4
1. The system is given by

ẋ1 = −x1 + x21x2

ẋ2 = −x31 − x2 + u

Let V (x) be given by

V (x) =
1

2

¡
x21 + x22

¢
4
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The time derivative along the trajectories of the system is calculated
as

V̇ (x) = x1ẋ1 + x2ẋ2

= x1
¡−x1 + x21x2

¢
+ x2

¡−x31 − x2 + u
¢

= −x21 + x31x2 − x31x2 − x22 + ux2

= −x21 − x22 + ux2

= − kxk22 + ux2

and upper bounded as

V̇ (x) ≤ − kxk22 + |ux2|
= − kxk22 + |u| |x2|
≤ − kxk22 + |u| kxk2
= − kxk22 + |u| kxk2 + θ kxk22 − θ kxk22
= − (1− θ) kxk22 + |u| kxk2 − θ kxk22
= − (1− θ) kxk22 − (θ kxk2 − |u|) kxk2
≤ − (1− θ) kxk22 ∀θ kxk2 − |u| ≥ 0
= − (1− θ) kxk22 ∀ kxk2 ≥

|u|
θ

where θ ∈ (0, 1). Hence, the system is input-to-state stable.

2. The system is given by

ẋ1 = −x1 + x2

ẋ2 = −x31 − x2 + u

Let V (x) be given by

V (x) =
1

4
x41 +

1

2
x22

The time derivative along the trajectories of the system is calculated
as

V̇ (x) = x31ẋ1 + x2ẋ2

= x31 (−x1 + x2) + x2
¡−x31 − x2 + u

¢
= −x41 + x31x2 − x31x2 − x22 + ux2

= −x41 − x22 + ux2
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and upper bounded as

V̇ (x) = −x41 − (1− θ)x22 + ux2 − θx22

≤ −x41 − (1− θ)x22 ∀ |x2| ≥
|u|
θ

(6)

where θ ∈ (0, 1). When |x2| ≤ |u|
θ
have that

V̇ (x) = −x41 − x22 + ux2

≤ −x41 − x22 + |x2| |u|
≤ −x41 − x22 +

|u|2
θ

= − (1− θ)x41 − x22 −
Ã
θx41 −

|u|2
θ

!

≤ − (1− θ)x41 − x22 ∀ |x1| ≥
r
|u|
θ

(7)

By using (6) and (7) it can be recognized that

V̇ (x) ≤ − (1− θ)
¡
x41 + x22

¢ ∀ kxk∞ ≥ ρ (|u|)
where

ρ (r) = max

µ
r

θ
,

r
r

θ

¶
Hence, the system is input-to-state stable.

3. With u = 0 the system is given by

ẋ1 = (x1 − x2)
¡
x21 − 1

¢
ẋ2 = (x1 + x2)

¡
x21 − 1

¢
and it can be seen that it has an equilibrium set {x21 = 1}. Hence, the
origin is not globally asymptotically stable. It follows that the system
is not input-to-state stable.

4. The unforced system (u = 0) has equilibrium points (−1,−1), (0, 0) and
(1, 1). Hence, the origin is not globally asymptotically. Consequently,
the system is not input-to-output stable.

Solution 5
The system is given by y = Hu and is a series connection of

y1 = H1u1

y2 = H2u2
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where u = u1, y1 = u2 and y = y2. Assume that both systems is L stable,
that is

ky1τkL = k(H1u1)τkL
≤ α1 (ku1τkL) + β1

ky2τkL = k(H2u2)τkL
≤ α2 (ku2τkL) + β2

The L stability of the series connection is then given by

kyτkL = ky2τkL
≤ α2 (ku2τkL) + β2
= α2 (ky1τkL) + β2
≤ α2 (α1 (ku1τkL) + β1) + β2
= α2 (α1 (kuτkL) + β1) + β2
≤ α2 (2α1 (kuτkL)) + α2 (2β1) + β2
= α (kuτkL) + β

where α (kuτkL) = α2 (2α1 (kuτkL)) and β = α2 (2β1)+β2. Now assume that
both systems are finite gain L stable, that is

ky1τkL = k(H1u1)τkL
≤ γ1 ku1τkL + β1

ky2τkL = k(H2u2)τkL
≤ γ2 ku2τkL + β2

The finite gain L stability of the series connection is then given by

kyτkL = ky2τkL
≤ γ2 ku2τkL + β2
= γ2 ky1τkL + β2
≤ γ2 (γ1 ku1τkL + β1) + β2
= γ1γ2 ku1τkL + γ2β1 + β2
= γ kuτkL + β

where γ = γ1γ2 and β = γ2β1 + β2.

Solution 6
The system is given by y = Hu and is a parallel connection of

y1 = H1u1

y2 = H2u2
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where u = u1 = u2 and y = y1 + y2. Assume that both systems is L stable,
that is

ky1τkL = k(H1u1)τkL
≤ α1 (ku1τkL) + β1

ky2τkL = k(H2u2)τkL
≤ α2 (ku2τkL) + β2

The L stability of the parallel connection is then given by

kyτkL = ky1τ + y2τkL
≤ ky1τkL + ky2τkL
≤ α1 (ku1τkL) + β1 + α2 (ku2τkL) + β2
= α1 (kuτkL) + β1 + α2 (kuτkL) + β2
= α (kuτkL) + β

where α (kuτkL) = α1 (ku1τkL) + α2 (ku2τkL) and β = β1 + β2. Now assume
that both systems are finite gain L stable, that is

ky1τkL = k(H1u1)τkL
≤ γ1 ku1τkL + β1

ky2τkL = k(H2u2)τkL
≤ γ2 ku2τkL + β2

The finite gain L stability of the parallel connection is then given by

kyτkL = ky1τ + y2τkL
≤ ky1τkL + ky2τkL
≤ γ1 ku1τkL + β1 + γ2 ku2τkL + β2
= γ1 kuτkL + β1 + γ2 kuτkL + β2
= γ kuτkL + β

where γ = γ1 + γ2 and β = β1 + β2.

Solution 7
We have that

y1τ = (H1e1)τ
y2τ = (H2e2)τ
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and that

ky1τkL = k(H1e1)τkL
≤ γ1 ke1τkL + β1

ky2τkL = k(H2e2)τkL
≤ γ2 ke2τkL + β2

Evaluating ky1τkL gives
ky1τkL ≤ γ1 ke1τkL + β1

= γ1 ku1τ − y2τkL + β1
≤ γ1 ku1τkL + γ1 ky2τkL + β1
≤ γ1 ku1τk+ γ1 (γ2 ke2τkL + β2) + β1
= γ1 ku1τk+ γ1γ2 ke2τkL + γ1β2 + β1
= γ1 ku1τk+ γ1γ2 ku2τ + y1τkL + γ1β2 + β1
≤ γ1 ku1τk+ γ1γ2 ku2τkL + γ1γ2 ky1τkL + γ1β2 + β1

⇒ ky1τkL ≤
1

1− γ1γ2
(γ1 ku1τkL + γ1γ2 ku2τkL + γ1β2 + β1)(8)

and evaluating ky2τkL gives
ky2τkL ≤ γ2 ke2τkL + β2

= γ2 ku2τ + y1τkL + β2
≤ γ2 ku2τkL + γ2 ky1τkL + β2
≤ γ2 ku2τkL + γ2 (γ1 ke1τkL + β1) + β2
= γ2 ku2τkL + γ2γ1 ke1τkL + γ2 + β1 + β2
= γ2 ku2τkL + γ2γ1 ku1τ − y2τkL + γ2 + β1 + β2
≤ γ2 ku2τkL + γ2γ1 ku1τkL + γ2γ1 ky2τkL + γ2 + β1 + β2

⇒ ky2τkL ≤
1

1− γ1γ2
(γ2 ku2τkL + γ2γ1 ku1τkL + γ2 + β1 + β2)(9)

From (8) and (9) it can be seen that the map from (u1, u2) to (y1, y2) is finite-
gain L stable if and only is the map from (e1, e2) to (y1, y2) is finite-gain L
stable. This can be seen from

ky1τkL ≤
1

1− γ1γ2
(γ1 ku1τk+ γ1γ2 ku2τkL + γ1β2 + β1)

ke1τkL ≤
µ
γ1 +

γ21
(1− γ1γ2)

¶
ku1τkL +

µ
1 +

γ21γ2
(1− γ1γ2)

¶
ku2τkL

+
γ1 (γ1β2 + β1)

(1− γ1γ2)
(γ1β2 + β1) + γ22 + γ2β1

9
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where it has been used that γ1 ke1τkL + β1 ≤ γ1 ku1τk + γ1γ2 ku2τkL +
γ1γ2 ky1τkL + γ1β2 + β1 and (7). Similar results can be found for ky2τkL
and ke2τkL.
Solution 8
Let the input to the system be denoted ũ and the output be denoted ỹ. From
the block diagram we have the following relations

ỹ = h (t, u)−K1u

ũ+ ỹ = Ku

From the sector condition we have that

(h (t, u)−K1u)
T (h (t, u)−K2u) ≤ 0 (10)

K = K2 −K1 = KT > 0

Evaluating the block diagram it can be seen that

h (t, u)−K1u = ỹ (11)

and that

h (t, u)−K2u = h (t, u)−K2u−K1u+K1u

= ỹ − (K2 −K1)u

= ỹ −Ku

= ỹ − ũ− ỹ

= −ũ (12)

Using (11), (12) the sector condition (10) it can be recognized that

(h (t, u)−K1u)
T (h (t, u)−K2u) = ỹT (−ũ)

= −ũT ỹ
≤ 0

⇒ ũT ỹ ≥ 0
which implies that the system is passive from ũ to ỹ.

Solution 9
The system is given by

ẋ1 = x2

ẋ2 = −h (x1)− ax2 + u

y = kx2 + u

10
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where

a > 0

k > 0

h ∈ [α1,∞]
⇒ zh (z) ≥ α1z

2

α1 > 0

A storage function is given by

V (x) = k

Z x1

0

h (z) dz + xTPx

where p11 = ap12, p22 = k
2
and 0 < p12 < min

©
2α1,

ak
2

ª
. The time derivative

of the storage functions along the trajectories of the system is found as

V̇ (x) = k
∂

∂x1

µZ x1

0

h (z) dz

¶
ẋ1 + ẋTPx+ xTPẋ

= kh (x1) ẋ1 + 2x
TPẋ

= kh (x1)x2 − h (x1) kx2 + kux2 − 2h (x1)x1p12 + 2ux1p12 − akx22 + 2x
2
2p12

= −akx22 + 2p12x22 − 2p12h (x1)x1 + 2p12ux1 + kux2

= −akx22 + 2p12x22 − 2p12h (x1)x1 + 2p12ux1 + (kx2 + u)u− u2

= −akx22 + 2p12x22 − 2p12h (x1)x1 + 2p12ux1 − u2 + yu

By rewriting this last expression it can be seen that

yu = V̇ (x) + akx22 − 2p12x22 + 2p12h (x1) x1 − 2p12ux1 + u2

= V̇ (x) + (ak − 2p12)x22 + 2p12h (x1)x1 + (u− p12x1)
2 − p212x

2
1

≥ V̇ (x) + (ak − 2p12)x22 + 2p12α1x− p212x
2
1 + (u− p12x1)

2

= V̇ (x) + (ak − 2p12)x22 +
¡
2p12α1 − p212

¢
x21 + (u− p12x1)

2

≥ V̇ (x) + (ak − 2p12)x22 +
¡
2p12α1 − p212

¢
x21

= V̇ (x) + ψ (x)

where
ψ (x) = (ak − 2p12)x22 + p12 (2α1 − p12)x

2
1

Since 0 < p12 < min
©
2α1,

ak
2

ª
we have that ψ (x) is positive definite. Hence,

the system is strictly passive.
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Solution 10
A parallel connection is characterized by

u = u1 = u2

y = y1 + y2

where the two systems is given by

ẋ1 = f1 (x1, u1)

ẋ2 = f (x2, u)

with the storage functions V1 (x1) and V2 (x2). The various passivity proper-
ties of the system may be expressed as

uT1 y1 ≥
∂V1 (x1)

x1
f1 (x1, u1) + uT1 ϕ1 (u1) + yT1 ρ1 (y1) + ψ1 (x1)

uT2 y2 ≥
∂V2 (x2)

x2
f2 (x2, u2) + uT2 ϕ2 (u2) + yT2 ρ2 (y2) + ψ2 (x2)

Using the structure of the parallel connection it can be recognized that

uTy = uT (y1 + y2)

= uT1 y1 + uT2 y1

≥ ∂V1 (x1)

x1
f1 (x1, u1) + uT1 ϕ1 (u1) + yT1 ρ1 (y1) + ψ1 (x1)

+
∂V2 (x2)

x2
f2 (x2, u2) + uT2 ϕ2 (u2) + yT2 ρ2 (y2) + ψ2 (x2)

=
h

∂V1(x1)
x1

∂V2(x2)
x2

i · f1 (x1, u1)
f2 (x2, u2)

¸
+ uTϕ1 (u) + uTϕ2 (u)

+yT1 ρ1 (y1) + yT2 ρ2 (y2) + ψ1 (x1) + ψ2 (x2)

=
∂

∂x
V (x) f (x, u) + uTϕ (u) + yT1 ρ1 (y1) + yT2 ρ2 (y2) + ψ (x)

= V̇ (x) + uTϕ (u) + yT1 ρ1 (y1) + yT2 ρ2 (y2) + ψ (x) (13)

where

x =
£
x1 x2

¤T
(14)

V (x) = V1 (x1) + V2 (x2) (15)

ϕ (u) = ϕ1 (u) + ϕ2 (u) (16)

ψ (x) = ψ1 (x1) + ψ2 (x2) (17)

12
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From (13) and (14)-(17) it can be seen that the parallel connection keeps the
passivity properties of passive, input srictly passive and strictly passive. For
output strictly passive, we require that

yTi ρi (yi) ≥ δiy
T
i yi (18)

for some positive δi. Using (18) and δ = max {δ1, δ2} we may rewrite
yT1 ρ1 (y1) + yT2 ρ2 (y2) according to

yT1 ρ1 (y1) + yT2 ρ2 (y2) ≥ δ1y
T
1 y1 + δ2y

T
2 y2

≥ δyT1 y1 + δyT2 y2

= δ
¡
yT1 y1 + yT2 y2

¢
≥ δ

µ
1

2
(y1 + y2)

T (y1 + y2)

¶
=

1

2
δyTy

where it has been used that

(y1 + y2)
T (y1 + y2) ≤ 2

¡
yT1 y1 + yT2 y2

¢
Solution 11
The system is given by

M (q) q̈ + C (q, q̇) q̇ +Dq̇ + g (q) = u

where

• M (q) =MT (q) > 0 ∀q ∈ Rm

• Ṁ (q)− 2C (q, q̇) is skew-symetric ∀q, q̇ ∈ Rm

• D = DT > 0

• P (q) > 0 is the total potential energy of the links due to gravity (a
positive definite function)

• g (q) =
h
∂P (q)
∂q

iT
where g (q) has an isolated root at q = 0.

1. The storage function is taken as

V (q, q̇) =
1

2
q̇TM (q) q̇ + P (q)

13
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The time derivative along the trajectories of the system is found as

V̇ (q, q̇) =
1

2
q̈TM (q) q̇ +

1

2
q̇TM (q) q̈ +

1

2
q̇TṀ (q) q̇ + Ṗ (q)

= q̇TM (q) q̈ +
1

2
q̇TṀ (q) q̇ +

∂

∂q
P (q) q̇

= q̇T (u− C (q, q̇) q̇ −Dq̇ − g (q)) +
1

2
q̇TṀ (q) q̇ + gT (q) q̇

= q̇Tu− q̇TC (q, q̇) q̇ − q̇TDq̇ − q̇Tg (q) +
1

2
q̇TṀ (q) q̇ + gT (q) q̇

= q̇Tu− q̇TDq̇ + q̇T
µ
1

2
Ṁ (q)− C (q, q̇)

¶
q̇

= q̇Tu− q̇TDq̇

≤ q̇Tu

⇒ uT q̇ ≥ V̇ (q, q̇)

Hence, the map from u to q̇ is passive.

2. Using the control input
u = −Kdq̇ + v

where Kd is a diagonal positive definite matrix, the time derivative of
the storage function along the trajectories of the system is found as

V̇ (q, q̇) = q̇Tu− q̇TDq̇

= q̇T (−Kdq̇ + v)− q̇TDq̇

= −q̇TKdq̇ + q̇Tv − q̇TDq̇

≤ −λmin (Kd) kq̇k22 + q̇Tv

⇒ uT q̇ ≥ V̇ (q, q̇) + λmin (Kd) q̇
T q̇

Hence, the map from u to q̇ is output strictly passive.

3. The storage function is a positive definite function in q and q̇. Its time
derivative is negative semidefinite. By applying LaSalle’s theorem, it
can be recognized that the origin is asymptotically stable. It will be
globally asymptotically stable if q = 0 is the unique root of g (q) = 0
and P (q) is radially unbounded.
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