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Solution 1
1. The function V; (x1, xot) is given by

Vi (21, 39t) = 27 + (1 + €') 23

Since ¢! — oo when t — oo, the term (14 €') may not be upper
bounded uniformly in t. Hence, the function is not decresent. The
function may however be lower bounded by

Vi(wg,29t) = 22+ (1 + et) 73
> :cf + x%
= W1 (ZL’)

where it can be recognized that W (z) is positive definite. This implies
that the function Vi (1, xst) is positive definite.

. The function V; (x1, zot) is given by

2 2
Ty + 25

1+¢
Since 1%1% — 0 when t — oo the function V5 (x1, zot) may not be lower

bounded uniformly in t. Hence, the function is not positive definite.
The function may however be upper bounded by

‘/2 (xla $2t) =

72 + 22
1+1¢
x% + x%
= Wa(z)
where it can be recognized that W (z) is positive definite. This implies
that the function V3 (1, xot) is decresent.

‘/2 (xl7$2t) =

IA

1
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3. The function Vs (x1, xot) is given by
Vs (21, 20t) = (14 cos*t) (27 + 23)
The function may be lower and upper bounded according to

Vs (21, 29t) = (1 + cos? t) (ZE% + x%)
r] + a3
Wl (.f)

v

and

Vi (z1,20t) = (1+cos*t) (af + 23)
2 (x% + x%)
= Wy ()

IN

Since Wy (x) and W; (x) are both positive definite, we conclude that
the function Vi (x1, xot) is positive definite and decresent.

Solution 2
The system is given by

T = —T]— g(t) M)

x'g = 1 — T2
A Lyapunov function candidate is taken as
V(tx) =i+ (1+g(t)

By using 0 < g (t) < k we see that

V(te) = ai+(1+g(t)
< 2+ (1+k)ad
<l (1)
= Wa(z)

and

Vite) = i+ (1+g(t) a3
> xf—l—x%
= |l (2)
= Wi(z)
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where it can be recognized that W, (x) and Wy (x) are positive definite, im-
plying that V (t,x) is positive definite and decresent. The time derivative
of the Lyapunov function candidate along the trajectories of the system is
found as

V(t,x) = 2;d +g(t) a5 +2(1+g(t)) zade

= 201 (—x1 — g () 22) + g (t) 25+ 2(1+ g (1) 2 (11 — 22)

= =227 — 29 (t) ;129 + § (t) 25 + 22129 — 275 + 29 (t) 2271 — 29 (1) 25
= =222 + g (t) 25 + 22179 — 275 — 2g (1) 2

= =227+ 21wy — 215 — (29 (1) — g () 23

It can be recognized that (2g (t) — ¢ (t)) > 0 since ¢ (t) < g (t). Using this,
the time derivative of V (t,x) is upper bounded by

Vi(t,z) = —2x7+2w120 — 225 — (29 (t) — g () 23

< —2x% + 2x129 — 2x§

a2 4
- xl—12 ’

—2TQux

where it can be recognized that () is positive definite, eig (Q)) = {1,3}. This
implies that

V(t,x) —27Qx

[l (3)

Using (1), (2) and (3) we conclude by Theorem 4.10 that the origin is globally
exponentially stable.

ININA

Solution 3
The system is given by

i‘lzl'g

i’g = —T1 — C(t) i)

A Lyapunov function candidate is taken as

V(z) = (x% + x%) (4)

N =
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The time derivative of V' (x) along the trajectories of the system is found as

1% () = x1@ + xoy
=TT+ T2 (—x1 — c(t) z2)
T1T9 — 1129 — c (1) 73
= —c(t)z}
k23 (5)

IN

and it can be seen that V (x) is negative semidefinite. By Theorem 4.8 we
conclude that the origin is uniformly stable (V (z) is positive definite and
decresent). In order to prove that o — 0 ast — oo we apply Barbalat’s
lemma. Since V (z) = —c(t) 23 where c(t) is some bounded value greater
than zero, V (z) = 0 & x5 = 0. Following the notation of Lemma 8.2, let
¢ (t) =V (t). V (t) is uniformly continuous in t if V (t) is bounded

V() = —é(t)ad —2c(t) zais
—é(t) 25 — 2¢(t) 2o (=21 — c(t) o)
= —¢(t) a3 —2c(t) 329 — 26* (1) 25

Using (4) and (5) it can be recognized that V (t) <V (to), which implies that
x1 and xo are bounded. Since x1 and xo are bounded and it is given that
¢ (t) and ¢ (t) are bounded, it follows that V (t) is bounded. The bound on
V (t) guarantees that V (t) is uniformly continuous. In order to conclude by
Barbalat’s lemma we also need to prove that lim;_, fg V (1) dr exists and
is finite. This is proven according to

t

lim [ V(r)dr = Jim (V(t) =V (0))

t—o00 0

= lim V (t) = V(0)

where we know that lim; .., V (t) = Vi is a finite number since V' (t) > 0Vt
and V (t) < OVt.

Solution 4
1. The system is given by
$'1 = —I1+ $%$2
By = —20—x+tu
Let V' (z) be given by
1
V(x) = 3 (23 + 23)

4
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The time derivative along the trajectories of the system is calculated
as

V (CL‘) = $1Z"1 + l'gi'g
= I (—1’1 + ZE%JZQ) + i) (—ZL‘? — T2 + U)
= —x% + xi’xg - xi’xg — xg + uxs

2 2
= —x]— T3+ uxs

— ll3 + uxs
and upper bounded as
. 2
Viz) < =zl + uz]
2
= = [lllz + fuf |22]
2
< = lfly + ul flll,
2 2 2
= —llzlly + lul [|zlly + 0 flzll; — 0=l
2 2
= — (1 =0)[lzlly + [ul =]y — 0l
2
= —(1=0)llzllz = @ lzlly = ful) [l
<

2 |ul
) |zlly Ylzlly > —

1—
0

—(1-0)
— (1= 0)[lz; VO llall, — [ul >0
-(1-9)

where 0 € (0,1). Hence, the system is input-to-state stable.

2. The system is given by

il = —I + T
By = —af —mytu
Let V (z) be given by
1 1
V() = Zm‘f + §x§

The time derivative along the trajectories of the system is calculated
as

V (l‘) = Z";’l‘l + Z’gi‘g
= l’? (—1’1 + 1'2) + ) (—$? — T + u)
= —x‘ll + x?xg — x:{’xg — x% + uxs

4 2
= —x{— Ty + uTs

5
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and upper bounded as
Vi) = —at—(1-0)22+ uxy — 022

< —x‘f—(l—&)xgwxﬂz%d (6)

where 6 € (0,1). When |z5| < % have that

V(x) = —af — 2+ uzy
< —af — b+ |z [ul
2
< _ A2 |u|
~ ZEI $2+ 0
4 2 4 |u\2
< (-0t -V >/ (7)

By using (6) and (7) it can be recognized that
V() < = (1-0) (21 +a3) Valle > p(ul)

o= (5.

Hence, the system is input-to-state stable.

where

3. With u = 0 the system is given by

Zt‘l = (l’l — Ig) (l’% — ].)
l"g = (l’l + 1’2) (x% — 1)
and it can be seen that it has an equilibrium set {z? = 1}. Hence, the

origin is not globally asymptotically stable. It follows that the system
is not input-to-state stable.

4. The unforced system (u = 0) has equilibrium points (—1, —1), (0,0) and
(1,1). Hence, the origin is not globally asymptotically. Consequently,
the system is not input-to-output stable.

Solution 5
The system is given by y = Hu and is a series connection of

y1 = Hiwuy
Y2 = Houy
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where u = uy, y; = us and y = 5. Assume that both systems is L stable,
that is

lvirll, = [[(Hiua), |,

< o ([Juirll) + B4
lverll, = [[(Hauz) |,

< g ([Jug-ll) + 8o

The L stability of the series connection is then given by

[yorll
az ([luar () + B,
= a2 ([lyi- ) + B2
az (a1 ([lui-llp) + B1) + B2
2 (a1 ([[urll) + B1) + Bs
az (201 (lurl| ) + a2 (281) + B,
a(lfurll,) + 5

where « (||u-]|;) = a2 (204 (||u-]|;)) and 5 = as (28,) + 55. Now assume that
both systems are finite gain L stable, that is

ly-Il1

IN

IAN I IA
Q

li-ll, = I(Hiu),ll,
< 71”“17HL+51
lverll, = [I(Hauz),ll,,

< 7 HU2THL + By

The finite gain L stability of the series connection is then given by

ly-ll, = llverllz

Vo lluarll, + B,

Y llya-ll, + Ba

Y2 (V1 lwarllz + B1) + Bs
= N2 lwirll, + 7281 + B,
= ucll,+5

where v = 7,7, and 5 = 7,0, + ;.

IN

IN

Solution 6
The system is given by y = Hu and is a parallel connection of

y1 = Hiuy
Yo = Houy
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where u = uy; = us and y = y; + y». Assume that both systems is L stable,
that is

Iyl = [[(Hiua),ll,
< o (Jlueel| ) + By
lorll, = [[(Hauz). |,

IN

s ([[uzrll;) + By

The L stability of the parallel connection is then given by

ly-ll, = lyar +vorll

vl + Nlyerllr

ar (lurrll ) + B1 + a2 ([Jue- ) + Bs
a1 (lurllp) + 81 + a2 ([Jurll ) + B,
= a(flu-ll,)+ 8

IAINA

where o (||u,||;) = oq (luar]];) + @2 (||ue-||;) and 5 = B, + B5. Now assume
that both systems are finite gain L stable, that is

lyi-ll, = [(Hiw). |,
< i lluclly + B8

1g2rll, = [(Haua). |,
< 7o lluerllp + Be

The finite gain L stability of the parallel connection is then given by

ly-llr = llyar + 92l

lyarll + -l

Y lluirll + 81+ 2 [Jue-ll, + Bs
Y llurlly + By + vz llucl, + Ba
Y llurllp + B

IA A

where v = v, + v, and 3 = 3, + 5.

Solution 7
We have that

Nir = <H1€1)T
Yor = (HQeZ)T
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and that

lyirll, = I(Hiea), I,
< el + B,

ly2rll, = [[(H2e2), I,
< 72 llearllp + B2

Evaluating ||yi1-||; gives

[[7et

< m HelTHL + 54

M1 HulT - y2T||L + 61

< Yllwslly + 71 llyerll, + 54

<y llunell + 1 (va llear |l + Ba) + By

= 7 llwall + 7172 llearll, + 7182 + B4

= 7wl + 772 luer + vl + 7182 + 54

< 7 llwarll + v lluer |l + 7172 vl + 7182 + By

= el € 7= Gl 0% el + 85 + ) @)
172

and evaluating ||yz, ||, gives

[y2rll,

IN

IAINA

IN

4

V2 llear (| + Be

Yo lluzr + ya1rll, + B2

Yozl +v2 lyirll, + B

Vo llur |l + 72 (V1 [lerr [l + B1) + B,

Vo lluzr |l + 7271 el + 72 + 81 + By

Vo lluzr |l + 7271 lluar = vorll, + 72 + 81 + By

Yo lluer ||+ vovs wiell + Yovy lverll + v + B + B

1
lo2rle < 7= (2 lluarlly 7oy llwnel 52 + B2+ 509)
172

From (8) and (9) it can be seen that the map from (uy, us) to (yy,y2) is finite-
gain L stable if and only is the map from (e, es) to (yi1,y2) is finite-gain L
stable. This can be seen from

”yerL

learl,

1
S 1 71_72 (71 Jwar |l + 172 uer ||, + 7182 + B1)
2 2
71 Y172
< (nm+ ) i, + (1 + 7> 2oy ||
( (=) r (1—7172) L

+71 (7152 + 1)

1 —7172) (7182 + B1) +73 + 725
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where it has been used that 7, |lei-|; + 81 < 7 lluicll + v17v2 [Juerll, +

Y1Ye lyirll;, + 7182 + By and (7). Similar results can be found for ||ys.||;

and |lezr |

Solution 8

Let the input to the system be denoted u and the output be denoted . From

the block diagram we have the following relations

= h(t,u) — Ku
u+y = Ku

<

From the sector condition we have that

(h(t,u) — Kyu)" (b (t,u) — Kyu) <0
K=K,—K =K"'>0

Evaluating the block diagram it can be seen that
h(t,u) — Kyu=17g
and that

h(t,u) — Kou = h(t,u) — Kou— Kyu+ Kju

= gj—(Kg—Kl)u
= y— Ku

= y—u—y

= —@

Using (11), (12) the sector condition (10) it can be recognized that

(h(t,u) = Kou)" (A (tu) = Kou) = 3" (—0)

U IA
I~q]
~
<
(V2
o

which implies that the system is passive from 1 to .

Solution 9
The system is given by

1 = X2
Ty = —h(x]) —ars+u
y = kro+u

10

(10)

(11)

(12)
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where
a > 0
E> 0
h € [og,x]
= zh(2) > a2?
a; > 0

A storage function is given by
x1
V() = k/ h(2)dz + 27 Pa
0

where p11 = api2, P22 = % and 0 < p;2 < min {2041, “—Qk} The time derivative
of the storage functions along the trajectories of the system is found as

. 0 n
Viz) = ka_xl (/ h(z) dz) iy + 7 Pz + o' P
= kh(zy) &, + 227 Pi
= kh(x1)zy — h(x1) kxg + kuxe — 2h (x1) 1p12 + 2ux1p1e — akx% + 2x§p12
= —akx3 + 2p1o75 — 2p1oh (21) o1 + 2proury + kum,
= —akzx% + 2p12x§ — 2p12h (1) 21 + 2pr1ouzy + (kxg + u) u — u?

—akx3 + 2p1ax3 — 2p1oh (21) 21 4 2prouz; — u? + yu

By rewriting this last expression it can be seen that

yu = V (z) + akz3 — 2p12x2 + 2p1oh (1) 21 — 2prousy + U
= V(2)+ (ak — 2p1») % +2p1ah (z1) w1 + (u — praan)’ — plo}
> V() + (ak — 2p12) x2 + 2paona — P + (u — praz)?
=V (z) + (ak — 2p12) 3 (2]712041 - p%g) 3+ (u— p12x1)2
> V(r)+ (ak — 2p12) 23 (22912(11 - pr) a3
= V(2)+4(2)
where

Y (z) = (ak — 2p12) Cﬂg + p12 (2a1 — p12) CC%

Since 0 < pi12 < min {2&1, %k} we have that 1 () is positive definite. Hence,
the system is strictly passive.

11
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Solution 10
A parallel connection is characterized by

= Y1t
where the two systems is given by
i1 = fi(r, )
Ty = f(x27u)

with the storage functions Vi (x1) and Va (z3). The various passivity proper-
ties of the system may be expressed as

oy (z

i 2 P g o)+l () + ooy )+ ()
Vs (x

2 DO () i (1) + 4 () + 0 (02

Using the structure of the parallel connection it can be recognized that

UT?J = UT(yl+y2)

= uly +udy

0
%Jﬂ (w1, u1) + ug oy () + 91 py (1) + 4 (21)

X

v

o (2, u) + ug 5 (u2) + 3 py (y2) + 1y (22)

1 2

a [ T ] [ 2 g;z;; } +u oy (u) +u' oy (u)

+y1 p1 (Y1) + 13 py (y2) + 1y (1) + 1y (2)

= V(@) S () + o () oy () + 9 () + 6 (2)
= V() +u o) +ylp (1) +y3 ps () + 2 () (13)
where
T [ 1 X9 }T (14)
Vi(z) = Vi(z1)+ Va(xz) (15)
o(u) = ¢ (u)+ oy (u) (16)
V() = ¥y (21) + Uy (22) (17)

12
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From (13) and (14)-(17) it can be seen that the parallel connection keeps the
passivity properties of passive, input srictly passive and strictly passive. For
output strictly passive, we require that

yl p; (yi) > 6y} yi (18)

for some positive §;. Using (18) and § = max {0y, do} we may rewrite
yi p1 (1) + 92 Py (32) according to

> 51yfy1 + 62y2Ty2
> 0yl i + 0ys yo
= Syl +vs0)

> 5<1@r+wam+yﬂ>

yi 1 (Y1) + v3 py (y2)

2
1
= —&y7
5 vy
where it has been used that

(i +y2)" (1 +2) <2 (yl 'y + ya )

Solution 11
The system is given by

M(q)G+C(q,q9)4d+Dg+g(q) =u
where
e M(q)=MT"(q) >0VqgeR™

M (q) — 2C (q,q) is skew-symetric Yq, € R™

D=D">0

P (q) > 0 is the total potential energy of the links due to gravity (a
positive definite function)
9P(q)

T
g(q) = [8_q] where g (q) has an isolated root at ¢ = 0.

1. The storage function is taken as

V@ﬁzéfM@M+P@

13
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The time derivative along the trajectories of the system is found as

. 1. 1. ol
Vig.q) = §qTM (¢) ¢+ §qTM (¢) G+ §qTM (¢) ¢+ P(q)
i o1 NG i
= ¢"'M(q)i+=¢"M(q)§+—=P(q)q
2 dq
= qT(u—C(q,q)q—Dq—g(Q))+§qTM(q)Q+gT(q)q
= un—qTC(q,Q)q—qTDq—ng(Q)+§qTM (@) d+9"(q)g
= ¢"u—¢"Dg+q" (§M(q)—0(q,Q))q
= {"u—i"Dq
< ¢"u

= 44>V (q.4)
Hence, the map from u to ¢ is passive.

2. Using the control input
u=—Kqq+v

where K is a diagonal positive definite matrix, the time derivative of
the storage function along the trajectories of the system is found as

Vig.d) = ¢"u—q"Dqg

= ¢"(—Kyg+v)—4¢"Dg
= —¢"Kig+q"v—q"Dqg
< =i (K9) (|4l + ¢"v

= u'§ >V (g,4) + Ain (Ka) ¢4
Hence, the map from u to ¢ is output strictly passive.

3. The storage function is a positive definite function in q and q. Its time
derivative is negative semidefinite. By applying LaSalle’s theorem, it
can be recognized that the origin is asymptotically stable. It will be
globally asymptotically stable if ¢ = 0 is the unique root of g (q) = 0
and P (q) is radially unbounded.
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