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Solution 1
The function is given by

. ($1+$2)2 R
(x)_1+(m1+x2)2+( =)

1. Let z; =0, then V (z) is given by
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Vix)= + 23
1+a23 72

2
1'2 2
Tz + @3 — 00 as |zy] — oo. Let

and it can be seen that V (x)
xo = 0, then V' (x) is given by
i

Vix)= + 22
T+a3

2
. xT
and it can be seen that V (r) = 55 + 2§ — 00 as |x1| — oo.
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2. On the set x1 = x5 the function is given by
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Solution 2
1. Given f (z) = [ 2 f (o) ado

1 o 1 o T
2P Pf(z)+ ff (z) Pz = xTP/O %f (ox) zdo + (/0 e (ox) xda) Pz
1 1 T
= :cTP/ agf (oz) xdo +/ x’ <§f (aa:)) do Px
o Ox 0 x
1 o 1 o T
= 27 (P N (ox) d0+/0 (%f(ax)> daP) x
-y 0 ’
= xT/O (P% (ox) + (%f (O’ZL’)) P) dox

and by using P%f (ox) + (%f (ax))T P < —1I the expression may be
upper bounded by

2TPf(x) + [T (2) Pe < a7 (~D)aw = —aTe = — |z

2. Given the function V (x) = fT (z) Pf (z) where P is symmetric and
positive definite. To show that V (z) is positive definite, we need to
show that f (z) = 0 if and only if + = 0. In other words we need to
show that the origin is a unique equilibrium point. Suppose, to the
contrary that there is a p # 0 such that f (p) = 0. Then

p'p<—@"Pfp)+f"(p)Pp) =0

which is a contradiction since p # 0 (in order to satisfy the above in-
equality p needs to equal zero). Hence the origin is a unique equilibrium
point. To see that the function is radially unbounded notice that

2TPf(z) _ 'Pf(x) fT(z)Px
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Suppose now that || f (z)||, < ¢ as ||z||, — co. Then
l="Pr@ll, _ ="l 1Pl 1 @)1l

[EqlE N [l
=[], 121l ¢
- 113
1Py e
]l

tends to zero when ||x|, — 0 which is a contradiction to

T
x Pf2(a:) < 1
]l 2
It follows that the function V () is radially unbounded (|| f (z)|l, — oo
as ||zl — 00).

3. We have sown that V (z) is positive definite and radially unbounded.
The time derivative of the function is found as

V(e) = fT(@)Pf(x)+ [T () Pf(2)

- (af()f(w)) Pia -+ 0 r (L w)
o) ) )+fT<x)P<%§f>f<x)>

B of (x) . (0f (@)\"
- (P Oz Oz > P)“”
—f" (2) f (z)

= —[If @5

Since origin is a unique equilibrium point and all of the conditions
are globally, the origin is a globally asymptotically stable equilibrium
point.

Solution 3
The system is given by

.j;‘l:.rQ

Ty = —g (1) (41 + 12)
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where it can be seen that the origin is a unique equilibrium point. Using
g (y) > 1 Vy it can be recognized that

1 xr1
/ yg (y)dy > / ydy
0 0

1

Using this, the function V' (x) is lover bounded by

Vi) = /0 yg (y) dy + z122 + 75

L, 2
=7 + X122 + 25

>
- 2
1,011

which shows that the function is positive definite and radially unbounded.
The time derivative of the function is found as

V(2)

—~

I (1'1) + 1'2) i‘l + (.’131 + 2552) i‘g
(1) + x2) T3 + (21 + 222) (—g (1) (21 + x2))
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T1) 1122 + 5 — g (21) 27 — g (21) 2122 — 29 (21) T122 — g (1) 225
— g (1) x% —2¢ (z1) z129 — g (21) 255%
) (%] + 23122 + 223) + 23
)
)

9
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|
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T{} ;}x—l—xg

TQx + 23

—g(
= —g(z)z
= —g(m)x

T

Since @ is positive definite and g (x1) > 1, the time derivative may be upper
bounded by

Vi) < —2l'Qux+ a2
= — (x% 4+ 2z179 + 296%) + m%
— (x? + 221209 + x%)
= — (.’131 -+ IL'Q)2

and it follows that V (x) is negative semi definite. Using Corollary 4.2 it can
be recognized that the set s is given by

S = {$ER2|I1:—$2}
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and it can be seen from the system equation that no solution can stay iden-
tical in S other than the trivial solution x = 0, and globally asymptotically
stability of the origin follows.

Solution 4
The system is given by

i‘l = X2
l"g = —hl (l’l) — Ty — h2 (hg)
i’g = I9 — T3

1. From the system equations it can be seen that the equilibrium point is

given by
= IQ
0 = —hl (Il) — hg (Ig)
0 = To — I3
which is equivalent to
o = 0
—hy (21) =h2(0) = 0
r3 = 0

since h3 (0) = 0 and hy (1) = 0 only when x; = 0, origin is a unique
equilibrium point.

2. SinceV (z) is a sum of nonnegative functions functions (h; (y) > 0Vy >
0) it is a positive semi definite function. To show that it is positive
definite, we need to show that

Vz)=0=2=0

Since yh; (y) > 0 Yy # 0, the integral [; h; (y) dy vanish if and only if
x; = 0, and it follows that V (x) is positive definite.

3. The time derivative of the function
Vi) = [ gzt [t
along the trajectories of the system is found as
1% () = hy(z1) 31 + 2209 + ho (73) I3
= hy (z1) 22+ 29 (—hy (1) — 22 — ho (23)) + ha (x3) (x2 — 23)

= —l’g — hg (Ig) I3
= — (x% + hs (23) acg)
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since hy (x3) ©3 > 0 Va3 # 0 we have that V (z) is negative semi definite.
In order to prove asymptotic stability, we apply Corollary 4.1. From
V (z) it can be seen that the set S is given by

S:{$€R3|JI2+ZL’3:0}

and it can be seen from the system equation that no solution can stay
identical in S other than the trivial solution x = 0, and asymptotic
stability of the origin follows.

4. To show global asymptotically stability the function V (x) need to
be radially unbounded. This is the case if the functions h; satisfies
5 hi (y) dy — oo as |z] — oc.

Solution 5
If r1 > r9 we have that r1 + r < 2r; which implies that

a(ry+r) <a(2r) < a(2r) 4+ a(2rs)
and if ro > r1 we have that r; + ro < 2ry which implies that
a(ry+71y) <a(2r) <a(2r)+ a(2r)

where it has been used that a class K function is strictly increasing in its
argument. Using the two different cases, we can conclude that the inequality
a(r +re) < a(2r) + a(2re) is always satisfied.

Solution 6
The system is given by

. 1

xry = L—(t)xg
! R(1)
T oM T T

where L (t), C (t) and R (t) continuously differentiable and bounded from
below and above. The Lyapunov function candidate is given by

B 2L (t) 5 2,
V(t,x) = (R (t) + m) x] + 2z129 + R—(t)%

1. The function can be upper bounded by

2k 2
Vi(t,x) < (kﬁ + K/;) 22+ 2119 + k—g)x%
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and lower bounded by

2k,
>
Vv (t,:l}) = (k5 + k4]€4

2
) o] + 23179 + — 15

ke
Using the upper bounds it is clear that V (t,x) is decresent. If we try
to use the lower bounds to show that V (t,x) is positive definite, we

will have to restrict the constants to
2ks 4k,
— 4+ ——1>0
ke + K2k,

Instead of making this restriction, we work directly with V (t,x) and
rewrite it as

2L(1)
Vi — or| (RO+56) 1 ]x
]. m
R(t) 1
= fCT{ 1( ) L}x
RO
= 2'Px

The eigenvalues of P are calculated as

\ { L(1p2 L/RTT D4 1)
2T\ LR IR A+ 1)

The smallest eigenvalue is given by

1 2 4
Amin 2<(R+R> R +R2>
1 2 2\ 2
= 3 (R_’_E)_\/(R_’_E) —4

where it is easily seen that there are positive constants ¢, and cy such

that (R+ 2)?—4 > ¢; and Ain > ¢, for all t, which shows that V (¢, )
is positive definite.

2. The time derivative of V (t,z) is found as

. 92 i L ' ' 2
V(t,x) = O <1+R(t)(32(t)_ 2 )—'—R(t)c'(t)_R(t))xl
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Suppose L (t), C (t) and R (t) satisfy

: Lty Cc@®\ LHC@E L@
N R AR
L(t)R(1)
1+ R2(t) >y
Then 5 5
V(t,x)<—ki;x%—kif

and V (t,x) is negative definite. This implies that the origin is uni-
formly asymptotically stable. Using Theorem 4.10 it is concluded that
the origin is exponentially stable.

Solution 7
The system is given by
o = h(t)xg—g )z}
iy = —h(t)zy—g(t) )
where h (t) and g (t) are bounded, continuously differentiable functions and

g(t)>k>0Vt>0.

1. It can be recognized from the model that x = 0 is a equilibrium point.

The stability properties are analyzed using the Lyapunov function can-
didate

V(x) = % (23 + 23)
The time derivative along the trajectories of the system is found as
Vi(e) = a1 (h(t)we—g(t)a?) +za (=h(t) 21 — g (t) 23)

= —g(t)a+h(t )-’111962 h(t) z1ws — g (t) 75

= —g( )a1 —g(t) x5

= —g(t (551 + I2)

< —k (x7 +23)
Hence, the origin is uniformly asymptotically stable.

2. The Lyapunov function does not satisfy Theorem 4.10. The next step
is to use Theorem 4.15, where

At) of(t,x)

O |,
- | v 0"
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Consider the Lyapunov function candidate

V(z) == (27 +23)

N —

The time derivative along the trajectories of the system is found as

V(r) = mh(t)zy — xsh (t) 2
~ 0

This shows that a solution starting at V' (z) = ¢ remains on that set
1 (23 +23) = c for all t, by which we conclude that the origin of the
linear system & = A (t) x is not exponentially stable. Moreover, using
Theorem 4.15 we conclude that the origin of the system & = f (t,x) is
not exponentially stable.

3. Since V (z) = 5 (1 + 23) is a radially unbounded Lyapunov function
for the system with a time derivative satisfying V (z) < —k (z* + x3)
globally, we conclude by Theorem 4.9 that the origin is globally uni-

formly asymptotically stable.

4. Since the system is not exponentially stable, it can not be globally
exponentially stable.

Solution 8
The set D in the phase plane is found as

x2 1

05T

x1

05T
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where

2y =—-1—-2< 2 <0
$2:1|0§l’1§2

I2:I1—1|—2§$1§0

$2:$1+1|0§I1§2

To estimate the region of attraction, we calculate

oD =

c¢=min V (2)
x€dD

and the estimate is then given by the set

{z eR|V (z) <c}
since this set will be contained in D and all trajectories starting in this set
will remain in this set and since V (z) < 0. Using 0D the following is found

. 174 _ . 2 2
xngﬁlflglgxlgo (CU) xngﬂlflglgxlgo (1'1 * 332)
= ' L+ 13))
ra= 1| 2252 <0 ((1+ 3

= 1
and

. V — . 2 2
12={|r[l)1§nﬂﬂlé2 (1') 12:%£1§2 (5131 + 1'2)
: 2
= 1
ra=1[0%m1 <2 (v +1)

= 1
and

; _ . 2 2)
z2:mljn”ggfl <0 V <I) "Egzajlfnil‘lfnégzlgo (Il + 132
— : 2 12
= _jin_ (23 + (21 — 1)%)
_ : 2
= guin, (e =20 )

1

2
and

. V _ . 2 2
i V@) = min (a1 a)
= min_ (2} + (21 + 1)2)

0<z1<2
= min (Qx% + 271 + 1)
0<z1<2

1

2
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which gives ¢ = % A estimate of the region of attraction is then given by
{z e R*a}+a} <3}
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