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Solution 1
1. The Jacobian matrix evaluated at x = 0 is given by

of

or|,_,
- —1 21’2
N 0 -1
B -1 0
N 0 -1
and the eigenvalues are calculated as

Mg =—1

A:

=0

Using Lyapunov’s indirect method, it is concluded that the origin is
asymptotically stable. Using phase plane analysis, it is concluded that
the origin is a stable node.

2. The Jacobian matrix evaluated at x = 0 is given by
A=Y
0r|,_,

322 — 2129 + 23 — 1 2xmym9 — 22 — 322+ 1
2wy + 307 + a5 — 1 2mag +af +323 -1 ||

- 0]

and the eigenvalues are calculated as

Aa=—1+i
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Using Lyapunov’s indirect method, it is concluded that the origin is
asymptotically stable. Using phase plane analysis, it is concluded that
the origin is a stable focus.

3. The Jacobian matrix evaluated at x = 0 is given by

af

ox|,_,
-1 -1
N 1 322
-1 -1
o 1 0

and the eigenvalues are calculated as

A —

=0

1 V3
Ao = —= 4 X2
2= Ty =5

Using Lyapunov’s indirect method, it is concluded that the origin is
asymptotically stable. Using phase plane analysis, it is concluded that
the origin is a stable focus.

4. The Jacobian matrix evaluated at x = 0 is given by

of

oz |,_,
[ -1 923
- -1 -1
-1 0
- -1 -1

and the eigenvalues are calculated as

A2 ={-2,0}

A:

=0

Using Lyapunov’s indirect method results in no conclusion. Using
phase plane analysis results in no conclusion.

Solution 2
The 2 x 2 system where

mao1 Mo

=
I

my1 M2 1
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is given by
TM o 2 2
X T =muay + mMo1X1T2 + M12X1T2 + Mooy

Taking the time derivative of this system results in

% (:UTMx) = 2mT1T1 + 2mosads
+Mo1 X122 + Mo1T1To + M12T1To + M12T1To + 2MoaTaTo
= 21 (mar +mu) &1 + 22 (Mg + Ma2) &2
+x (Ma1 + ma2) &1 + 21 (Ma1 + Ma2) 2
= 7 (M + MT) T
= " (M+M")x

When M is symmetric, it can be seen that

%(xTMx) = :CT(M+MT)5U
= o' (M +M)i

= 1Mz

= 22T Mi

and

— (acTMx) = g7 (M~|— MT) €T
= ' (M+M)x
= oMz

= 2" Mz

Solution 3
1. The system is given by

. 2
Ty = —T1+ T

i‘g = —XT9

where it can be seen that the equilibrium points are given by (x}, z%) =
(0,0). A general quadratic Lyapunov function candidate is given by

1
V(z) = §acTPx, p=pT
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which is positive definite if and only if all the leading principal minors
of P are positive
pu > 0
pupn — Py > 0

(and it follows that pss > 0). The derivative of the Lyapunov function
candidate along the trajectories of the system is given by

V(z) = i'Px
T
_ —a1 + 73 P11 P12 T
—Z2 P12 P22 )
T
_ —x1 + 3 P1171 + P12T2
—T2 P12%1 + P22l
(—$1 + I%) (p11$1 +P12$2) ) (p12$1 +p22$2)
= puxé - pllﬁ - pzﬂg — 2p1ow1e + p113319€§

By choosing p1o = 0, the term x% and x1x9 vanishes and the derivative
is rewritten as

v () = —pnﬁ - p22I§ +P119€1$g

—pllﬁ - (p22 - p11$1) x%

P22
= —p11$% — Pn (— - 351) HU%

P11
<0, v225,
P11
Taking D = s x € R"x; < %}, where % may be chosen arbitrary

large, shows that the equilibrium point is locally asymptotically stable.

2. The system is given by

iy = (z1—m) (2] +235—1)

o = (x1+ x9) (:L‘% + 22— 1)
where it can be seen that the equilibrium points are given by
(x1,23) = (0,0)

and the set
i +ay =1
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This implies that the origin can not be globally asymptotically stable,
since by starting the system in one of the points 32 + z32 = 1 will
keep the system in this point. A general quadratic Lyapunov function
candidate is given by

1
V(r) = §xTPx, pP=pT

which is positive definite if and only if all leading principal minors of
P have positive determinants, that is

pi1 > 0
p11p22_p%2 > 0

(and it follows that psy > 0). The derivative of the Lyapunov function
candidate along the trajectories of the system is given by

V(z) = i'Px
T
(21 — 22) (CC% + x% —1) P11 D12 Z1
(21 + 22) (x% + x% —1) P12 D22 T2
= (2551352]712 — T1T2P11 + T1T2P22 + I%pn + ﬁplz - 3331?12 + $§p22) (If + x% - 1)

B D11 + P12 D12 — %pn + %p22
Di2 — %pll + %pm D22 — P12
= 27Qx (xf + 23 — 1)

190(:15%4—363—1)

By choosing Q such that #7Qx > 0 Vz # 0 and taking D = {x € R?| 2% + 22 < 1},
it can be seen that

V(x)<0 VzxeD
Choosing p12 = 0, the matrix P is positive definite if and only if

pii > 0
pa > 0

and the matrix () is positive definite if and only if

pii > 0
pa > 0

by which it can be concluded that the origin of the system is asymp-
totically stable.
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3. The system is given by
] = —T1— X
Ty = X1 — x%
where it can be seen that the equilibrium point is given by
(x1,23) = (0,0)

A general quadratic Lyapunov function candidate is given by

1
Vix) = §Q:TP:L', p=rpT

which is positive definite if and only if all the leading principal minors
of P are positive, that is

pi1 > 0
p11p22—p%2 > 0

(and it follows that psy > 0). The derivative of the Lyapunov function
candidate along the trajectories of the system is given by

Vz) = Pz
T
_ —T1 — T2 P11 P12 &1
Ty — zr% D12 P22 T2
= —PuT1Ty — P12T1T2 + P22T1Ty — plltT% + p12$% — plzl“% — 1022353l - puxlxg
= - (p11 - p12) ﬁ - (p11 + P12 — p22) T1X — plﬂ% - p22$§1 - p12$19€§

In order to eliminate the undesirable terms, p; is chosen according to

pi1+pi2—p2 = 0
p2 = 0
= P11 = P22

which fulfills the requirements imposed in order to guarantee V (x) pos-
itive definite. The derivative of V (x) is now found as

1% (x) = —Pnﬁ - an%
< 0 VzeR?*—{0}

Since V (z) is radially unbounded, it can be concluded that the origin
is globally asymptotically stable.

6
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4. The system is given by

‘1.'1 = —$1+3l‘§

i’g = —T9— I
where it can be seen that the equilibrium point is given by
(x1,23) = (0,0)

Consider the Lyapunov function candidate

1 1 1 1
Vv (ZL’) = 5])}%’% + Zpgl’? + 5})31’% + Zp4x§
The derivative is found as
V(z) = piaidi + pariin + paoda + pariis

—  (pra1 + poi?) (=21 + 323) + (pswa + parl) (—25 — 11)
= —ple - pﬂ% - pﬂ% - pﬂé
— (pa — 3p1) 2123 + poaial — pszTa

By choosing
1

P = §p4

p2 = 0

ps = 0

ps > 0
it can be seen that

1 1
V (Z‘) = 6}?455% + me%

> 0 VzeR?—{0}
and

V@) = —§p4x%—p4x§

< 0 VzeR?*—{0}

Since The Lyapunov function is radially unbounded, it can be con-
cluded that the origin of the system is globally asymptotically stable.
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Solution 4
By using ||z||; = 2 + x} it can be seen that

Lo Lo
7zl = Vi) < 2zl

The derivative V (x) along the trajectories of the system is found as

Viz) = a3i +adi,
w3 (=25 — z1) + 23 (2} — 12)
T e
= —1]— 15
= ==l

By Theorem 4.10, taking k1 = ko = i and k3 = 1, it can be concluded that
the system is globally asymptotically stable.

Solution 5

It can be seen that the function V' (z) is not a Lyapunov function, however the
function is radially unbounded. The derivative of V (x) along the solutions
of the system is given by

. 1
V(%) = $1$1 + ; (l’g - b) ig

1
x1 (axy — Tomq) + ; (xe —b) fyx%

_ 2 2 2 2
= axy — Tax] + Tox] — by
— 2
= —(b—a)ay

< 0

Let D = R? and noticing that Q. = {x eRYV(z)<eV(z) < O} =

{z e R?|V (z) < ¢} is a compact positively invariant and set for any fi-
nite ¢ due to the radially unboundedness of V (z). Let Q = €., the set
E is then found as E = {x€Q|V(:c):O} ={zeQ—-(b—a)z?=0} =
{z € Q|x; = 0}. From the calculation of the equilibrium points it is known
that 1 = 0 is a invariant set. This implies that the largest invariant set in
E is given by M = E. By Theorem 4.4 that every solution starting in {2
approaches x1 = {z € Q|x; = 0} ast — oo. The steady state gain k is given
by the value of xo when the system settles down, that is when x| reaches
zero. The value of k will depend on the initial conditions, as illustrated in
Figure 1.
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el o

Figure 1: Simulation of the adaptive controller using a = v = 1.

Solution 6
The system is given by

Ty = =217 — fo(wa) (a7 + 225 — 4)

In order to show that x? + 2x3 — 4 = 0 is a invariant set, a new variable
z = 1% + 2235 — 4 is defined. The derivative of z is found as

z = 2xa1 +4xo7s
21 (43:%352 — fi(xy) (ﬁ + 223 — 4))
4wy (=223 — fo (z2) (2] + 225 — 4))
= =2a1f1 (z1) (2] + 225 — 4) — daafo (22) (27 + 225 — 4)
= — (2z1f1 (1) + 4x2fo (22)) (mf + 223 — 4)
= =2(z1fi (z1) + 222f2 (22)) 2
where it can be seen that z = 0 is a equilibrium point for the system, and

consequently a invariant set for the system. This implies that 3 +2x2—4 = 0
is a invariant set for the system. Consider the function

V(z) = (2} 4 223 — 4)2

9
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which is radially unbounded. The derivative of V is found as
Viz) = 2(2f+ 223 —4) (20181 + 4woitn)
= —4 (xlfl (%1) + 2$2f2 (.1'2)) (%% + 21’% — 4)2
< 0

since 1 f1 (11) and xo f5 (x2) are grater than or equal to zero. Let D = R? and
noticing that Q. = {x ERYV (z) <,V (z) < 0} ={z eR?|V (z) <c}is
a compact positively invariant set for any finite ¢ due to the radially un-
boundedness of V' (x). Let 2 = ., the set E is then found as

E = {x€Q|V(x):O}
= {z€Q|zi+225 —4=0o0r (z1f1 (x1) + 232f5 (x2)) = 0}
{zeQal+22;—4=0o0rz =z,=0}

From the state space model it can be seen that x1 = x5 = 0 is a equilibrium
point for the system (fi1(0) = f2(0) = 0). This implies that the largest
invariant set in E' is given by

M = {23 4225 —4 =0} U{z; = 25 = 0}

By Theorem 4.4 it can be concluded that every solution starting in ) ap-
proaches x2 + 222 = 4 or the origin as t — oo. By choosing for instance

Q=0;5= {x € R?V (z) <15,V (2) < 0}, it can be seen that

E={zeQal+215-4=0}
and
M = {2} 4+ 2235 — 4 =0}

which by Theorem 4.4 implies that every solution starting in ) approaches
72 + 222 = 4. However, the set {23 + 223 — 4 = 0} is not a limit cycle since
it contains equilibrium points (for instance (z},z3) = (0, £v2)).

Solution 7
The system is given by

i‘l = X2
i’g = —(ZL‘l‘l—l’g)—h(ZEl'f‘Ig)

| oz + Bag
g(x) = l yx1 + 0o 1

Let

10
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where the symmetry requirement imposes the limitations
B=n
The derivative of V' along the trajectories of the system is now given by
V() = g(2)f(x)

B axy + [ 4 T
o 61‘1 +(5l‘2 —(fL‘l —|—.’132) —h(l‘l +l‘2)

= (Oél'l + ﬁ.’l]g) To + (51‘1 + (51‘2) (— (1'1 + 1'2) —h (1'1 + 1'2))
taking 5 =0

v () = (axy+ Bro) w9 + B (21 + 32) (— (21 + 22) — h (21 + 22))
= (amy + frz) 2 — B (71 + 9132)2 — B (w1 +m2) b (71 + 22)
= amzs + Bas — B (27 + 2z + 23) — B (1 + 32) h (31 + 72)
= amas — ] — 21wy — frf — B (21 + x2) h (1 + 22)
= —Baf — (28 — o) z132 — B (x1 + 22) h (21 + 22)
taking 8 = 1

V(x) = Ba? — B (21 + x2) h (21 + 1)
< 0 VreR?

The function V' is now found as
T1
Viz) = / ayrdy
0

Z2
—i—/ (yx1 + dy2) dys
0
1 2 o z2 1 2 2
= algu + 21 [y2]y” + 0 5%
0
1 1
= 50433%4-’)/1‘1332-1-5(51'3
= a4 Py + D2

2
= 2'Pg

0

where

vl &
N[ [@
—_

11
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and

> 0

s
g
——— >0

2 4
which implies that P > 0 (and V (x) is positive definite on R? and radially
unbounded). By Theorem 4.2 it is concluded that the origin is globally

asymptotically stable.

Solution 8
1. From the figure it can be seen that
1 = —g(e)+ 2z —aq
Te = gle) —
e = —I

and the system is given by

Z"l = $?+2$2—5L‘1
x'g = —.f? — T2
2. Clearly the function V (x) is positive definite and radially unbounded.
The derivative of V (z) along the trajectories of the system is given by

. 1 1
Viz) = §x'TPx+§xTPx'
= —2 — a3 — 2257,
0 12
= —ad-ag-wt| 0 BT
10 0 a2
_ T T 1
- x{()l}mx{x%()}x
1 22
_ _.T 1
= - [x% I]x
— —TQ)a
where positive definiteness of @) (x) implies that the origin is asymp-

totically stable. In order for () (x) to be positive definite, is is required
that all its leading principal minors are positive. This imposes the
requirements

1 >0

1—a] > 0

12
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Taking D = {z € R?||x;| < 1} and applying Theorem 4.1, shows that
the origin is asymptotically stable.

3. SinceV (x) is radially unbounded it is known that the set Q. = {x € R?|V (z) < ¢},
where c¢ is chosen such that |x;| <1 Vx € Q, is positively invariant.
The constant c is found as

¢ = min V (2)

|z1|=1

2

. { 5 + X2 + :1:2, Vo1 =0
= min
——acg—i- :U2, 1 =0

= min Exl + 2172 + - 75

where it can be seen that

0 (1 3 5

= 1+3
8x2( +l’2+2 ) + 5x9
0 (1 3
8902 (——x2+2x§) = —14 32y

which implies that

c = min V (2)

lz1]=1

— minV(r), ze {(_1,_%) | (1%)}
-l (1) ()

1
3

Taking Q = Q, E = {x €V () = 0} — (0,0) = M which by
Theorem 4.4 concludes that €2 may be taken as a estimate of the region
of attraction. The parameter of the ellipsoid is calculated according to
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where

0 1.7071

—0.92388 0.38268
0.38268 0.92388

A = [0.29289 0 }

M = [
and consequently a = 2.27 and b = 0.39 in the q system. The angle 0

between the systems are found as

0 = arccos(—0.92388)
= 2.7489[rad]
= 157.50[deg]

Figure 2 shows a plot of the region of attracting.

15 ! I T
: a 5

Figure 2: A estimate of the region of attraction
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