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Solution 1 (Exercise 3.2 in Khalil)
Notice that by definition D, is a convex subset of R".

1. The pendulum equation with friction and constant input torque (Sec-
tion 1.2.1) is given by

0= ooy e ger| W

The partial derivative of f(x) with respect to x is found as

af(x>:[ 0 1 1 )

Ox —Zcos(zy) —&

From (1) and (2) it can be seen that f(z) and ag_gc) are continuous in
x on R%. Using Lemma 3.1 or Lemma 3.2 it can be concluded that f
is locally Lipschitz in x on D, for any r > 0. Further it can be seen
that %(;) is bounded on R?, by which Lemma 3.3 concludes that f is
globally Lipschitz (which also implies that f is locally Lipschitz in x
on D, for any r > 0).

2. The tunnel diode circuit equation with constant input (Section 1.2.2)
is given by

fo = | e | 3)

1 R 1
721 T2 + TU

The partial derivative of f(x) with respect to x is found as

o) _ [ -
ol .
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: of(x) - -
From (3) and (4) it can be seen that f(x) and =5 are continuous in

x on R? (assuming h(z;) and 8Jé(xx) to be continuous in z; and h(z)
approaching +o0o as x1 approaches £00). Using Lemma 3.1 or Lemma
3.2 it can be concluded that f is locally Lipschitz in x on D, for any
finite v > 0. Further it can be seen that ag_gc) is not globally bounded,

by which Lemma 3.3 concludes that f is not globally Lipschitz.

3. The mass-spring equation with linear spring, linear viscous damping,
Coulomb friction and zero external force (Section 1.2.3) is given by

T2

J(@) = _%xl — =T+ %77@1,%2)

where n(z1,z2) is discontinuous at x5 = 0. This discontinuity implies
that f is not locally Lipschitz at x5 = 0 (any discontinuous function is
not locally Lipschitz at the point of discontinuity). Due to the definition
of D, (a ball centered around the origin) it is not possible to find a
constant r small enough to make f locally Lipschitz in x on D,, and it
fallows that the system is not globally Lipschitz.

4. The Van der Pol oscillator (Example 2.6) is given by

—x;—e(l—af

)
= 5)
)= | - 5)
The partial derivative of f(x) with respect to x is found as

0f(x) _ l 0 1 ]

ox —1—2erymy —e(1—2a?)

(6)

From (5) and (6) it can be seen that f(x) and %(;) are continuous in
x on R2. Using Lemma 3.1 or Lemma 3.2 it can be concluded that f
is locally Lipschitz in x on D, for any finite r > 0. Further it can be
seen that %(xx) is not globally bounded, by which Lemma 3.3 concludes
that f is not globally Lipschitz.

5. The closed-loop equation of a third-order adaptive control system (Sec-
tion 1.2.6), using © = [ e 1 Oy ], is given by

am®1 + kpxor(t) + kpxs (21 + Ym(t))
ft,x) = —yxr(t) (7)
—yx1 (21 + Ym(t))
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The partial derivative of f(x) with respect to x is found as

T kpr(t) kp (x1 + ym(1))
of(ta) | mties 0 ®)
Oz —y (221 + ym(t)) 0 0

From (7) and (8) it can be seen that f(t,z) and % are continuous in

x on [a,b] x R® (assuming r(t) and y,,(t) bounded on t € [a,b]). Using
Lemma 3.1 or Lemma 3.2 it can be concluded that f is locally Lipschitz

in x on [a,b] x D, for any finite r > 0. Further it can be seen that

% is not globally bounded, by which Lemma 3.3 concludes that f

is not globally Lipschitz.

6. By using the definition of Lipschitz on f(x) = Ax — B (Cx), the
following is found

1f(z) = fWIl = [[Ax = By (Cx) — Ay + By (Cy)|
= A —y) = B (Cr) =4 (Cy))
< [[A@z =yl + B (Cz) =4 (Cy))l
< Al llz =yl + Bl [y (Cx) =4 (Cy)l - (9)

where 1) : R — R is globally Lipschitz (| f'(z)| is bounded by a positive
constant k on R). This implies that the inequality (9) may be rewritten
as

1f() = FIl < NAllz =yl + Bl K lz =yl
WA+ F 1B [l =yl
Lijz =y

Hence f is globally Lipschitz in x on R™, which implies that it is locally
Lipschitz in x on D, for any r > 0.

Solution 2 (Exercise 3.16 from Khalil)
The scalar differential equation is given by

. sin ¢
and of(t.2)
X X
= —1+sint——
Ox (1+ x2)2

which implies that f is locally Lipschitz in x on [0,t] x R for any t since f
and % are continuous on [0,t] x R for any t (Lemma 3.2). By further
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investigation it can be recognized that f is globally Lipschitz in x on [0,t] x R
for any t (=52 91Ut2) i uniformly bounded on [0, ] x R, Lemma 3.3). Using The-
orem 3.2 it can be concluded that (10) has a unique solution x(t) for allt > 0.

In order to find a bound on the solution x(t), a new variable v is defined
as
v = 1? (11)

and it follows that v may be upper bounded as

v 2zx

= 227 +sint
x° + s 1122

222 +1
= —2v+1 (12)

IN

where v(0) = z(0)* = 4. It is easily seen that f(v) = —2v + 1 is globally
Lipschitz in v on R by using the Lipschitz condition directly

[f@) = f)l = [-20+1+2y—1
= |—2z + 2y

=2 (z —y)|
2|z —yl (13)

Solving & = —2u + 1, u(0) = ug for t > 0 results in

u(t) = e ( / MO dt - c) h(t) = / 2dt = 2t
( 2tdt - c> / e*ldt = %e%
-5 )

where u(0) = €° (3¢° + ¢) = 1 4+ ¢ = w(0) which with

u(0) =v(0) =4 (14)
implies that
c = u(0)— % = g
u(t) = e (%e% + ;) (15)
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Using (12)-(15) and applying the comparison lemma (Lemma 3.4) results in

v(t) < e (e2t + ;) t>0 (16)

since u(t) and v(t) has a unique solution on R V¢ > 0. Finally it can be
seen from combining (11) and (16) that x(t) is bounded by

lz()] = V()
17 1
< —_p—2t _ >
= 26 + 3 t>0
Solution 3

1. The system is given by

. To
v [ —x1+%x?—x2}
= f(2)
The equilibrium points are found by solving 0 = f(z*)
x5 = 0
e Lo .
—x1+1—6x1 -z = 0
using x5 = 0, x] are found as
PR
-]+ 1—6961 = 0
—1627 + 23> = 0
i (zi*—16) = 0

= z7={-2,0,2}

which implies that the system has three isolated equilibrium points
given by (—2,0), (0,0), and (2,0). In order to determine the type of
each isolated equilibrium point, the Jacobian of f(x) is calculated

af _ 0 1
dr | —1+ a1 —1

The eigenvalues and type of equilibrium are found as

Bl = L0 1]
(—2,0) 4 -1

ox
1 1
= )\1’2 = —5 :|:§\/ 17

= 2% =(-2,0) is a saddle
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and
7 W Y
ox 0.0) -1 -1
B R LN
12= 75 32
= 2% =(—2,0) is a stable focus
and
oy = L1 1)
ox 2.0) 4 —1
1 1
= Al’Qz_aiE\/ﬁ

= 2" =(-2,0) is a saddle

2. The system is given by

. 211 — 1172
v 212 — 1y
= f(x)
The equilibrium points are found by solving 0 = f(z*)
20] —xjry = 0
2032 — a5 = 0

using x3 = 2232, x% is found as

* * ok o * * *2
* *2
= 0

= z;={-1,0,1}

which implies that the system has three isolated equilibrium points
given by (—1,2), (0,0), and (1,2). In order to determine the type of
each isolated equilibrium point, the Jacobian of f(x) is calculated

8_f_ 2—132 —T1
ax a 4$1 -1
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The eigenvalues and type of equilibrium are found as

o = 0]
(-12) -4 1

ox
1 1
= )\1’2 = —5 :l:ja\/ 15

= 2" =(—1,2) is a stable focus

and
o = L0 1]
9z | (g,0) 0 -1
= )\172 = {—1,2}
= 2" =(0,0) is a saddle
and
o = 13 71]
0z (1.9 4 —1
1,1
= A2 = D) i]ﬁ\/ﬁ

= 2% =(—2,0) is a stable focus

3. The system is given by

"= { — —J(?:m — I2) ]
f(z)

where
P43z, |7l <1

¥ (z) = { 2z — 2sgn(z), |z| >1
The equilibrium points are found by solving 0 = f(z*)

x5 = 0
—ry =Y —23) = 0

using x5 = 0, x7 is found as

Y(zy) = 0
*3 1 * *
< I +§$1a 7] <1
= 27=0
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which implies that the system has one isolated equilibrium point given
by (0,0). In order to determine the type of equilibrium point, the
eigenvalues of Jacobian of f(x) is calculated at x*

of
ox

0 1
N [—%—3(%’1—1@)2 —%+3(l’1—l’2)2:|

(5 4]

1 1
= MNao=—17j-
1,2 1 ]4ﬁ

= 2" =(0,0) is a stable focus

x* x*

N =

Solution 4
The phase portraits are drawn using the m-file pplane.m

1. Figure 1 shows the display of pplane.m using x = x1 and y = 5. Figure

The differential equations.

g = ¥
y {1 1B 5y

Parameters =
ol
EwpIEssions

The display window. The direction field.

The rinimum value of = 4 (™ Anows

_ L Number of
The masimurn value of = 4 " Lines field paints per
The minimurn walue of p = 3 ™ Mullclines ro# o column.
The masimum value of p = 2 (" More 20

Dt || Revert | Procesd

Figure 1: Display

2 shows the phase portrait the equilibrium points of the system. From
the figure it can be seen that (0,0) has the property of a stable focus,
and that (—2,0) and (2,0) have the property of a saddle point. This
agrees with the findings in Exercise 3.

2. Figure 3 shows the display of pplane.m using * = x; and y = xs.
Figure 4 shows the phase portrait the equilibrium points of the system.
From the figure it can be seen that (0,0) has the property of a saddle
point, and that (—1,2) and (1,2) have the property of stable node.
This agrees with the findings in Exercise 3.
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x'=y
y'=-x+(116)x °-y
L 1 i
2 i T
150 s 1 i
v 7
1+ 4 1 4
i 1
05+ i 1 —
T
> 0oF i T — | Prink
1
osp Lot 20
i ?
b 1]
! 7
15 ‘L /‘\ |
v 1
L b vt
1 P 7|
4 4
The backward orbit from -2, -0.5] left the computation window.
Ready.
The forward arbit from (-2, 0.5] --> a possible eq. pt. near [-0.031, 0.02]
The backward arbit from [-2, 0.5] left the computation windo,
Ready.
Figure 2: Phase portrat
The differential equations.
g = Fyesly
P
Parameters = =
o _ _
EHpIEssions : -
The display windaw. The direction field
The minimum vaue ofx =[ .3 " Ao
Nurnber of
The: masimum value of = 3 " Lines field points per
The ririrrum walue of y = 2 ™ Mulclnes ‘0w o ol
The masimum value ofy=[ 4 ™ Mang I a0
Duit H Revert | Proceed

Figure 3: Display
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X'=2x-xy
y'=2x"-y

TNV L[| ¢ «
;\\;7\7\7‘)\‘NL¢¢J/‘Z‘/&RR/§//§//§
I SRS RRNIS R AEER RS

N e ’ N
S P IS TS
T I T T
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NNKN NN~ N~ alroa A AT
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LN RN S =~ s Lz AA A AT |
Guit
3 2 ; o . > s

x

The backward orbit from (-0.032, -0.18] left the computation window
Ready.

The foward arbit from (0.019, -0.18) --> a possible eq. pt. near [0.99, 2
The backward orbit from (0.019, -0.18] left the computation windaw.
Ready.

Figure 4: Phase portrait

Solution 5
The system is given by

—a:1+x2(x1+a)—b
—czy (71 + a)

= flz)

Wherea,b,c>0,b>aandD:{x€R2‘x1<—a a.ndx2<x1—+b}.

xr1+a
1. Let e
V(z) = a9 T a
where V (z) = 0 on the boundary of the set D. Evaluating f(z)7 V (x)
yields
B oV (x) oV (x)
fle)yvV(z) = fi(z) ar, T fo() By
a+b
= —
fl(x) (,ﬁl’,’l + CL>2 fQ(I)
b
S 5 (=21 + 22 (21 +a) — b) — cxy (21 + a)
(x1+a)
. I +0b
= —cry(z1+a) Ve = pra——

< 0 VexeoD
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where 0D = {x € R2 ‘QjQ = g—iz } This implies that all the trajecto-

ries on the boundary of D move into D, by which it may be concluded
that all trajectories starting in D stays in D for all future time.

2. Using Bendixson criterion

flw) | ble)

= -1
8.1'1 81‘2 R
b
< 1480 yep
T+ a
< 0 VxeD

since lim,, ,_ ilia — 1. This implies that there can be no periodic

orbits entirely in D. Using this and the fact that all trajectories starting
in D remains in D for all future time, it can be concluded that there
can be no periodic orbits passing through any point in x € D.

Solution 6

Suppose M does not contain an equilibrium point. Then by the Poincare-
Bendixson criterion, there is a periodic orbit in M. But, by Corollary 2.1,
the periodic orbit must contain an equilibrium point.

Solution 7 .
1. By using 1 = 0, v9 = 0, 3 = Fy, uy = P and us = Epp the state
space model is expressed as

Zi‘l o)

To = — Lz — Ml'g sinx; + —u1

T3 —2p3 + B cosay + uz
= f(2)

2. Inserting the numerical values of the constants and the constant inputs
in the state space model gives

L2
f(z) = | —4x9 —136.1z3sinxy + 55.4
—0.4123 + 0.26 cos 1 + 0.18

The equilibrium points are found by solving f(z*) =0

x5 = 0
—4a5 — 136.125sinx] +55.4 = 0
—0.41z3+0.26cosz] +0.18 = 0

11



TTK4150 Nonlinear Control Systems Solution 1

where it can be seen that
xy = 0.63 cosx] + 0.44
Using this and =% = 0 in 425 — 136.12% sin 27 + 55.4 = 0 results in
—85.74 cos ] sinx] — 59.88sinx] + 55.44 =0

which has the solutions =7 = {0.41,1.62} in the interval [—m, x| (the
other solutions correspond to one rotation relative to the solutions
stated). Using x7} to calculate x} the two equilibrium points are found
as x* = {(0.41,0,1.01),(1.62,0,0.41)}. Both the equilibrium points
have § = 0, implying that the system is at rest with respect to rota-
tional velocity at the same frequency as the net frequency. The second
equilibrium point has a relatively large angle and deviation from x3 = 1
with respect to the first equilibrium point.

Solution 8
1. The state space is given by

Z.Cl . o)
Ty 7 (K (Kp (w10 — 21) — Tazra) — f(22))
2. By using f(z2) = —x2 + x2|2z2| and K = I, = 1, the state space is
rewritten as

T X2
To K, (x10 — 21) — Tawa + T2 — 29 |12

T2
l Kp (ZL‘lO — ZL‘l) - (Td — 1) Tg — X2 |l’2| ]
where the equilibrium point is given by
x5 = 0
Ky (210 —27) = (Ta = 1) 25 — a5 |s| = 0

= ] =Ty

3. The Jacobian matrix evaluated at the equilibrium point is given by

4 2 of (z)

ox

x*

= [—2(,, _(Td_ll)—2|5132‘]

- H(p —<Ti—1>] w*
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where £ 15 || is found by
- l‘%, VSEQ Z 0
Ty |wa| = 2

—x5, Vg >0

. g | | . 21‘2, VSEQ Z 0 - 2| |
P22l = —2x9, V>0 2

Notice that the type of equilibrium point is is independent of the set
point x1y. The eigenvalues are calculated

| 11 1
cig(d) = 5T+ 5\/—2Td 4K, T+ 14 5

(1 T+ \/—2Td—4Kp+Tj+1>

1
2
1 2
_ 5(1_de:\/<Td—1) —4Kp>

From this expression the following conclusion can be drawn

(a) K, < 3 (Ty— 1)? results in two real eigenvalues
(b) K, =1 (Ty— 1)? results in two equal eigenvalues
(¢c) Kp > 3 (Ty— 1)* results in two complex conjugated eigenvalues

Further it can be seen, by using K,,T; > 0, that the only possible
case for the eigenvalues to have a positive real part is when T; < 1

(\/(Td —1)® —4K, < \/(Td —1)*> = [Ty —1|). The result are shown
graphically in Figure 5.

4. From Figure 5 it can be seen that K, = T;; = 4 results in a stable focus.
The system is given by

. T9
Tr =
|: Kp (ZL‘lO — ZL‘l) — (Td — 1) To — T |l’2| ]
Using K, =Ty = 4 and x19 = 2, the system is rewritten as

To= l4(2_m1)_(4x—2 1) w2 — @3 |22 }

_ L2
4(2 —x1) — 3x9 — X2 | 29|
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Figure 5: Type of equilibrium point

-3y-yabs(y)

Stable node

=y
=42-%)
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The forward arbit from [2. 2] > & possible eq. pt. near (2, -0.00029].

Ready.
Choose an approximation with the mouse

Ready.
Ready.

|

Figure 6: Trajectories in the phase plane when K,
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Figure 6 shows the trajectories of the two different initial conditions
(the figure was generated by pplane6.m). From this figure it seems like
the equilibrium point is a stable node, this however is probably due

trajectories starting too close to the equilibrium point in order to show
focus behavior.
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