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Solution 1 (Exercise 3.2 in Khalil)
Notice that by definition Dr is a convex subset of Rn.

1. The pendulum equation with friction and constant input torque (Sec-
tion 1.2.1) is given by

f(x) =

·
x2

−g
l
sin(x1)− k

m
x2 +

1
ml2

T

¸
(1)

The partial derivative of f(x) with respect to x is found as

∂f(x)

∂x
=

·
0 1

−g
l
cos(x1) − k

m

¸
(2)

From (1) and (2) it can be seen that f(x) and ∂f(x)
∂x

are continuous in
x on R2. Using Lemma 3.1 or Lemma 3.2 it can be concluded that f
is locally Lipschitz in x on Dr for any r > 0. Further it can be seen
that ∂f(x)

∂x
is bounded on R2, by which Lemma 3.3 concludes that f is

globally Lipschitz (which also implies that f is locally Lipschitz in x
on Dr for any r > 0).

2. The tunnel diode circuit equation with constant input (Section 1.2.2)
is given by

f(x) =

· − 1
C
h(x1) +

1
C
x2

− 1
L
x1 − R

L
x2 +

1
L
u

¸
(3)

The partial derivative of f(x) with respect to x is found as

∂f(x)

∂x
=

· − 1
C
∂h(x1)
∂x1

1
C

− 1
L

−R
L

¸
(4)
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From (3) and (4) it can be seen that f(x) and ∂f(x)
∂x

are continuous in
x on R2 (assuming h(x1) and

∂f(x)
∂x

to be continuous in x1 and h(x1)
approaching ±∞ as x1 approaches ±∞). Using Lemma 3.1 or Lemma
3.2 it can be concluded that f is locally Lipschitz in x on Dr for any
finite r > 0. Further it can be seen that ∂f(x)

∂x
is not globally bounded,

by which Lemma 3.3 concludes that f is not globally Lipschitz.

3. The mass-spring equation with linear spring, linear viscous damping,
Coulomb friction and zero external force (Section 1.2.3) is given by

f(x) =

·
x2

− k
m
x1 − c

m
x2 +

1
m
η(x1, x2)

¸
where η(x1, x2) is discontinuous at x2 = 0. This discontinuity implies
that f is not locally Lipschitz at x2 = 0 (any discontinuous function is
not locally Lipschitz at the point of discontinuity). Due to the definition
of Dr (a ball centered around the origin) it is not possible to find a
constant r small enough to make f locally Lipschitz in x on Dr, and it
fallows that the system is not globally Lipschitz.

4. The Van der Pol oscillator (Example 2.6) is given by

f(x) =

·
x2

−x1 − ε (1− x21)x2

¸
(5)

The partial derivative of f(x) with respect to x is found as

∂f(x)

∂x
=

·
0 1

−1− 2εx1x2 −ε (1− x21)

¸
(6)

From (5) and (6) it can be seen that f(x) and ∂f(x)
∂x

are continuous in
x on R2. Using Lemma 3.1 or Lemma 3.2 it can be concluded that f
is locally Lipschitz in x on Dr for any finite r > 0. Further it can be
seen that ∂f(x)

∂x
is not globally bounded, by which Lemma 3.3 concludes

that f is not globally Lipschitz.

5. The closed-loop equation of a third-order adaptive control system (Sec-
tion 1.2.6), using x =

£
e0 φ1 φ2

¤
, is given by

f(t, x) =

 amx1 + kpx2r(t) + kpx3 (x1 + ym(t))
−γx1r(t)

−γx1 (x1 + ym(t))

 (7)
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The partial derivative of f(x) with respect to x is found as

∂f(t, x)

∂x
=

 am + kpx3 kpr(t) kp (x1 + ym(t))
−γr(t) 0 0

−γ (2x1 + ym(t)) 0 0

 (8)

From (7) and (8) it can be seen that f(t, x) and ∂f(t,x)
∂x

are continuous in
x on [a, b]×R3 (assuming r(t) and ym(t) bounded on t ∈ [a, b]). Using
Lemma 3.1 or Lemma 3.2 it can be concluded that f is locally Lipschitz
in x on [a, b] × Dr for any finite r > 0. Further it can be seen that
∂f(t,x)
∂x

is not globally bounded, by which Lemma 3.3 concludes that f
is not globally Lipschitz.

6. By using the definition of Lipschitz on f(x) = Ax − Bψ (Cx) , the
following is found

kf(x)− f(y)k = kAx−Bψ (Cx)−Ay +Bψ (Cy)k
= kA (x− y)−B (ψ (Cx)− ψ (Cy))k
≤ kA (x− y)k+ kB (ψ (Cx)− ψ (Cy))k
≤ kAk kx− yk+ kBk |ψ (Cx)− ψ (Cy)| (9)

where ψ : R→ R is globally Lipschitz (|f 0(x)| is bounded by a positive
constant k on R). This implies that the inequality (9) may be rewritten
as

kf(x)− f(y)k ≤ kAk kx− yk+ kBk k kx− yk
= (kAk+ k kBk) kx− yk
= L kx− yk

Hence f is globally Lipschitz in x on Rn, which implies that it is locally
Lipschitz in x on Dr for any r > 0.

Solution 2 (Exercise 3.16 from Khalil)
The scalar differential equation is given by

ẋ = −x+ sin t

1 + x2
, x(0) = 2 (10)

and
∂f(t, x)

∂x
= −1 + sin t 2x

(1 + x2)2

which implies that f is locally Lipschitz in x on [0, t] × R for any t since f
and ∂f(t,x)

∂x
are continuous on [0, t] × R for any t (Lemma 3.2). By further
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investigation it can be recognized that f is globally Lipschitz in x on [0, t]×R
for any t (∂f(t,x)

∂x
is uniformly bounded on [0, t]×R, Lemma 3.3). Using The-

orem 3.2 it can be concluded that (10) has a unique solution x(t) for all t ≥ 0.

In order to find a bound on the solution x(t), a new variable v is defined
as

v = x2 (11)

and it follows that v̇ may be upper bounded as

v̇ = 2xẋ

= −2x2 + sin t 2x

1 + x2

≤ −2x2 + 1
= −2v + 1 (12)

where v(0) = x(0)2 = 4. It is easily seen that f(v) = −2v + 1 is globally
Lipschitz in v on R by using the Lipschitz condition directly

|f(x)− f(y)| = |−2x+ 1 + 2y − 1|
= |−2x+ 2y|
= |−2 (x− y)|
= 2 |x− y| (13)

Solving u̇ = −2u+ 1, u(0) = u0 for t ≥ 0 results in

u(t) = e−h(t)
µZ

eh(t)dt+ c

¶
, h(t) =

Z
2dt = 2t

= e−2t
µZ

e2tdt+ c

¶
,

Z
e2tdt =

1

2
e2t

= e−2t
µ
1

2
e2t + c

¶
where u(0) = e0

¡
1
2
e0 + c

¢
= 1

2
+ c = u(0) which with

u(0) = v(0) = 4 (14)

implies that

c = u(0)− 1
2
=
7

2

u(t) = e−2t
µ
1

2
e2t +

7

2

¶
(15)
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Using (12)-(15) and applying the comparison lemma (Lemma 3.4) results in

v(t) ≤ e−2t
µ
e2t +

7

2

¶
t ≥ 0 (16)

since u(t) and v(t) has a unique solution on R ∀t ≥ 0. Finally it can be
seen from combining (11) and (16) that x(t) is bounded by

|x(t)| =
p
v(t)

≤
r
7

2
e−2t +

1

2
t ≥ 0

Solution 3
1. The system is given by

ẋ =

·
x2

−x1 + 1
16
x51 − x2

¸
= f(x)

The equilibrium points are found by solving 0 = f(x∗)

x∗2 = 0

−x∗1 +
1

16
x∗51 − x∗2 = 0

using x∗2 = 0, x
∗
1 are found as

−x∗1 +
1

16
x∗51 = 0

−16x∗1 + x∗51 = 0

x∗1
¡
x∗41 − 16

¢
= 0

⇒ x∗1 = {−2, 0, 2}
which implies that the system has three isolated equilibrium points
given by (−2, 0), (0, 0), and (2, 0). In order to determine the type of
each isolated equilibrium point, the Jacobian of f(x) is calculated

∂f

∂x
=

·
0 1

−1 + 5
16
x41 −1

¸
The eigenvalues and type of equilibrium are found as

∂f

∂x

¯̄̄̄
(−2,0)

=

·
0 1
4 −1

¸
⇒ λ1,2 = −1

2
± 1
2

√
17

⇒ x∗ = (−2, 0) is a saddle
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and

∂f

∂x

¯̄̄̄
(0,0)

=

·
0 1
−1 −1

¸
⇒ λ1,2 = −1

2
± j

1

2

√
3

⇒ x∗ = (−2, 0) is a stable focus

and

∂f

∂x

¯̄̄̄
(2,0)

=

·
0 1
4 −1

¸
⇒ λ1,2 = −1

2
± 1
2

√
17

⇒ x∗ = (−2, 0) is a saddle

2. The system is given by

ẋ =

·
2x1 − x1x2
2x21 − x2

¸
= f(x)

The equilibrium points are found by solving 0 = f(x∗)

2x∗1 − x∗1x
∗
2 = 0

2x∗21 − x∗2 = 0

using x∗2 = 2x
∗2
1 , x

∗
1 is found as

2x∗1 − x∗1x
∗
2 = 2x∗1 − x∗12x

∗2
1

= 2x∗1
¡
1− x∗21

¢
= 0

⇒ x∗1 = {−1, 0, 1}

which implies that the system has three isolated equilibrium points
given by (−1, 2), (0, 0), and (1, 2). In order to determine the type of
each isolated equilibrium point, the Jacobian of f(x) is calculated

∂f

∂x
=

·
2− x2 −x1
4x1 −1

¸
6
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The eigenvalues and type of equilibrium are found as

∂f

∂x

¯̄̄̄
(−1,2)

=

·
0 1
−4 1

¸
⇒ λ1,2 = −1

2
± j

1

2

√
15

⇒ x∗ = (−1, 2) is a stable focus
and

∂f

∂x

¯̄̄̄
(0,0)

=

·
2 0
0 −1

¸
⇒ λ1,2 = {−1, 2}
⇒ x∗ = (0, 0) is a saddle

and

∂f

∂x

¯̄̄̄
(1,2)

=

·
0 −1
4 −1

¸
⇒ λ1,2 = −1

2
± j

1

2

√
15

⇒ x∗ = (−2, 0) is a stable focus

3. The system is given by

ẋ =

·
x2

−x2 − ψ (x1 − x2)

¸
= f(x)

where

ψ (z) =

½
z3 + 1

2
z, |z| ≤ 1

2z − 1
2
sgn(z), |z| > 1

The equilibrium points are found by solving 0 = f(x∗)

x∗2 = 0

−x∗2 − ψ (x∗1 − x∗2) = 0

using x∗2 = 0, x
∗
1 is found as

ψ (x∗1) = 0

⇔ x∗31 +
1

2
x∗1, |x∗1| ≤ 1

⇒ x∗1 = 0
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which implies that the system has one isolated equilibrium point given
by (0, 0). In order to determine the type of equilibrium point, the
eigenvalues of Jacobian of f(x) is calculated at x∗

∂f

∂x

¯̄̄̄
x∗

=

·
0 1

−1
2
− 3 (x1 − x2)

2 −1
2
+ 3 (x1 − x2)

2

¸¯̄̄̄
x∗

=

·
0 1
−1
2
−1
2

¸
⇒ λ1,2 = −1

4
± j

1

4

√
7

⇒ x∗ = (0, 0) is a stable focus

Solution 4
The phase portraits are drawn using the m-file pplane.m

1. Figure 1 shows the display of pplane.m using x = x1 and y = x2. Figure

Figure 1: Display

2 shows the phase portrait the equilibrium points of the system. From
the figure it can be seen that (0, 0) has the property of a stable focus,
and that (−2, 0) and (2, 0) have the property of a saddle point. This
agrees with the findings in Exercise 3.

2. Figure 3 shows the display of pplane.m using x = x1 and y = x2.
Figure 4 shows the phase portrait the equilibrium points of the system.
From the figure it can be seen that (0, 0) has the property of a saddle
point, and that (−1, 2) and (1, 2) have the property of stable node.
This agrees with the findings in Exercise 3.
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x ' = y                   
y ' = - x + (1/16) x 5 - y
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Figure 2: Phase portrat

Figure 3: Display
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x ' = 2 x - x y
y ' = 2 x2 - y
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Figure 4: Phase portrait

Solution 5
The system is given by

ẋ =

· −x1 + x2 (x1 + a)− b
−cx1 (x1 + a)

¸
= f(x)

where a, b, c > 0, b > a and D =
n
x ∈ R2

¯̄̄
x1 < −a and x2 <

x1+b
x1+a

o
.

1. Let

V (x) = x2 − x1 + b

x1 + a

where V (x) = 0 on the boundary of the set D. Evaluating f(x)5V (x)
yields

f(x)5 V (x) = f1(x)
∂V (x)

∂x1
+ f2(x)

∂V (x)

∂x2

= f1(x)
a+ b

(x1 + a)2
+ f2(x)

=
a+ b

(x1 + a)2
(−x1 + x2 (x1 + a)− b)− cx1 (x1 + a)

= −cx1 (x1 + a) ∀x2 = x1 + b

x1 + a
< 0 ∀x ∈ ∂D

10



TTK4150 Nonlinear Control Systems Solution 1

where ∂D =
n
x ∈ R2

¯̄̄
x2 =

x1+b
x1+a

o
. This implies that all the trajecto-

ries on the boundary of D move into D, by which it may be concluded
that all trajectories starting in D stays in D for all future time.

2. Using Bendixson criterion

f1(x)

∂x1
+

f2(x)

∂x2
= −1 + x2

< −1 + x1 + b

x1 + a
∀x ∈ D

< 0 ∀x ∈ D

since limx1→−∞
x1+b
x1+a

→ 1. This implies that there can be no periodic
orbits entirely inD. Using this and the fact that all trajectories starting
in D remains in D for all future time, it can be concluded that there
can be no periodic orbits passing through any point in x ∈ D.

Solution 6
Suppose M does not contain an equilibrium point. Then by the Poincare-
Bendixson criterion, there is a periodic orbit in M . But, by Corollary 2.1,
the periodic orbit must contain an equilibrium point.

Solution 7
1. By using x1 = δ, x2 = δ̇, x3 = Eq, u1 = P and u2 = EFD the state
space model is expressed as ẋ1

ẋ2
ẋ3

 =

 x2
−D

M
x2 − η1

M
x3 sinx1 +

1
M
u1

−η2
τ
x3 +

η3
τ
cosx1 +

1
τ
u2


= f(x)

2. Inserting the numerical values of the constants and the constant inputs
in the state space model gives

f(x) =

 x2
−4x2 − 136.1x3 sinx1 + 55.4
−0.41x3 + 0.26 cosx1 + 0.18


The equilibrium points are found by solving f(x∗) = 0

x∗2 = 0

−4x∗2 − 136.1x∗3 sinx∗1 + 55.4 = 0

−0.41x∗3 + 0.26 cosx∗1 + 0.18 = 0

11
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where it can be seen that

x∗3 = 0.63 cosx
∗
1 + 0.44

Using this and x∗2 = 0 in 4x
∗
2 − 136.1x∗3 sinx∗1 + 55.4 = 0 results in

−85.74 cosx∗1 sinx∗1 − 59.88 sinx∗1 + 55.44 = 0
which has the solutions x∗1 = {0.41, 1.62} in the interval [−π, π] (the
other solutions correspond to one rotation relative to the solutions
stated). Using x∗1 to calculate x

∗
3 the two equilibrium points are found

as x∗ = {(0.41, 0, 1.01) , (1.62, 0, 0.41)}. Both the equilibrium points
have δ̇ = 0, implying that the system is at rest with respect to rota-
tional velocity at the same frequency as the net frequency. The second
equilibrium point has a relatively large angle and deviation from x3 = 1
with respect to the first equilibrium point.

Solution 8
1. The state space is given by·

ẋ1
ẋ2

¸
=

·
x2

1
Iz
(K (Kp (x10 − x1)− Tdx2)− f(x2))

¸
2. By using f(x2) = −x2 + x2 |x2| and K = Iz = 1, the state space is
rewritten as·

ẋ1
ẋ2

¸
=

·
x2

Kp (x10 − x1)− Tdx2 + x2 − x2 |x2|
¸

=

·
x2

Kp (x10 − x1)− (Td − 1)x2 − x2 |x2|
¸

where the equilibrium point is given by

x∗2 = 0

Kp (x10 − x∗1)− (Td − 1)x∗2 − x∗2 |x∗2| = 0

⇒ x∗1 = x10

3. The Jacobian matrix evaluated at the equilibrium point is given by

A , ∂f(x)

∂x

¯̄̄̄
x∗

=

·
0 1
−Kp − (Td − 1)− 2 |x2|

¸¯̄̄̄
x∗

=

·
0 1
−Kp − (Td − 1)

¸
12
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where ∂
∂x
x2 |x2| is found by

x2 |x2| =

½
x22, ∀x2 ≥ 0
−x22, ∀x2 ≥ 0

⇒ ∂

∂x
x2 |x2| =

½
2x2, ∀x2 ≥ 0
−2x2, ∀x2 ≥ 0 = 2 |x2|

Notice that the type of equilibrium point is is independent of the set
point x10. The eigenvalues are calculated

eig(A) = −1
2
Td ± 1

2

q
−2Td − 4Kp + T 2d + 1 +

1

2

=
1

2

µ
1− Td ±

q
−2Td − 4Kp + T 2d + 1

¶
=

1

2

µ
1− Td ±

q
(Td − 1)2 − 4Kp

¶
From this expression the following conclusion can be drawn

(a) Kp <
1
4
(Td − 1)2 results in two real eigenvalues

(b) Kp =
1
4
(Td − 1)2 results in two equal eigenvalues

(c) Kp >
1
4
(Td − 1)2 results in two complex conjugated eigenvalues

Further it can be seen, by using Kp, Td > 0, that the only possible
case for the eigenvalues to have a positive real part is when Td < 1

(
q
(Td − 1)2 − 4Kp <

q
(Td − 1)2 = |Td − 1|). The result are shown

graphically in Figure 5.

4. From Figure 5 it can be seen that Kp = Td = 4 results in a stable focus.
The system is given by

ẋ =

·
x2

Kp (x10 − x1)− (Td − 1)x2 − x2 |x2|
¸

Using Kp = Td = 4 and x10 = 2, the system is rewritten as

ẋ =

·
x2

4 (2− x1)− (4− 1)x2 − x2 |x2|
¸

=

·
x2

4 (2− x1)− 3x2 − x2 |x2|
¸
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0 1 2 3 4 5 6
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Kp

T d
Stable node 

Stable focus 

Unstable focus 

Td=1 

(Td-1) 2-4K p=0 

Figure 5: Type of equilibrium point

x ' = y                         
y ' = 4 (2 - x) - 3 y - y abs(y)
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Figure 6: Trajectories in the phase plane when Kp = Td = 4 and x10 = 2
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Figure 6 shows the trajectories of the two different initial conditions
(the figure was generated by pplane6.m). From this figure it seems like
the equilibrium point is a stable node, this however is probably due
trajectories starting too close to the equilibrium point in order to show
focus behavior.
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