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Introduction
Our aim is to solve the nonlinear Schrödinger equation,

i
∂ψ

∂t
= −

∂2ψ

∂x2
+ (V (x) + Cnl|ψ|2)ψ, x ∈ [−π, π]

where V (x) is some potential and Cnl is the nonlinearity
constant.

We impose an initial condition and a periodic boundary
condition,

ψ(x, 0) = ψ0(x), x ∈ [−π, π]

ψ(−π, t) = ψ(π, t), t > 0.
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Semi-discretisation
We do a Fourier transform of the system, setting

ψn(x, t) =

NF
2

−1
∑

k=−
NF
2

ck(t)e
ikx,

where NF is a power of two, yielding

dc

dt
= Lc+N(c), where

N(c) = −i · F
(

(V (x) + Cnl)|F
−1(c)|2)F−1(c)

)

L = diag(−ik2)
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Splitting scheme
The semi-discretised system ċ = Lc+N(c) calls for
methods utilizing the splitting into a linear part L and a
nonlinear part N(c).

The scheme must cope with the unbounded linear part L
(the Laplacian). We focus on the following schemes:

IF Integrating factor methods (Maday, Patera, Rønquist)

ETD Exponential Time Differencing (Cox, Matthews, now
also Krogstad)

LGI Lie group integrators with affine actions (Munthe-Kaas
and others).
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Splitting scheme
The semi-discretised system ċ = Lc+N(c) calls for
methods utilizing the splitting into a linear part L and a
nonlinear part N(c).

The scheme must cope with the unbounded linear part L
(the Laplacian). We focus on the following schemes:

IF Integrating factor methods (Maday, Patera, Rønquist)

ETD Exponential Time Differencing (Cox, Matthews, now
also Krogstad)

LGI Lie group integrators with affine actions (Munthe-Kaas
and others).

• All these approaches integrate the linear part exactly
to cope with the unbounded L. The alternative is to
use some implicit integrator, which we want to avoid.
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Integrating factor
By a change of variables, an integrating factor ameliorates
the “stiff” part L.

The exact integrating factor etL applied on the
semi-discretised system ċ(t) = Lc(t) +N(c(t)) results
in

etLċ(t) = etLLc(t) + etLN(c(t))

which is integrated to

c(h) = e−hLc(0) + e−hL

∫ h

0
etLN(c(t)) dt.

• Our methods OIFS, ETD and LGI can all be thought
of as arising from different ways of evaluating the
integral above.
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Unified Method format
Framework (Runge–Kutta-like) for all the methods herein:

ki = hN



ai0(hL)c0 +

i−1
∑

j=1

aij(hL)kj



 ,

for i = 1, . . . , s

c1 = b0(hL)c0 +

s
∑

i=1

bi(hL)ki

• “Variable coefficients” Runge–Kutta method.

• When L = 0, the order conditions reduce to standard
theory. Our aij(0) and bi(0) should correspond to
Kutta’s classical fourth order method. Note also
ai0(0) = 1 and bi(0) = 1.
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Unified method format
We will write all our fourth order methods in the four stages,
where z := hL,

k1 = hN
`

a10(z)c0
´

k2 = hN
`

a20(z)c0 + a21(z)k1
´

k3 = hN
`

a30(z)c0 + a31(z)k1 + a32(z)k2
´

k4 = hN
`

a40(z)c0 + a41(z)k1 + a42(z)k2 + a43(z)k3
´

c1 = b0
`

z
´

c0 + b1
`

z
´

k1 + b2
`

z
´

k2 + b3
`

z
´

k3 + b4
`

z
´

k4

which is again written in the tableau

a10(z)

a20(z) a21(z)

a30(z) a31(z) a32(z)

a40(z) a41(z) a42(z) a43(z)

b0(z) b1(z) b2(z) b3(z) b4(z)
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Operator–Integration–Factor methods (OIFS)
A methodology for generating time-splitting schemes. We
use the integrating factor Q(t) = e−tL as we have an
autonomous linear part. This corresponds to using an
exact solver for the inner time-step in OIFS-methods.

RK4/Exact:
k1 = hN

(

c0
)

k2 = hN
(

e
hL
2 c0 + 1

2
e

hL
2 k1)

)

k3 = hN
(

e
hL
2 c0 + 1

2
k2

)

k4 = hN
(

ehLc0 + e
hL
2 k3)

)

y1 = ehLc0 + 1
6

(

ehLk1 + 2e
hL
2 (k2 + k3) + k4

)
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Operator–Integration–Factor methods (OIFS)
A methodology for generating time-splitting schemes. We
use the integrating factor Q(t) = e−tL as we have an
autonomous linear part. This corresponds to using an
exact solver for the inner time-step in OIFS-methods.

RK4/Exact, Unified method format
Let hL =: z,

1

e
z
2 1

2
e

z
2

e
z
2 1

2

ez e
z
2

ez 1
6
ez 1

3
e

z
2 1

3
e

z
2 1

6
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Explicit Time Differentiation (ETD)
Cox and Matthews proposed to solve the integral
∫ h
0 etAb(c(t)) dt by approximating b(c(t)) by an

interpolating polynomial.
First order method, ETD1:

b(c(t))) ≈ b(c0) ⇒

∫ h

0
etAb(c0) dt =

ehA − 1

A
b(c0)

Second order method, ETDRK2:

b(c(t)) ≈ b(c0) + t
b(c1) − b(c0)

h
⇒

∫ h

0
etA

(

b(c0) + t
b(c1) − b(c0)

h

)

dt =
ehA − 1 − hA

hA2
(b(c1) − b(c0))

where c1 is an approximation of c(h) done via ETD1.
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Explicit Time Differentiation (ETD)
Cox and Matthews proposed to solve the integral
∫ h
0 etAb(c(t)) dt by approximating b(c(t)) by an

interpolating polynomial.
Fourth order, ETDRK4:
Let z = hL,

k̃1 = e
z
2 c0 + h1

2
α(z/2)N(c0)

k̃2 = e
z
2 c0 + h1

2
α(z/2)N(k̃1)

k̃3 = e
z
2 k1 + h1

2
α(z/2)(2N(k̃2) − N(c0))

c1 = ezc0 + hβ1(z)N(c0) + hβ2(z)
“

N(k̃1) + N(k̃2)
”

+ hβ3(z)N(k̃3)

and
α(z) = z−1

`

ez − 1
´

β1(z) = z−3
`

−4 − z + ez(4 − 3z + z2)
´

β2(z) = z−3
`

2 + z + ez(−2 + z)
´

· 2

β3(z) = z−3
`

−4 − 3z − z2 + ez(4 − z)
´
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Explicit Time Differentiation (ETD)
Cox and Matthews proposed to solve the integral
∫ h
0 etAb(c(t)) dt by approximating b(c(t)) by an

interpolating polynomial.
Fourth, order, ETDRK4, Unified method format:

k1 = hN(c0)

k2 = hN(e
z
2 c0 + 1

2
α(z/2)k1)

k3 = hN(e
z
2 c0 + 1

2
α(z/2)k2)

k4 = hN(ezc0 + z
4

α(z/2)2k1 + α(z/2)k3)

1

e
z
2 1

2
α(z/2)

e
z
2 1

2
α(z/2)

ez z
4

α(z/2)2 α(z/2)

ez β1(z) β2(z) β2(z) β3(z)
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Lie group integrator — Affine action (LGI)
We have the affine Lie group, with elements (A, b) acting
on CN via the group action (A, b) · c = Ac+ b,
A ∈ GLN(C). The group becomes GLN(C) o CN .

The associated affine Lie algebra has the exponential
map

Exp (t(A, b)) =

(

etA,
etA − 1

A
b

)

This is put into the framework of Runge–Kutta–Munthe-
Kaas methods and we get a RKMK4 method from Kutta’s
classical 4th order method, and the commutator in g

[(A2, b2), (A1, b1)] = ([A2, A1], A1b2 −A2b1) .
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Commutator-free schemes (LGI)
Commutator-free methods are also based on the affine
Lie group and is an LGI-method, but unlike RKMK, they
avoid the necessity of forming commutators in g by extra
evaluations of the exponentials. We use the standard 4th
order method, denoted CFREE4 with 5 exponentials.

k1 = hN(c0)

U2 = e
hL
2 c0 + 1

2
α(hL

2
)k1

k2 = hN(U2)

k3 = hN(e
hL
2 c0 + 1

2
α(hL

2
)k2)

k4 = hN(e
hL
2 U2 + α(hL

2
)(k3 − 1

2
k1))

Us = e
hL
2 c0 + 1

12
α(hL

2
)(3k1 + 2k2 + 2k3 − k4)

c1 = e
hL
2 Us + 1

12
α(hL

2
)(−k1 + 2k2 + 2k3 + 3k4)
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Commutator-free schemes (LGI)
Commutator-free methods are also based on the affine
Lie group and is an LGI-method, but unlike RKMK, they
avoid the necessity of forming commutators in g by extra
evaluations of the exponentials. We use the standard 4th
order method, denoted CFREE4 with 5 exponentials.

1

e
z
2 1

2
α(z/2)

e
z
2 1

2
α(z/2)

ez z
4

α(z/2)2 α(z/2)

ez α(z/2)
12

“

3e
z
2 − 1

”

α(z/2)
6

“

e
z
2 + 1

”

α(z/2)
6

“

e
z
2 + 1

”

α(z/2)
12

“

3 − e
z
2

”

• The aij(z) functions are the same for CFREE4 and

ETD4RK.
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Runge–Kutta–Munthe-Kaas fourth order (LGI)
From Munthe-Kaas & Owren (1999) we derive

k1 = hN(c0)

k2 = hN(e
z
2c0 + 1

2
α(z/2)k1)

C1 = L(k2 − k1)

k3 = hN(e
z
2c0 + α(z/2)(1

2
k2 − 1

8
C1)k2 − 1

8
C1))

k4 = hN(ezc0 + α(z)k3)

C2 = L(k1 − 2k2 + k4)

c1 = ezc0 + 1
6
α(z)(k1 + 2k2 + 2k3 + k4 − C1 − 1

2
C2)

where C1 and C2 represents the two commutators

needed.
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Runge–Kutta–Munthe-Kaas fourth order (LGI)
In the unified method format,

1

e
z
2 1

2
α(z/2)

e
z
2 z

8α(z/2) 1
2

(

1 − z
4

)

α(z/2)

ez α(z)

ez α(z)
6

(

1 + z
2

) α(z)
3

α(z)
3

α(z)
6

(

1 − z
2

)
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Crank–Nicolson
• Physicists seem to use Crank–Nicolson almost exclusively, as it is

regarded the “best” solver for these problems.

• It is implemented for reference, with Newton-iterations making it
comparable to our methods in terms of computational cost.

• Trapezoidal rule in time, spectral in space:

c1 = c0 + h
2

(Lc0 + Lc1 +N(c0) +N(c1))

• Newton: Solve F (c1) = 0 where

F (c1) = c1 − ck − h
2

(

Lck + Lc1 +N(ck) +N(c1)
)

and F ′(c1) = 1 − hL
2

−
�

�
�
�hN ′(c1)

2
which gives the iteration:

ck+1 = (1 − hL/2)−1

(

h
2
N(ck) + (1 + hL/2)c0 +

h

2
N(c0)

)
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Crank–Nicolson, unified method format
Crank–Nicolson, with simplified Jacobian and 4 iterations,
may be put into the framework common for our methods
as follows:

1
1+z/2
1−z/2

2
2−z

1+z/2
1−z/2

1
2−z

1
2−z

1+z/2
1−z/2

1
2−z

1
2−z

1+z/2
1−z/2

1
2−z

1
2−z

where we recognise 1+z/2
1−z/2

as the (1, 1) Padé approximant

to ez. This is also a W -method.
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Spatial resolution
• The number of Fourier modes, NF , is chosen big,
NF = 1024 in all our experiments.

• When hN2
F . 1 all methods attain classical order for

all initial conditions and potentials tested.

• For NF = 1024 we typically look at the interval
h ∈ [10−6, 10−1], where classical order is not
expected.

Fourth Order Exponential Time Integrators for the Nonlinear Schrödinger Equation – p.15/24



Spatial resolution
• The number of Fourier modes, NF , is chosen big,
NF = 1024 in all our experiments.

• When hN2
F . 1 all methods attain classical order for

all initial conditions and potentials tested.

• For NF = 1024 we typically look at the interval
h ∈ [10−6, 10−1], where classical order is not
expected.

• NF = 1024 pose such big “problems” for our
integrator, that we can set the nonlinearity constant
Cnl = 0.
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Initial conditions
• Crucial for observed order (order reduction).

• Decay in Fourier coefficients is connected to
differentiability. If a function c0(x) is p times
continuously differentiable, then there exists a Kp

such that

|c0k| <
Kp

kp

where ψ0(x) =
∑

c0k(t)e
ikx.

• Examples used in experiments
• Hat function: ψ0(x) = abs(x) on [−π, π], p = 1.
• Smooth function: ψ0(x) = exp(2 sin(x)) on

[−π, π], p = ∞.
• Randomly generated functions with prescribed

regularity p ∈ {1, 2, 3, 4, 5, 6}
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Potentials
Various potensials V (x) have been used.

• Smooth potential

• Hat potential

• Random potential with prescribed regularity

• Constant potential, V (x) ≡ λ. The system of
equations decouples.

We will see that a potential with low regularity also leads to

order reduction.
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Numerical tests
IC Potential OIFS4 order ETD4/RKMK4/CFREE4 order

V = λ 4 4

IC = smooth V = smooth 4 4

V = hat 1.25 oscillating 1.65

V = λ 4 0.7

IC = hat V = smooth 2 < order, staircase 0.7

V = hat 1.25 oscillating 0.7

10
−5
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−4

10
−3

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 Timestep h

 ||
Ψ

(⋅,
0.

1)
 −

 Ψ
h(

⋅,0
.1

)|
| 2

 Global error, N=1024, Initial condition: exp(sin(2x)), Potential=1.

4

42

Cfree4
OIFS4
OIFS2
RKMK4Aff
ETD4RK
CRANKNIC
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Conclusions from numerical tests
• Cnl does not affect numerical results when
NF = 1024.

• ETDRK4/RKMK4/CFREE4 performs very similarly.

• OIFS4 more sensitive to potential, also senses the
subtle difference smooth vs. constant potential.

• OIFS4 less sensitive to initial condition.

• ETDRK4/RKMK4/CFREE4 bad on hat initial
condition, regardless of potential.
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Analysis for CFREE4, constant potential
Observe the global error for each Fourier mode:

Decoupled case, V (x) = λ:

ċk = −ik2ck − iλck

with exact solution

ck(t) = exp(−i(k2 + λ)t)c0k
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 The exact error for CFREE4 for different Fourier modes
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=

10

k = 1
k = 2
k = 4
k = 10
k = 21
k = 47
k = 101
k = 219
k = 474
k = 1023
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Analysis for CFREE4, constant potential
Observe the global error for each Fourier mode:

Decoupled case, V (x) = λ:

ċk = −ik2ck − iλck

with exact solution

ck(t) = exp(−i(k2 + λ)t)c0k

Global error for each component

goes like

||gek|| ≈

(

hk2

SB

)4

when hk2 < SB.
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For hk2 > SB, the error is

bounded by 2. SB is given by
960
T |λ|

1/4
which is 3.13 here.
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Analysis for CFREE4, constant potential
The global error for each Fourier mode is now bounded by

|gek| <

8

<

:

2
“

hk2

SB

”4
|c0

k| hk2 ≤ SB

2|c0
k| hk2 > SB

Remember |c0
k| <

Kp

kp .

Compute

1

4
||gek||22 =

1

4

NF /2−1
X

k=−NF /2

|gek|2

≤
X

|k|≤
√

Sb/h

„

hk2

SB

«8

|c0
k|2 +

X

|k|>
√

SB/h

|c0
k|2

≤ K2
p

„

h

Sb

«8
X

|k|≤
√

SB/h

k16−2p + K2
p

X

|k|>
√

SB/h

k−2p

Using the Euler–MacLaurin with remainder term to find bounds for the sums, we
eventually find forp ≤ 8

||ge||2 ≤ K

„

h

SB

«

2p−1

4
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Analysis for CFREE4, constant potential
We have

||ge|| =
∑

k

||gek|| ≈ Ch
2p−1

4 p ≤ 8

Predicted and observed order, CFREE4:
IC: Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Smooth
V (x) = 1 0.25 0.75 1.25 1.75 2.25 2.75 4∗

Fourth Order Exponential Time Integrators for the Nonlinear Schrödinger Equation – p.22/24



Analysis for CFREE4, constant potential
We have

||ge|| =
∑

k

||gek|| ≈ Ch
2p−1

4 p ≤ 8

Predicted and observed order, CFREE4:
IC: Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Smooth
V (x) = 1 0.25 0.75 1.25 1.75 2.25 2.75 4∗

Observed order, CFREE4, ETD4, RKMK:
V = 1

4
||x||2 0.35 0.75 1.25 1.25 1.75 1.75 1.65

Smooth V 0.25 0.75 1.25 1.75 2.25 2.75 4
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Analysis for OIFS4, constant potential
Accordingly for OIFS4:

Each mode behaves the
same, with the result that
OIFS4 has order 4 on all
constant potentials. Verified
experimentally.

||ge||22 =

NF /2−1
X

k=−NF /2

|gek|2

= Khh4|c0
k|

= Khh4
NF /2−1

X

k=−NF /2

|c0
k|

= Kh||c0||22 h4.
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The end
References

• See Borko & Will’s slides for a reference list..

Conclusions (or an attempt thereat)

• OIFS seems best for our Schrödinger application
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