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Introduction

We consider ambiguity in the formulation of Lie group
methods. Examples used are

The action of so(3) on the sphere S?

The action of SL(2) on R?.

The ideas presented here are based on the paper by
Lewis and Olver, Geometric integration algorithms on
homogeneous manifolds, Found. Comput. Math.
2:363-392 (2002).

We shall see that the stabllity of first-order integrators can

be significantly improved by use of the isotropy in the
formulation.
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Isotropy — definition

The isotropy subgroup of a Lie group action
A: G x M — M Is defined pointwise on the manifold as

G, ={g€eG|A(g,p) =D}
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Isotropy — definition

The isotropy subgroup of a Lie group action
A: G x M — M Is defined pointwise on the manifold as

G, ={g€eG|A(g,p) =D}

The isotropy subalgebra Is the Lie algebra of G,,. Defining
the Lie algebra action as A(u,p) = A(exp(u),p), this is
equivalent to

gp =1ucglAu,p)=p}
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Isotropy — S0O(3) — S* example

Consider the action of so(3) on S?, which rotates vectors
in S¢ C R3.

The isotropy subgroup of so(3) at the point p rotates p
around itself.
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Isotropy iIn RKMK methods

Given a differential equation on a manifold M
y=Fy), F-M—->TM

an RKMK method relies on the existence of an
algebra-valued map f: M — g representing the differential
equation. A, :gx M — TM is | A(tu,y).

dt [t=0
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Isotropy iIn RKMK methods

Given a differential equation on a manifold M
y=Fy), F-M—->TM

an RKMK method relies on the existence of an
algebra-valued map f: M — g representing the differential
equation. A\, g x M — TMis &|  A(tu,y), Algy)(y) =0.

dt 1t=0

TM__ A Ow)

FT /9 Adfly) +Clyl)ly) = Fly)
\/./

M 4G Not changed

where ((y) is any element in the isotropy subalgebra g,,.
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Lie-Euler

The RKMK method we are going to use is Lie-Euler, which
for some chosen algebra map f is

Ynt1 = eXp(hf(yn) )Un

where f(y)y = F(y) = v.
(For our matrix-vector examples, A, (f(y))(y) = f(y)y)
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Lie-Euler

The RKMK method we are going to use is Lie-Euler, which
for some chosen algebra map f is

Ynt1 = eXp(hf(yn) )Un

where f(y)y = F(y) = V.

Adding an isotropy correction to f preserves the differential
equation, but affects the numerical method

Un+1 = exp(h(f(yn) + o(yn)C(un)))un

where o : M — R IS a scalar function.
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L_ie series expansion

An expansion of exp(f 4 ) goes like (suppressing arguments
of f and ()

ffetcf+

exp(f+ ) =1+f+C+ 5
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L_ie series expansion

An expansion of exp(f 4 ) goes like (suppressing arguments
of f and ()

exp(f+ Q) =1+f+ 2+

2450+ Uf + 2

but remember that ¢y = 0, so for Lie-Euler

24 of 5+ f0f + O
exp(f+C)(y) =y +fy+——y+ c

Yy -+

— Isotropy only has an effect from second order (hTZ ¢f) and

upwards.
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The range of isotropy, SO(3) — S?

The effect of varying the scalar o in front of (:

Startpoint
-

/
With isotropy \
correction

No correction 0 = 0
Only seconj order effect Cf

(One Lie-Euler step with isotropy correction, At = 0.1)

° o ° o ° o ° o ° o ° o ° o
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The range of isotropy, SO(3) — S?

The effect of varying the scalar o in front of (:

Startpoint
-

/
With isotropy \
correction

No correction 0 = 0
Only seconj order effect Cf

The second order effect (f corrects the path orthogonally,

as (fy L fy when ( is skew-symmetric.
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OrDbit capture [Lewis-Olver]

Orbit capture is sought by choosing a ¢ such that we get
close to the red point above.

“Minimize the distance from the true orbit”
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OrDbit capture [Lewis-Olver]

“Minimize the distance from the true orbit”

By using isotropy, we are able to cancel the second order
orbit error. Phase error Is still order 1. Condition:

df
—(U)y —o¢f =C fly)y
N dt Y ~—~—

e vector fi eld
second order error
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Results for the rigid body

Lewis—Olver
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The isotropy corrected Lie-Euler is signifi cantly better
than no correction.

There is some energy drift.
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Results for the rigid body

Lewis—Olver
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There is some energy drift.

Remedy: Scale o(y) by a constant «

Hamiltonian error
© o o O
N (00]

o

2000 3000 4000 5000 6000 7000

° ° ° ° ° ° ° ° ° ° ° ° ° °
Isotropy in geometric integration, SCICADE 2003, July 3 — p.10/1!



SL(2) action on R?
SL(2) is all 2 x 2 matrices with determinant 1.

We want a Lie-Euler method of the form

Un+1 = exp(hf(yn))uyn
where f : R? — sl(2) (trace-free matrices).

The isotropy subalgebra at y = (u,v) in R? iS
uv —uz
Cly) = ( 2 )
v —uv
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SL(2) action on R?

An f: R — sl(2) for Lotka-Volterra
S ) . _ u(u—v+l1)
A SISO v
v=v(l —u) 0 I —u

An f: R — sl(2) for Duffing oscillator

u=v 0 1
{\')u—us} ~ ﬂy)(]—uz O)
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Results on sL(2), Lotka-Volterra, At = 0.1

No scaling, o« =1
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Not as promising as the rigid body example
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Results on sL(2), Lotka-Volterra, At = 0.1

No scaling, o« =1

- Symplectic Euler

Invariant error
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Results on sL(2), Duffing, At = 0.1

No scaling, o« =1
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Results on sL(2), Duffing, At = 0.1

No scaling, o« =1

Lie—=Euler 7 Iso-Lie—=Euler

so-Lie-Euler  -e-Euler

= I —

o
o

o

2
S mlectic Euler

o

Invariant error

“Exact o\ O3 TLLLL 3 ~Symplectic Euler
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Invariant error

0.2 " 1so-Lie—Euler =

0.15
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On the scaling «

For rigid body: « = 1.00009
Lotka-Volterra: o« = 1.84, Duffing: o« =1.17
Found by trial and error.
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On the scaling «

For rigid body: « = 1.00009

Lotka-Volterra: o« = 1.84, Duffing: o« =1.17

Why small for rigid body?

Partial answer: (fy L fy for rigid body, not true for our SL(2)

examples. We even have (fy || fy at some points, which
means that isotropy does not contribute here (in red below).
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Notes

Easily applicable to Lie-Euler on the rigid body
equations, with good results.

Stability comparable to symplectic euler when a
satisfactory « has been found.

Promising results recently noted for S (2).
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The end

Easily applicable to Lie-Euler on the rigid body
equations, with good results.

Stability comparable to symplectic euler when a
satisfactory « has been found.

Promising results recently noted for S (2).

Thank you for your attention
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