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Introduction

We consider ambiguity in the formulation of Lie group
methods. Examples used are

• The action of SO(3) on the sphere S2

• The action of SL(2) on R2.

The ideas presented here are based on the paper by
Lewis and Olver, Geometric integration algorithms on
homogeneous manifolds, Found. Comput. Math.
2:363-392 (2002).

We shall see that the stability of first-order integrators can
be significantly improved by use of the isotropy in the
formulation.

Isotropy in geometric integration, SciCADE 2003, July 3 – p.2/15



Isotropy — definition

The isotropy subgroup of a Lie group action
Λ : G × M → M is defined pointwise on the manifold as

Gp = {g ∈ G | Λ(g, p) = p }

Isotropy in geometric integration, SciCADE 2003, July 3 – p.3/15



Isotropy — definition

The isotropy subgroup of a Lie group action
Λ : G × M → M is defined pointwise on the manifold as

Gp = {g ∈ G | Λ(g, p) = p }

The isotropy subalgebra is the Lie algebra of Gp. Defining
the Lie algebra action as λ(u, p) = Λ(exp(u), p), this is
equivalent to

gp = {u ∈ g | λ(u, p) = p }
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Isotropy — SO(3) − S2 example

Consider the action of SO(3) on S2, which rotates vectors
in S2

⊂ R3.

p

The isotropy subgroup of SO(3) at the point p rotates p

around itself.
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Isotropy in RKMK methods

Given a differential equation on a manifold M

ẏ = F(y), F : M → TM

an RKMK method relies on the existence of an
algebra-valued map f : M → g representing the differential
equation. λ? : g × M → TM is d

dt

∣

∣

t=0
λ(tu, y).

TM

g

λ?(·)(y)jjUUUUUUUUUUU

M

F

OO

f
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λ?(f(y))(y)

+ ζ(y)

= F(y)

where ζ(y) is any element in the isotropy subalgebra gy.
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Isotropy in RKMK methods

Given a differential equation on a manifold M

ẏ = F(y), F : M → TM

an RKMK method relies on the existence of an
algebra-valued map f : M → g representing the differential
equation. λ? : g × M → TM is d

dt

∣

∣

t=0
λ(tu, y), λ?(gy)(y) = 0.

TM

g
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f+ζ

44iiiiiiiiiiii

λ?(f(y)+ ζ(y))(y) = F(y)
︸︷︷︸

Not changed

where ζ(y) is any element in the isotropy subalgebra gy.
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Lie-Euler

The RKMK method we are going to use is Lie-Euler, which
for some chosen algebra map f is

yn+1 = exp(hf(yn))yn

where f(y)y = F(y) = ẏ.

(For our matrix-vector examples, λ?(f(y))(y) = f(y)y)

Adding an isotropy correction to f preserves the differential

equation, but affects the numerical method

yn+1 = exp(h(f(yn)+σ(yn)ζ(yn)))yn

where σ : M → R is a scalar function.
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Lie-Euler

The RKMK method we are going to use is Lie-Euler, which
for some chosen algebra map f is

yn+1 = exp(hf(yn))yn

where f(y)y = F(y) = ẏ.

Adding an isotropy correction to f preserves the differential
equation, but affects the numerical method

yn+1 = exp(h(f(yn)+σ(yn)ζ(yn)))yn

where σ : M → R is a scalar function.
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Lie series expansion

An expansion of exp(f + ζ) goes like (suppressing arguments
of f and ζ)

exp(f + ζ) = I + f + ζ +
f2 + fζ + ζf + ζ2

2
+ · · ·

but remember that ζy = 0, so for Lie-Euler

exp(f + ζ)(y) = y + fy +
f2 + ζf

2
y +

f3 + fζf + ζ2f

6
y + · · ·

⇒ isotropy only has an effect from second order (h2

2 ζf) and

upwards.
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Lie series expansion

An expansion of exp(f + ζ) goes like (suppressing arguments
of f and ζ)

exp(f + ζ) = I + f + ��ζ +
f2 +��fζ + ζf +��ζ

2

2
+ · · ·

but remember that ζy = 0, so for Lie-Euler

exp(f + ζ)(y) = y + fy +
f2 + ζf

2
y +

f3 + fζf + ζ2f

6
y + · · ·

⇒ isotropy only has an effect from second order (h2

2
ζf) and

upwards.
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The range of isotropy, SO(3) − S2

The effect of varying the scalar σ in front of ζ:

Only second order effect ζf

correction No correction σ = 0

With isotropy

Startpoint

(One Lie-Euler step with isotropy correction, ∆t = 0.1)
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The range of isotropy, SO(3) − S2

The effect of varying the scalar σ in front of ζ:

Only second order effect ζf

correction No correction σ = 0

With isotropy

Startpoint

The second order effect ζf corrects the path orthogonally,

as ζfy ⊥ fy when ζ is skew-symmetric.
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Orbit capture [Lewis-Olver]

y(0)

y(h)

σ = 0

Exact
σ = ?

Orbit capture is sought by choosing a σ such that we get
close to the red point above.

• “Minimize the distance from the true orbit”
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Orbit capture [Lewis-Olver]

y(0)

y(h)

σ = 0

Exact
σ = ?

• “Minimize the distance from the true orbit”

By using isotropy, we are able to cancel the second order
orbit error. Phase error is still order 1. Condition:

df(y)

dt
y − σζf

︸ ︷︷ ︸
second order error

= C f(y)y
︸ ︷︷ ︸

vector field
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Results for the rigid body
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• The isotropy corrected Lie-Euler is significantly better
than no correction.

• There is some energy drift.
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Results for the rigid body
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• There is some energy drift.

• Remedy: Scale σ(y) by a constant α
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SL(2) action on R2

SL(2) is all 2 × 2 matrices with determinant 1.

We want a Lie-Euler method of the form

yn+1 = exp(hf(yn))yn

where f : R2 → sl(2) (trace-free matrices).

The isotropy subalgebra at y = (u, v) in R2 is

ζ(y) =

(

uv −u2

v2 −uv

)
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SL(2) action on R2

An f : R2 → sl(2) for Lotka-Volterra
{

u̇ = u(v − 2)

v̇ = v(1 − u)

}

⇒ f(y) =

(

u − 1 −
u(u−v+1)

v

0 1 − u

)

An f : R2 → sl(2) for Duffing oscillator
{

u̇ = v

v̇ = u − u3

}

⇒ f(y) =

(

0 1

1 − u2 0

)
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Results on SL(2), Lotka-Volterra, ∆t = 0.1

No scaling, α = 1
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• Not as promising as the rigid body example
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Results on SL(2), Lotka-Volterra, ∆t = 0.1

No scaling, α = 1
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With scaling, α = 1.84
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Results on SL(2), Duffing, ∆t = 0.1

No scaling, α = 1
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Results on SL(2), Duffing, ∆t = 0.1

No scaling, α = 1
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With scaling, α = 1.17
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On the scaling α

• For rigid body: α = 1.00009

• Lotka-Volterra: α = 1.84, Duffing: α = 1.17

• Found by trial and error.
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On the scaling α

• For rigid body: α = 1.00009

• Lotka-Volterra: α = 1.84, Duffing: α = 1.17

• Why small for rigid body?

• Partial answer: ζfy ⊥ fy for rigid body, not true for our SL(2)

examples. We even have ζfy || fy at some points, which

means that isotropy does not contribute here (in red below).
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Notes

• Easily applicable to Lie-Euler on the rigid body
equations, with good results.

• Stability comparable to symplectic euler when a
satisfactory α has been found.

• Promising results recently noted for SE(2).

Thank you for your attention
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The end

• Easily applicable to Lie-Euler on the rigid body
equations, with good results.

• Stability comparable to symplectic euler when a
satisfactory α has been found.

• Promising results recently noted for SE(2).

Thank you for your attention
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