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Thesis overview

This thesis concerns the numerical solution of differential
equations.

» Focus on time-integration

Aims:
» Construct and analyze schemes for numerical integration

» Measure in terms of computational speed and numerical
quality
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Numerical analysis for ordinary differential equations

A differential equation

yo = y(0)

describes the time evolution of a

quantity y, given

> its initial state yp

» a function f describing how the

solution y changes

One aim of numerical analysis
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Design methods to minimize error while maximizing stepsize h
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Applications

The solution we search for may be any quantity.

Some important examples are
» Weather forecasting
» Modeling of oil flow in reservoirs
» Modeling of ocean currents
» Evolution of water waves
>

Planet positions in solar system
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Overview of papers

Lie group int. —

Exponential
integrators

Paper |: Algebraic structures on

ordered rooted trees .
Order analysis

Paper |l: B-series and order

conditions for exp. integrators ;
Implementation

Paper Ill: Expint — A Matlab

package for exp. integrators

Numerical
Paper IV: Solving the nonlinear experiments
Schrédinger equation . ..
Paper V: Conservation of phase Inverse

. #

space properties for CSE ... spectral
theory

Paper VI: Generalized affine

groups in exp. integrators
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Lie group integrator, example

An equation in R?, (rotational vector
field):

yi=y2

Y2=—y1

%HY(t)H =0, so ||y(t)]| is constant.

—s0

\O
Yo
Yo
_ _ » Lie group integrators
» Classical numerical tailored for S1-
integrators move in straight problems move along

lines. the solution manifold. 4,



Order analysis using trees

Order analysis
Expand the exact and numerical solution in Taylor series in h, and
compare term by term

~ °

y="f(y)
:

y="f(y)y ="~ (Ffy) ~
YO = P52+ P = DR+ (PP ~ ¥

Revolutionary trick by Butcher (1972):

» Work with trees instead of tedious expressions (number of
terms in y(/) increase exponentially)
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Hopf algebras and applications

Runge-Kutta analysis (Butcher 1972/Diir 1986)
Hopf algebras —— Noncommutative geometry (Connes 1998)

Renormalization, quantum physics (Kreimer 1998)

» Brouder (2000) showed that these three Hopf algebras were
equivalent.

The Leibniz rule

(fg) = fg +fg'

is the essential part of the entire structure!
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» We describe how Hopf algebra structures can be applied to a
general class of Lie group integrators, extending the work of
Butcher on classical Runge—Kutta integrators.

» Two relevant and connected Hopf algebra structures are
presented.

» Backward error analysis explicitly computed using a logarithm
map. Important for further analysis and construction of new
schemes, where symplecticity and/or volume preservation is
essential, as found in Chartier, Murua and Faou 2006.
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Exponential integrators, format

A differential equation

can be solved using a Runge—Kutta scheme given a previously
computed value y,,

Yi= )’n+hza/j f(y;)), i=1,...,s
=1

Yn+1 = Yn+ hz b; f(YJ)
i=1

Order analysis specifies what values can be used for the coefficients
ajj and b;.
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Exponential integrators, format

The differential equation can be split into two parts

y'(t) = f(y(t)) = Ly(t) + N(y)

and can be solved by an exponential integrator given a previously
computed value y,,

Yi =€y, + h) ag(hL)N(Y)), i=1,....s
j=1

Ys1 = ey, +h > bi(hLYN(Y;).
i=1

The coefficient functions a;;(hL) and b;(hL) must at least satisfy
classical Runge—Kutta conditions for L — 0.
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Why exponential integrators

For systems of differential equations (y(t) is vector-valued),
explicit Runge—Kutta schemes may experience an upper limit on
the timestep h, depending on the eigenvalues of the system.

Increasing spatial resolution in a PDE problem typically reduces the
limit on h, sometimes unacceptable.
Two possible solutions to remedy stepsize restrictions:

» Use implicit Runge—Kutta schemes. Expensive evaluation of
Y; at each stage (nonlinear systems of equations).

» Use exponential explicit Runge—Kutta schemes. One needs to
compute exponentials of L, but it is hopefully less expensive
than implicit Runge—Kutta.
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Exponential integrators

From the scheme format, there will be two immediate analytical
features of exponential integrators of Runge—Kutta-format:

> If N(y) = 0 the scheme will yield the exact solution
» If L =0 the scheme will reduce to the underlying RK-scheme

Paper II:
» Classical order analysis using bicolored trees
» Provides a procedure for constructing exponential integrators

» Convergence is more subtle for stiff problems, as discussed in
Hochbruck and Ostermann 2005
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Paper IIl, MATLAB package for exponential integrators

A MATLAB package for modular implementation of exponential
integrators

» Easy implementation and comparison
of more than 30 exponential
integrators

» Numerous examples of discretizations
of common PDEs

» Written for exponential general linear
methods, of which exponential
Runge—Kutta-integrators are a subset

14 /1



Exponential integrators, ¢ functions

A frequently used class of exponential-like functions used in
exponential integrators are the

® functions

1 L ,
o = (9_1)2 -1 | =
vj(z) =1 /0 e ¢~ do, j=12,...,

for j =1,2,3 (and for z # 0),

e? —1 e
v1(z) = P P2(2) =

» Numerical issues when z near 0.
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Scaling and squaring of ¢ functions (Paper II1)

z vj(2)
scaling] Icorrected squaring
z/2P | ©j(z/2P)

(7,7) Padé

» pis chosen such that ||z/2P||o < 1.
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Scaling and squaring of ¢ functions (Paper II1)

z vj(2)
scaling] Jcorrected squaring
z/2P | pi(z/2P)

(7,7) Padé

(d, d)-Padé approximation of ¢;:
¢i(2) = N)(2)/ D}(z) + O(227+) where

i

Jj 2d +j — k)I(—-1)
Ny(2) 2d+J)|Z[Zk'(d k'(_/-i—l—k)‘]

i 2d+./_l) i
Dy(z) = 2d+1)'Z (=2)
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Scaling and squaring of ¢ functions (Paper II1)

z vj(2)
scaling] Jcorrected squaring
z/2P wj(z/2P
/ (7,7) Padé i(2/2%)

(compare to e?? = e?e?)
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Exponential integrators for nonlinear Schrodinger

What are the important criteria for a “good integrator”?

» Local error, predicted by order analysis (Paper Il)

» Global error, sometimes known analytically from local error,
sometimes only observed numerically (Paper V)

» Preservation of conservation quantities (Paper V)

» Processor/memory demands
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Exp. integrators for nonlinear Schrodinger (Paper V)

Analytical and observed IC  Pot ‘ LAWSON4 ETDARK
global error. Periodic BC. — 1.75 4
iU = — o+ (V(x) + [u]?)u 2 oo | 225 0.75
Regularity is decay of Fourier 2 2 1.75 0.75
coeff. 00 00 4 4
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Exp. integrators for nonlinear Schrodinger (Paper V)

Up = it + 2i[uf?u (%)

» Aim: Assess “goodness’ of numerical integrator by monitoring
preservation of conserved quantities over long time-scales.

Lax pair for (x)
L= <i% “a> A= (“'“'2 .“;2>
u o ige —uy iyl
The spectrum o (L) is invariant in time if u is a solution of (x).

» Initial condition is a perturbation of an unstable plane wave
solution (periodic boundary conditions).
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Spectrum preservation (Paper V)

Unperturbed plane wave

Im A

|u|2 time

) Unstable points
(L)

Re A\
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Spectrum preservation (Paper V

Perturbed plane wave u|2 time
Im A
Spectrum gaps
(L) 7

time X 20/ 1

time

Gap sizes




Paper V conclusions

» Exponential integrators preserve the spectrum better and are
faster than the split-step schemes which are most prominent
in the literature for this problem.

> CFREE4 preserves the spectrum for the longest time, slightly
better than LAWSON4 (possibly related to stiff order)

» A multisymplectic scheme (order 2 and implicit) was slower
and less able to preserve the spectrum compared to the other
schemes.
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Thanks to co-authors:

» Brynjulf Owren (Paper I, II, 1V)

» Baird Skaflestad (Paper II, I, IV)

» Will Wright (Paper IlI)

» Constance Schober and Alvaro Islas (Paper V)

Thanks for your attention!
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