Lie group and exponential integrators: Theory, implementation, and applications PhD-thesis

Håvard Berland

Department of Mathematical Sciences, NTNU

September 14, 2006

Thesis overview

This thesis concerns the numerical solution of differential equations.

► Focus on time-integration

Aims:

- Construct and analyze schemes for numerical integration
- Measure in terms of computational speed and numerical quality

Numerical analysis for ordinary differential equations

A differential equation

$$y'(t) = f(y(t)), y_0 = y(0)$$

describes the time evolution of a quantity y, given

- ▶ its initial state y₀
- ▶ a function f describing how the solution y changes

One aim of numerical analysis

Design methods to minimize error while maximizing stepsize h

Applications

The solution we search for may be any quantity.

Some important examples are

- ► Weather forecasting
- ► Modeling of oil flow in reservoirs
- Modeling of ocean currents
- Evolution of water waves
- ▶ Planet positions in solar system

Overview of papers

Lie group integrator, example

An equation in \mathbb{R}^2 , (rotational vector field):

$$\dot{y_1} = y_2$$

$$\dot{y_2} = -y_1$$

 $\frac{d}{dt} \|\mathbf{y}(t)\| = 0$, so $\|\mathbf{y}(t)\|$ is constant.

 Classical numerical integrators move in straight lines.

 Lie group integrators tailored for S¹problems move along the solution manifold.

Order analysis using trees

Order analysis

Expand the exact and numerical solution in Taylor series in h, and compare term by term

$$\dot{y} = f(y) \sim \sim \mathbf{I}$$

$$\ddot{y} = f'(y)\dot{y} = f'(y)f(y) \sim \mathbf{I}$$

$$y^{(3)} = f''(y)\dot{y}^{2} + f'(y)\ddot{y} = f''(y)f(y)^{2} + (f'(y))^{2}f(y) \sim \mathbf{I} + \mathbf{I}$$

Revolutionary trick by Butcher (1972):

Work with trees instead of tedious expressions (number of terms in $y^{(i)}$ increase exponentially)

Hopf algebras and applications

▶ Brouder (2000) showed that these three Hopf algebras were equivalent.

The Leibniz rule

$$(fg)' = f'g + fg'$$

is the essential part of the entire structure!

Paper I

- ▶ We describe how Hopf algebra structures can be applied to a general class of Lie group integrators, extending the work of Butcher on classical Runge–Kutta integrators.
- Two relevant and connected Hopf algebra structures are presented.
- Backward error analysis explicitly computed using a logarithm map. Important for further analysis and construction of new schemes, where symplecticity and/or volume preservation is essential, as found in Chartier, Murua and Faou 2006.

Exponential integrators, format

A differential equation

$$y'(t) = f(y(t))$$

can be solved using a Runge–Kutta scheme given a previously computed value y_n ,

$$Y_i = y_n + h \sum_{j=1}^s a_{ij}$$
 $f(Y_j), \quad i = 1, \dots, s$
 $y_{n+1} = y_n + h \sum_{j=1}^s b_j$ $f(Y_j).$

Order analysis specifies what values can be used for the coefficients a_{ij} and b_i .

Exponential integrators, format

The differential equation can be split into two parts

$$y'(t) = f(y(t)) = Ly(t) + N(y)$$

and can be solved by an exponential integrator given a previously computed value y_n ,

$$Y_i = e^{c_i h L} y_n + h \sum_{j=1}^s a_{ij}(hL) N(Y_j), \quad i = 1, \dots, s$$

$$y_{n+1} = e^{hL} y_n + h \sum_{i=1}^s b_i(hL) N(Y_j).$$

The coefficient functions $a_{ij}(hL)$ and $b_i(hL)$ must at least satisfy classical Runge–Kutta conditions for $L \to 0$.

Why exponential integrators

For systems of differential equations (y(t)) is vector-valued, explicit Runge-Kutta schemes may experience an upper limit on the timestep h, depending on the eigenvalues of the system.

Increasing spatial resolution in a PDE problem typically reduces the limit on *h*, sometimes unacceptable.

Two possible solutions to remedy stepsize restrictions:

- ▶ Use implicit Runge–Kutta schemes. Expensive evaluation of *Y_i* at each stage (nonlinear systems of equations).
- ▶ Use exponential explicit Runge–Kutta schemes. One needs to compute exponentials of *L*, but it is hopefully less expensive than implicit Runge–Kutta.

Exponential integrators

From the scheme format, there will be two immediate analytical features of exponential integrators of Runge–Kutta-format:

- ▶ If N(y) = 0 the scheme will yield the exact solution
- ▶ If L = 0 the scheme will reduce to the *underlying RK-scheme*

Paper II:

- Classical order analysis using bicolored trees
- ▶ Provides a procedure for constructing exponential integrators
- ► Convergence is more subtle for stiff problems, as discussed in Hochbruck and Ostermann 2005

Paper III, MATLAB package for exponential integrators

A MATLAB package for modular implementation of exponential integrators

- Easy implementation and comparison of more than 30 exponential integrators
- Numerous examples of discretizations of common PDFs
- Written for exponential general linear methods, of which exponential Runge–Kutta-integrators are a subset

Exponential integrators, φ functions

A frequently used class of exponential-like functions used in exponential integrators are the

 φ functions

$$\varphi_j(z) = \frac{1}{(j-1)!} \int_0^1 e^{(\theta-1)z} \theta^{j-1} d\theta, \qquad j = 1, 2, \dots,$$

for j = 1, 2, 3 (and for $z \neq 0$),

$$\varphi_1(z) = \frac{\mathrm{e}^z - 1}{z}, \quad \varphi_2(z) = \frac{\mathrm{e}^z - z - 1}{z^2},$$
 and
$$\varphi_3(z) = \frac{\mathrm{e}^z - z^2/2 - z - 1}{z^3}.$$

▶ Numerical issues when z near 0.

Scaling and squaring of φ functions (Paper III)

▶ p is chosen such that $||z/2^p||_{\infty} \le 1$.

Scaling and squaring of φ functions (Paper III)

$$\begin{array}{c} z & \varphi_j(z) \\ \text{scaling} & & \int \text{corrected squaring} \\ z/2^p & \longmapsto \varphi_j(z/2^p) \\ \hline (7,7) \text{ Pad\'e} & & \end{array}$$

$$(d, d) - \text{Pad\'e approximation of } \varphi_j:$$

$$\varphi_j(z) = N_d^j(z) / D_d^j(z) + \mathcal{O}(z^{2d+1}) \text{ where }$$

$$N_d^j(z) = \frac{d!}{(2d+j)!} \sum_{i=0}^d \left[\sum_{k=0}^i \frac{(2d+j-k)!(-1)^k}{k!(d-k)!(j+i-k)!} \right] z^i$$

$$D_d^j(z) = \frac{d!}{(2d+j)!} \sum_{i=0}^d \frac{(2d+j-i)!}{i!(d-i)!} (-z)^i$$

Scaling and squaring of φ functions (Paper III)

Theorem (Paper VI)

$$\varphi_j(2\alpha) = \frac{1}{2^j} \left(e^{\alpha} \varphi_j(\alpha) + \sum_{k=1}^j \frac{1}{(j-k)!} \varphi_k(\alpha) \right)$$

(compare to $e^{2z} = e^z e^z$)

Exponential integrators for nonlinear Schrödinger

What are the important criteria for a "good integrator"?

- ► Local error, predicted by order analysis (Paper II)
- ► Global error, sometimes known analytically from local error, sometimes only observed numerically (Paper IV)
- Preservation of conservation quantities (Paper V)
- Processor/memory demands

IC	Pot	LAWSON4	ETD4RK
∞	2	1.75	4
2	∞	2.25	0.75
2	2	1.75	0.75
∞	∞	4	4

IC	Pot	LAWSON4	ETD4RK
∞	2	1.75	4
2	∞	2.25	0.75
2	2	1.75	0.75
∞	∞	4	4

IC	Pot	LAWSON4	ETD4RK
∞	2	1.75	4
2	∞	2.25	0.75
2	2	1.75	0.75
∞	∞	4	4

IC	Pot	LAWSON4	ETD4RK
∞	2	1.75	4
2	∞	2.25	0.75
2	2	1.75	0.75
∞	∞	4	4

$$u_t = iu_{xx} + 2i|u|^2 u \tag{*}$$

▶ Aim: Assess "goodness" of numerical integrator by monitoring preservation of conserved quantities over long time-scales.

Lax pair for (*)

$$\mathcal{L} = \begin{pmatrix} \mathrm{i} \frac{\partial}{\partial x} & u^* \\ u & \mathrm{i} \frac{\partial}{\partial x} \end{pmatrix} \qquad \mathcal{A} = \begin{pmatrix} -\mathrm{i} |u|^2 & u_x^* \\ -u_x & \mathrm{i} |u|^2 \end{pmatrix}$$

The spectrum $\sigma(\mathcal{L})$ is invariant in time if u is a solution of (\star) .

▶ Initial condition is a perturbation of an unstable plane wave solution (periodic boundary conditions).

Spectrum preservation (Paper V)

Spectrum preservation (Paper V)

Paper V conclusions

- ► Exponential integrators preserve the spectrum better and are faster than the split-step schemes which are most prominent in the literature for this problem.
- ► CFREE4 preserves the spectrum for the longest time, slightly better than LAWSON4 (possibly related to stiff order)
- A multisymplectic scheme (order 2 and implicit) was slower and less able to preserve the spectrum compared to the other schemes.

Thanks

Thanks to co-authors:

- ▶ Brynjulf Owren (Paper I, II, IV)
- ▶ Bård Skaflestad (Paper II, III, IV)
- Will Wright (Paper III)
- Constance Schober and Alvaro Islas (Paper V)

Thanks for your attention!