figtex2eps
Converting xfig-figures with ETEX to eps

Havard Berland*
June 2003

Abstract

This document describes how to use a bash script for automating
the compilation of xfig-figures with embedded latex commands into
encapsulated postscript (eps) or into pdf.

Contents

1 Introduction 1

2 Usage 2
21 Setting thespecialflag 2
2.2 Draw your figure and annotate it with text 3
23 Convertingtoeps 3
24 Convertingtopdf 0oL 4

3 Modifying the IXTEX-preamble 4

4 How it works 5

5 Source code 5

1 Introduction

Figures in publications, theses, reports and alike with the same typograph-
ical quality as the rest of the document, often typeset by ETEX, is not seen
too often.

A natural prerequisite is to be able to use the same font for any text
in the figures as you use for the rest of your document. Also, for many
purposes, special symbols are needed which correspond to symbols in your

*http://www.pvv.ntnu.no/ berland

report. These should look exactly the same in both your figures and body
text.

The fig-file format used by xfig, supports inserting IXIgX-commands by
some neat tricks, leaving all that has to be done with IEIEX to ETEX itself.

This script, named figtex2eps does nothing else than providing an easy
interface to underlying commands that do the real work. The real work
involves running several commands and making a tex-file for each figure
you need, so there is definitely the need for some utility to automate the
process.

2 Usage

The usage of the script itself is fairly simple, produce your figure using xfig,
and save it in the vector format “fig”, say in the file “foo. fig”, and then
run

$ figtex2eps foo.fig

and after some seconds, you will have a file called “foo.eps” in the same
directory.

If you didn’t do any special things to embed latex-commands in your
tig-file, this command will be pretty equivalent to an “export to eps’ in xfig.
But the important thing is to include IXTgX-commands and -symbols.

2.1 Setting the special flag

The first thing you should do after launching xfig, is to

ensure that all text you write, has the special-flag set. - <
1. Open xfig. Text Flags

Hidden Flag

2. Push the big "T” button in the toolbar at the left, Rigid Flag §
and go into text mode. Special Flag { & Special |

3. Push the "Text flags’ button at lower (text-input-)
toolbar, and set t special flag from Normal to Spe-
cial, as done in the figure at right.

Now, all the text you input from now on will have this

flag set, and this flag means that all treatment of text in your figure will
be delegated to some other utility when exporting from the fig format. We
want I&TEX to take care of everything regarding text.

2.2 Draw your figure and annotate it with text

This document will not try to learn you xfig, only how to insert I£TgX-
commands. We provide a simple example of a figure with a modest use
of ETgX-features. There are some things to remember:

- Xfig - foo.fig (new file) =0X
BFile §&rdit §dbview jdbHelp IFo0.Fig House Buttons Depthe |

15 ob ject(s) saved in "feo.fig" | a D [AL on
i ‘ ze ‘ 2.5) 3.0] e ALL OFF

Error e_h 15

@%Lm
Sy . i

$hs
e

. L -
25 |

oint e

Figure 1: An example figure as shown in xfig.

e Write IXIEX as usual, that means enclosing I£TEX-constructs which re-
quire math mode with dollar signs ($), as in our example Figure 1.

e Be prepared to adjust the position of your text by trial and error.
Often, the text and commands will overlap with your figure when
viewed in xfig, but they won’t in your final postscript.

e Be prepared for trouble if you include very complicated IXTEX-constructs
in your figures. Debug the compilation with the verbose option (figtex2eps
-v foo.fig). You might need to alter the preamble file, see below.

e Try to avoid resizing your figure to much when your final import into
your document is done, you might get to small or to big fonts. Have
in mind the final size of your figure in the document when you start
to draw in xfig.

2.3 Converting to eps

When the above is done, this is the easy step. Save your figure as for exam-
ple “example. fig” (do not use any of the export routines!) and run from
your command line:

S figtex2eps example.fig

and the file “example.ps” will be produced. During compilation, IETEX
produces a lot of output. Use the option “~v” (verbose) if you want to
see this (could be necessary for some debugging if you write faulty I£TgX-
commands). The outputted file from the figure in Figure 1 is shown in
Figure 2.

Figure 2: Postscript produced by figtex2eps.

2.4 Converting to pdf

This is equally easy, by using figtex2eps” counterpart, figtex2pdf. This is
merely a wrapper for your convenience, it calls figtex2eps on your behalf,
and converts the eps-file to pdf using epstopdf (which must be available on
your system). It also leaves the eps-file behind.

3 Modifying the ETEX-preamble

When running figtex2eps for the first time in a directory, some output is
actually produced:

S figtex2eps example.fig
(Info) Generating preamble file figtexZ2eps-preamble.tex
(Info) You may edit to suit your needs 1f necessary and rerun

This tells you that a file has been generated in this directory. If you want
to or have to, you may modify this file and rerun figtex2eps. If figtex2eps
finds this file, it will use it, and not its own default. There could be several
reasons for modifications to this:

e You have used special IXIgX-symbols in your figures, which require
some more packages to be included. Then include more usepackage-
lines in the preamble-file.

e You would like to adjust the default font size in the figures. This has
been set to 12, despite that one usually uses 11 or 10 in reports. This
is because one usually downscales figures when included in reports,
but this may not be the case for you.

4

e You would like to change the font being used from Roman to some-

thing else (Palatino or Times for example).

4 How it works

The process of converting the fig-figure to eps narrows down to some sim-
ple steps:

1.

Make a file with suffix pstex. This is a (postscript) file containing
all parts of the figure that are not EIgX-commands. This file can
be viewed by gv if one wants to. This step is accomplished by a
fig2dev -L pstex command.

. Make a file with suffix pstex_t. This is a partial latex-document

that includes latex-commands for putting the postscript picture in
the pstex file in the background, and putting the wanted the latex-
commands and other text on top of the eps-picture at the correct po-
sition. This step is accomplished by a fig2dev -L pstex_t com-
mand and some manual insertions of latex-code.

. Make a tex-file which defines the font, packages to use and other nec-

essary things, and make it include the pstex_t-file.

. Run latex on our tex-file, which produces a dvi-file.
. Make encapsulated postscript from our dvi-file with dvips -E

. If figtex2pdf was called, convert the eps-file to pdf by the use of

epstopdf.

Running figtex2eps with the verbose option (“-v”) also leaves behind
all the intermediate files that were created in the process.

5 Source code

The source code is available for download at the web-address
http://www.pvv.ntnu.no/ "berland/figtex2eps,
and is also included here for reference.

#!/bin/bash

#

Converts a . fig—file to a .eps—file, by using graphics from . fig as
a backgroundpicture and latex —compiles tex—code from . fig on top

#

Can also make pdf, by first making ps, and then running epstopdf

#

Hdvard Berland http :// www.math.ntnu.no/ berland

#

$ld: figtex2eps ,v 1.7 2003/10/28 18:55:31 berland Exp $

$Source: /home/pvv/d/berland/etc /cvsrepo/ figtex2eps /prog/ figtex2eps ,v $
#

function usage
echo "

echo "Usage:”

echo ”_figtex2aeps._.<options>_<figfile.fig>"

echo "
echo ”_Options:..—v._._Verbose,.and_don’t_delete_temp.files”
echo " —pdf._Generate_pdf_in._addition.via_epstopdf”
echo ””

echo ”Script_written._by_Havard._Berland_http:/ /www.math.ntnu.no/"berland”
echo “Documentation.available_at_http:/ /www.math.ntnu.no/"berland/figtex2eps”

exit
}
function die
echo ”$1”
echo "Exiting ... ”
exit

}

A prefix used for outputting messages to the user
errorprefix="_(Error).”
infoprefix="_(Info)..”

The file where the preamble is to be written and/or found
preamblefile=figtex2eps—preamble.tex

Option for running latex .
latexoption="—interaction=batchmode”

Option for dvips. These are set for tex— installations based
on teTeX, and ensures that Typel fonts are used (via the file
config . pdf loaded by —Ppdf), this gives correct fonts in the
pdf—document. Set this wvariable to "” if this does not work,
and try to find other ways of getting Typel fonts.
dvipsoptions="—Ppdf_—G0”

Each of these commands must be available and in $PATH !
neededcommands="latex.dvips._fig2dev”

for cmd in $needecommands ; do
which $¢md >/dev/null 2>&1 \
|| die “${errorprefix}Could.not_find $cmd._in_your_path!”
done

if [—z”$1” |; then
echo ”${errorprefix}Mandatory.input._arguments.not_provided.”
usage

fi

Default, throw away unwanted output from commands.
out=">/dev/null”

Default option to run dvips in quiet mode:
dvipsout="-q"”

If verbose, alter the above set variables .
if [“$1” = ”—v"]; then
out=""
dvipsout=
latexoptions=
shift

g

o
fi

Check if user wants pdf (we might be called via wrapper script)
dopdf=""
if ["$1” ="—pdf”]; then
dopdf="yes”
shift
fi

In case of changed order of options (this way of dealing

with options is certainly not scalable !!!)

if ["$1”="—v"]; then ## Do SAME as above..
out=""
dvipsout=
latexoptions=
shift

g

1

fi

Check our mandatory input argument
figfile =$1 # may or may not include . fig as an ending

if [! —f $figfile] ; then
Test if user just dropped the ending:
if [—f” $figfile . fig”] ; then
figfile =" $figfile . fig”
else
die "${errorprefix}Could_not.find.the xfig—file $figfile”
fi
fi

Check that the figfile is not empty
if [! —s $figfile] ; then

die “${errorprefix}The._file. $figfile _is_empty.”
fi

If the ' file’ and 'grep’ command is available , we just as
well check that it really is a FIG, not just
some other file with the suffix .fig
format="which >/dev/null 2> &1 file && which >/dev/null 2>&1 grep && file $figfile’
if [! —z”$format” | ; then
if [—z ‘echo "$format” | grep “"FIG_image._text” >/dev/null && echo yes’] ; then
echo "${errorprefix} According.to_the_utility. file ’, . $figfile _is _not_a_proper.fig—file.”
die "${errorprefix}’ file '_says:.\"$format\"”
fi
fi

base="${figfile%.fig}"”
outfile =$base.eps

The user is also allowed to provide an output file if really necessary :
if [! —z”%$2”]; then

outfile =$2
fi

Make a preamble file if it does not exist
if [! —s”$preamblefile”] ; then
echo "${infoprefix } Generating_preamble.file_$preamblefile”
echo "${infoprefix} You.may.edit_to_suit_your.needs.if_necessary_and.rerun”

CVStip if the directory CVS exists.
if [—d”CVS”]; then
echo "${infoprefix} You.might.want._to.do_a.’cvs_add_$preamblefile’ as_well”
fi
touch $preamblefile \
|| die “${errorprefix}Could.not_write_to_$preamblefile,_check_your._permissions”
This could have been redone with a HERE document..
echo ”%” > $preamblefile
echo ”%.This._is_a_preamble.file_for. figtex2eps’._.You_may.edit._things” \
>> $preamblefile
echo ”%.here._if_necessary..Typically_you_might_want_to_change._the_font” \
>> $preamblefile
echo "%.size, the_font_or_add._some_more_packages_for_your.latex.commands” \
>> $preamblefile
echo "%.in_your._figures..” >> $preamblefile
echo "% >> $preamblefile
echo "%_If_you_make_errors_in_here, _rerun.figtex2eps_with.'—v’_(verbose)_and” \
>> $preamblefile
echo ”%.check_the_error_messages_from.latex,.and._then_fix_here.” >> $preamblefile
echo ”%._You._may.also.just_delete_this.file_if_you.are_in_trouble” >> $preamblefile
echo ”%.and.a.new.default_one_will_be_generated” >> $preamblefile
echo "%” >> $preamblefile
echo ”\documentclass[12pt]{article}” >> $preamblefile
echo ”” >> $preamblefile
echo ”%.Packages._for.most.mathematical._latex.commands:” >> $preamblefile
echo ”\usepackage{amsfonts}” >> $preamblefile
echo ”\usepackage{amsmath}” >> $preamblefile
echo ”\usepackage{amssymb}” >> $preamblefile
echo ”” >> $preamblefile
echo ”\usepackage{ae} %._This.is_in._case_you.also_want._to_make._pdf_afterwards” \
>> $preamblefile
echo ”” >> $preamblefile
echo "%_You.might_want_the_palatino_font_instead,_then_uncomment.the_following” \
>> $preamblefile
echo ”%._two.lines,_and.do.not_use._the_ae_package_above” >> $preamblefile
echo "%)\usepackage{palatino}” >> $preamblefile
echo ”%)\usepackage{palatcm}.%.Palatino_math_fonts.” >> $preamblefile
echo ”” >> $preamblefile
echo ”\usepackage[dvips]{color}” >> $preamblefile
echo ”\usepackage{epsfig}” >> $preamblefile
fi

if [! —z”%out”]; then
Not verbose :
fig2dev >/dev/null —L pstex $figfile $base.pstex
fig2dev >/dev/null —L pstex_t $figfile $base. pstex_t_2

else
verbose
fig2dev —L pstex $figfile $base.pstex
fig2dev —L pstex_t $figfile $base.pstex_t-2
fi

echo ”\begin{picture}(0,0)%"” > $base.pstex_t
echo ”\epsfig{ file=$base.pstex}%” >> $base.pstex_t
echo ”\end{picture}%” >> $base.pstex_t

cat $base.pstex_t2 >> $base.pstex_t
cat $preamblefile > $base.tex
echo ”\setlength{\textwidth}{100cm}” >> $base.tex
echo ”\setlength{\textheight}{100cm}” >> $base.tex
echo ”\begin{document}” >> $base.tex
echo ”\pagestyle{empty}” >> $base.tex
echo ”\input{$base.pstex_t}” >> $base.tex
echo ”\end{document}” >> $base.tex
if [! —z”%out”]; then

Not verbose :

latex $latexoptions $base.tex >/dev/null \

|| die “${errorprefix}Latex_failed, rerun.with.'—v’_(verbose)”

else

Verbose:

latex $base.tex || die "${errorprefix}Latex_failed”
fi

dvips —E $dvipsoptions $base.dvi $dvipsout —o $outfile \
|| die “${errorprefix}dvips_failed, rerun_with.’—v’_(verbose)”

Make pdf if user wants to.
if [! —z”$dopdf” |; then
cmd="epstopdf”
which $emd >/dev/null 2>&1 \
|| die "${errorprefix}Could_not.find _$cmd_in_your_path,_only_eps_generated!”
$cmd $base.eps ——outfile=$base.pdf
fi

delete if not verbose
if [! —z”$%out” |; then
rm —f $base.pstex $base.pstex_t $base.pstex_t2 \
$base.tex $base.aux $base.log $base.dvi

