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Abstract

The behaviour of particles in turbulent flow, with emphasis on particle depo-
sition on both the frontside and backside of a cylinder, was investigated by
means of Direct Numerical Simulations. One-way coupling between fluid and
particles was applied. Simulations of turbulence forced at small, intermediate
and large scales were run on a three-dimensional domain. The turbulence
was used as inlet on a two-dimensional flow domain, where a Lagrangian
tracker was used to compute the particle motions.

The Reynolds numbers used were Rec = 421 and Rec = 1685. For inter-
mediate Stokes numbers, or particle sizes, the number of particles deposited
increased when the Reynolds number was raised. The presence of turbulence
lead to a further increase in the deposition for these Stokes numbers, com-
pared to the deposition in laminar flow. The increase was at its highest for
large scale forced turbulence. The increased deposition of particles of inter-
mediate Stokes numbers on the frontside of the cylinder in turbulent flow
was found to be related to the variance of the effective Stokes number, re-
sulting from the fluctuating nature of the turbulent velocity. The deposition
of particles with small Stokes numbers was also altered by the presence of
turbulence, but this could not be explained by the variance of Stokes number.
The mechanism leading to deposition of these smallest particles is related to
the turbulent eddies close to the boundary layer of the cylinder, and will
need further study.

At the backside of the cylinder, the increased deposition at raised Reynolds
number and at the presence of turbulence was related to the magnitude of
vorticity. Furthermore, preferential concentration of particles in turbulence
was observed in the Rec = 1685 cases, demonstrating the effect of the vor-
ticity magnitude being sustained throughout the domain.
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Chapter 1
Introduction

1.1 Background and motivation
Particle-laden flows are of significant importance in various fields in engineer-
ing and technology as well as natural and environmental processes. It may
be transport of sediments in rivers or the deposition of small particles in the
human lung. More specifically, particles in a gas flow can be seen in many
everyday settings, being for example dust carried by air and deposited on
surfaces of solids. Among other applications and fields of research where the
knowledge of particle-laden flows is crucial, Boivin et al. (1998) [1] mention
the combustion of pulverized coal, or liquid sprays, gas-phase reactions con-
trolled by particulate catalysts, dust storms and the dispersal of pollutants
in the atmosphere. In short, the areas of interest are many and diverse.

Filters are found in mechanic and electronic devices, where particles of
different origins may settle, or deposit. The filters remove particulate ma-
terial from a system; an industrial application would be the controlling of
pollutants. Particles or droplets are removed from industrial residues, for
instance water or gas. Solid pollutants can also be separated from the gas by
devices like a cyclone separator or an electrostatic precipitator. In the case
of a filter, it is obviously in the manufacturer’s interest that the deposition
is maximized.

However, the background for the work behind this thesis is the follow-
ing incentive to minimize the deposition: In a bioenergy power plant, some
biomass is combusted. This results in gases carrying thermal energy to the
heat exchangers, pipes carrying the working fluid, to which the thermal en-
ergy is transfered. These pipes are in essence cylinders, typically with circular
cross sections. In the further process, the thermal energy now carried by the
working fluid runs the turbines generating electricity. At the stage of com-
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CHAPTER 1. INTRODUCTION

bustion, residuals like ash particles are created. These are carried along with
the gas flow, and some are deposited on the heat exchangers, as the pipes
cross the gas flow, as indicated in figure 1.1. A result of this is that an in-
sulating layer is formed on the pipes, and hence there will be a reduction in
the energy conversion efficiency defined as

ηeff ≡
Eout

Ein
, (1.1)

where Eout is the energy output and Ein the energy put into the system.
Clearly, ηeff is wanted to be as high as possible, making it desirable to mini-
mize the deposition.

Figure 1.1: Simplified schematic overview of a biomass fueled combustion
plant. The particle containing fluid flows upwards and transfers heat to the
heat exchanger, where the temperature of the heat carrying fluid is raised.

Originally, design of these systems was primarily based on empirical foun-
dation (Crowe et al., 1998 [2]). With numerical analysis and simulation,
progress has been made towards improved quantification of such systems.
The fact that the combustion also emits pollutants that one might want to
remove, is not of relevance in this study. The gas-particle flow considered
in the present work is a dispersed phase flow, where the particles constitute
the dispersed phase and the fluid is the continuous phase. It is known that
in a combustion facility like the one described above, turbulence occurs in
the flow. Although the intensity of the turbulence occuring in the real-world
applications is unknown, it is of interest to numerically investigate the tur-
bulence’s impact on the particle deposition. This is because turbulence has
an influence on the behaviour of the particles and affects the deposition and
consequently ηeff . In addition, turbulence is a phenomenon still in need of
further investigation. A reason for doing this numerically is the possibility
to attain idealized situations with high flexibility in the controlling of input
and output variables.
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1.2. BASIC CONCEPTS

1.2 Basic concepts
A brief introduction to some concepts important in the present work is given
in this section. The theory presented in chapter 2 will go more in depth.

1.2.1 The Reynolds number
The Navier-Stokes equation is introduced in the next chapter. The ratio
between the magnitudes of the convective and the dissipative terms in this
equation, i.e. the spatial acceleration of the fluid element and the divergence
of stress respectively, is the Reynolds number

Re = U2/L

νU/L2 = UL

ν
. (1.2)

Here, U is a characteristic velocity in the flow scenario, L a characteristic
length and ν the kinematic viscosity of the fluid. The Reynolds number is
advantageous when analyzing the nature of a specific flow, as all flows with
the same Reynolds number have the same physical properties. Also, a fluid
flow scenario may be characterized by more than one Reynolds number. A
particle-laden flow like the one treated in this work has for instance one
Reynolds number related to the characteristics of the particles as well as one
expressed by the geometry of the cylinder and the properties of the fluid.

1.2.2 Turbulence
In fluid dynamics, two basic fluid regimes exist: the laminar and the tur-
bulent. While the values of the fluid properties, such as the velocity and
the pressure, in the laminar regime are in principle easy to calculate, this
is not the case for fluid flows in the turbulent regime. Exact analytical so-
lutions do not exist, even for the most elementary turbulent flows. On the
contrary to the predictable nature of the laminar flow, the turbulent flow
is a random process. The values of the flow variables cannot in advance be
uniquely determined at one specific point at one specific time instant. How-
ever, its statistical properties can be considered to give a description of the
flow, even if the behaviour in detail is unpredictable. The statistical analysis
of a turbulent flow starts with expressing a fluid property as

A = Ā + A′, (1.3)

where the property A can be the velocity field u, or a scalar like the pressure.
The mean value of the velocity is then ū, and u′ denotes its fluctuations
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CHAPTER 1. INTRODUCTION

around the mean. Turbulence is a three-dimensional phenomenon, implying
the velocity has fluctuations in every direction: u′, v′ and w′ in the spatial
directions x, y and z respectively.

In a flow domain with volume V , the root mean square of the velocity
fluctuations,

urms =
√

1
V

∫
u′

2dV , (1.4)

is valuable for analyzing the magnitude of the velocity fluctuations, and gives
indications on how intense the overall turbulence is.

As A expresses random values attained throughout the course of the flow,
it is a difficult, and still an unsolved, problem to find a deterministic model
for the turbulent flow. So numerical tools are essential when broadening an
understanding of these flows. And as most realistic flows in the industry and
everyday life have a turbulent nature, a wide understanding is indeed crucial.

A turbulent flow is characterized by a wide range of different time and
space scales. The length scales can be expressed in terms of the diameter of
the different turbulent eddies, whereas the eddy turnover time represents the
time scales. To get a fully valid solution for the flow evolving, all these scales
should be resolved, like it is done in a Direct Numerical Simulation (DNS).
A brief description of DNS is given in section 3.1 in chapter 4.

1.2.2.1 Kolmogorov scales

The smallest turbulence scales are called the Kolmogorov scales. At this level,
the viscosity becomes important in the energy dissipation cascade. As the
turbulent state is established, continued turbulence is generated in the form
of unstable eddies. The large-scale eddies initiated by the turbulence create
smaller eddies, which again generate smaller ones in a continuous series or
cascade. Throughout this cascade, energy is passed on until it is dissipated by
the viscosity at the Kolomogov scale. At this scale, the energy associated with
the smallest eddies is dissipated and converted into thermal internal energy.
This explains why turbulence is a high-Reynolds number phenomenon: With
a low Reynolds number, the viscous term gets too dominating for the cascade
to go on and the energy is dissipated at the largest scales. The effective
mixing and mean flux of energy from large to small scales in turbulent flows
makes turbulence attractive for instance in combustion. Whether a flow is
turbulent or laminar, will depend on its geometric properties and the nature
of the specific flow. Hence it cannot be said in a simple manner that a specific
magnitude of the Reynolds number corresponds to the one or the other fluid
regime. A flow can exhibit instabilities and still have a predictable behaviour
and thus be in the laminar regime.
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1.2.3 Vorticity
In the present work, the vorticity

ω = ∇× u (1.5)

of the flow is studied. Stokes’ theorem from vector calculus gives∫ ∫
S
(∇× u) · ndS =

∮
C

u · dl =
∫ ∫

S
ω · ndS. (1.6)

From this, a physical interpretation of ω can be established. By letting the
surface S be plane with unit normal vector n, bounded by a small circle C
with the unit radius vector r, the unit vector l = n × r is tangential to C.
Now, the angular velocity of points at C equals r × u. The projection of
this angular velocity in the normal direction, averaged over the surface area,
becomes

1
2S

∮
C

n · (r × u)dl = 1
2S

∮
C

u · (n× r)dl = 1
2S

∮
C

u · ldl

= 1
2S

∫ ∫
S

ω · ndS ≈ 1
2ω · n. (1.7)

Here, a standard vector identity has been used at the first equal sign, (1.6) at
the last equal sign and the approximation is due to the small surface area S.
As (1.7) holds for any n, it is concluded that ω is twice the angular velocity
of the fluid.

Areas in a flow with concentrated vorticity are called vortices. A flow with
a non-zero vorticity contains rotation, and turbulent flows have small-scale
random vorticity. Rotational flows can also be laminar, but the intense small-
scale random vorticity fluctuations are characteristic for the turbulent regime.
These randomly directed fluctuations have a magnitude much larger than the
mean vorticity. As ω contains the spatial derivatives of u, it expresses the
fine-scale behaviour of the u-field. This implies that the spatial scale for the
fluctuations in ω is among the smallest of all turbulence scales.

1.2.4 Particles in a flow around a cylinder
The two-dimensional flow around the cross section of a cylinder is simulated
in the present work. Based on the mean flow velocity U0, the cylinder diam-
eter D and the kinematic viscosity ν of the fluid, the two Reynolds numbers
used are Rec = 421 and Rec = 1685. The numerical values can be found in
appendix B.

5



CHAPTER 1. INTRODUCTION

A Von Kármán vortex street is seen in the wake of a cylinder in a cross
flow when Rec exceedes a certain number, typically around 50 (Pozrikidis,
2001 [3]). The vortices arise as eddies shed from each side of the cylinder, in
an alternating manner, leading to two rows of counter-rotating vortices. At
a certain distance downstream, the vortices turn gradually turbulent from
Rec ∼ 200 onwards (Haugen & Kragset, 2010 [4]). On the contrary, the
boundary layer of the cylinder becomes turbulent at Rec ∼ 2 · 105. This is in
agreement with the fact that at increasing Reynolds number, viscous forces
are significant inside the boundary layer, but can be neglected outside their
edges (Pozrikidis, 2001 [3]).

An effect of putting particles into a turbulent flow is that the particles
inherit the behaviour of the flow field. The extent to which this is the case
obviously depends on the inertial characteristics of the particles in question,
which will be discussed in later chapters. Particles that are influenced by
the turbulent motions attain complex unsteady motions which may result in
nonuniform spatial distribution of particles and hence particle segregation
(Brennen, 2005 [5]). On the other hand, a modification of the turbulence
itself can be experienced; the turbulence may be damped due to the presence
of the particles, or enhanced by the particle wakes produced by the motion
of the particles relative to the fluid. As the present work considers only one-
way-coupling, i.e. the effect of the turbulence on the particles and not vice
versa, the possible modification of turbulence by the presence of particles will
not come into play.

An effect of relevance in the present work is the accumulation of particles
in shear zones in between vortices; this is due to the fact that particles are
centrifuged out by the turbulent eddies. A more theoretical treament of this
will be given in the next chapter. Experimental observations and numerical
calculations indicate that these local particle accumulations again intensify
the velocity fluctuations of the flow (Xu & Subramaniam, 2010 [6]), but due
to one-way coupling, this is again out of the scope of the present work.

1.3 Aim and overview of thesis
There has been found few previous studies directly comparable to what is
described in this thesis. Guha (2008) [7] provides a fine review on existing
findings, theory and methods in research on deposition of particles in both
turbulent and laminar flows. Some experimental studies have been conducted
in the past. A higher Reynolds number study was for example done by
Douglas & Ilias (1988) [8]. Several recent studies on particle dispersion in
turbulent flow have often been by means of numerical methods, where for
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example Marchioli et al. (2003) [9] and Luo et al (2006) [10] applied DNS, but
focused on pipe flow and material erosion respectively. The DNS approach in
the present work was also implemented for the studying of particle deposition
on a cylinder by Haugen & Kragset (2010) [4] and Bjørnstad (2010) [11].
Haugen & Kragset (2010) [4] ran simulations of laminar flow also at Rec = 421
and Rec = 1685, while the effect of turbulence on the deposition of particles
in a flow at Rec = 421 was studied by Bjørnstad (2010) [11]. Being the
only similar studies found, these are the main foundation when discussing
the results of the present work.

The goal of the present work is to investigate particles dispersed in a
fluid flow and numerically study their behaviour, with specific weight on the
deposition of particles on a cylinder in the flow domain. The effect of the
presence of turbulence on the particles and their deposition is studied and
discussed, as well as how the two differing values of the Reynolds number
influence the results.

The contents of this thesis consists of the following. In chapter 2, the
physical theoretical foundation is laid. This consists of relevant equations
from fluid and particle dynamics, introduction of quantities necessary for
the analysis of the results and some turbulence theory relevant for particle-
laden flows. Chapter 3 gives a short introduction to Computational Fluid
Dynamics (CFD) as a tool to solve fluid flow problems, and more specifically
explains the principles of Direct Numerical Simulation (DNS) as a CFD tech-
nique. This is followed by a presentation of the numerical method used in the
present work. This includes primarily a description of the DNS code used,
simulation procedures and the boundary conditions for fluid and particles.
Results are presented and discussed in chapter 5, while a more comprehen-
sive discussion on the particle deposition under turbulent conditions is given
in chapter 6. The findings of the work are thereafter summarized in the
conclusion, finishing the main part of the thesis.

7





Chapter 2
Theory

The basic equations describing the motion of the fluid and the particles are
presented in the following. In addition, some turbulence theory and theory
on particle clustering in turbulence is contained.

2.1 Equations from fluid dynamics
The equations for the fluid motion are solved in an Eulerian manner, meaning
that they are solved at fixed points at successive time steps, i.e. with the
observer being at rest. The principal aim is to find solutions for the velocity,
pressure and density of the flow at all grid points. The first equation is a
result of the fact that the total rate of mass change within a physical system
is zero, namely the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

where ρ is the density and u the velocity of the fluid. Furthermore, by
applying the principle that the momentum change in a system equals the
sum of external forces, the Navier-Stokes equation is given as

ρ
Du

Dt
= f −∇p+∇ · T. (2.2)

This resembles Newton’s second law. The substantive or material derivative
Du

Dt
= ∂u

∂t
+ u · ∇u (2.3)

expresses the acceleration, consisting of two terms since the derivative is
taken along a moving path. Its first term denotes the local change in velocity

9



CHAPTER 2. THEORY

with time, while the nonlinear term expresses the change due to convection.
On the right hand side of (2.2), the volume force density f , the pressure p
and the 3× 3 stress tensor for a Newtonian fluid

T = ρν
[
(∇u) + (∇u)T

]
− 2

3ρν∇ · uI (2.4)

are contained in terms expressing the volume forces, the pressure gradient
and the divergence of shear stress. In (2.4), I is the identity matrix. The
volume force density f can in the general case be e.g. gravity per unit volume.
Furthermore, the divergence of shear stress, ∇ · T, is a dissipative term that
converts kinetic energy into heat.

As u is three-dimensional, one additional equation is needed to get a
closed system. To be able to solve for all five unknowns u, p and ρ, the ideal
gas equation of state,

p = c2
sρ, (2.5)

is valid as the flow is compressible and isothermal, and hence all variables
can be resolved. Here, cs =

√
∂p/∂ρ is the speed of sound.

2.2 The motion of the particles
A particle follows a trajectory in the fluid, at any time indicated by the
instantaneous centre of mass position x of the particle. The particle is tracked
from a single time step to the next, different from the fluid properties, which
are resolved by the equations in section 2.1 at the fixed grid points. The
particle motion is described by

d

dt
(mpv) = F , (2.6)

and the particle velocity
dx

dt
= v. (2.7)

This is the general Lagrangian form of the equations; particles are tracked
throughout the evolving of time. The particle mass mp is constant and hence
dv/dt is explicitly given by (2.6). The sum of all forces acting on the particle
is represented by F . Some forces acting on a particle in a flow scenario are
mentioned by Talbot et al. (1980) [12]. Among these forces are the drag
force, interaction forces between the particle and surrounding particles and
between the particle and walls in the system, Brownian diffusion, electro-
magnetic forces, the thermophoretic force and gravity. In this work, gravity
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2.2. THE MOTION OF THE PARTICLES

is negligible, as all particles are too small for it to have any significant ef-
fect. As there in the present work are periodic boundary conditions at the
walls, explained in chapter 4, particle-wall interactions are non-existing. In a
more complex description of the problem, it would be fruitful also to include
the thermophoretic force, which arises due to different particles responding
differently to temperature gradients. These further issues are taken into ac-
count e.g. by Guha (2008) [7], who describes how the various forces can be
implemented in a more general description of the particle-laden flow. But
for the implementation of the equations here, the single particle behaviour
is focused on and thus, the drag force F D is the only force considered. This
is legitimate, due to low particle concentration in typical industrial boilers
(Haugen & Kragset 2010 [4]). Hence, F in (2.6) is set equal to F D. This
force arises due to the particle’s motion relative to the fluid. The drag force
is, as given in Crowe et al. (1998) [2],

F D = 1
2ρCDA|u− v|(u− v), (2.8)

where CD is the drag coefficient. The particle, being spherical with a radius
rp, has a cross-sectional area A = πr2

p.
As the velocity of the particles does not affect the behaviour of the fluid

flow field, one-way coupling between fluid and particles is applied. One-way
coupling is typically applied in studies like this, when the main interest is the
dispersion of particles in turbulence (Squires & Eaton, 1990 [13]). Also, any
forces from the injected particles acting on the fluid flow can be neglected,
due to the particles’ small size, hence one-way coupling is appropriate. These
forces would otherwise be implemented as terms in f in (2.2).

For situations where particles are very small, the fluid has to be looked
upon as separate particles, rather than a continuum. If so, |FD| is reduced
by division by the empirically found Stokes-Cunningham factor

CC = 1 + λ

rp
(1.257 + 0.4e−1.1rp/λ), (2.9)

where λ is the mean free path for a particle in the fluid. As is seen from (2.9),
CC is close to 1 in case of λ/rp � 1, leading to a very low reduction in the
drag force. So when using (2.8) for the drag force, the results in this thesis
are valid for a flow primarily regarded as a continuum. It is stated by Crowe
et al. (1998) [2] that λ/2rp . 10−3 corresponds to continuum flow, which is
the case for most particles sizes explored in this thesis. The drag coefficient
CD depends on the particle characteristica, which can be expressed by the
particle Reynolds number, or the dispersed phase relative Reynolds number,

Rep = dp|u− v|
ν

, (2.10)
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where dp = 2rp is the characteristic size of the particle. The drag coefficient
used in equation (2.8) is given by (Haugen & Kragset, 2010 [4])

CD =

0.44 if Rep > 1000,
24

Rep
(1 + 0.15Re0.687

p ) if Rep . 1000.
(2.11)

The particle Reynolds number Rep, given by (2.10), will typically be a low
number∗, meaning that the lower case in (2.11) is used. By using (2.10), the
spherical particle mass density ρp = 6mp/πd

3
p and defining fD ≡ 0.15Re0.687

p ,
(2.8) can be written in a form resembling Newton’s second law, namely

FD = mp

τp
(u− v), (2.12)

where the particle response time

τp = mpCC

3πνρdp
= ρp

ρ

d2
pCC

18ν(1 + fD) (2.13)

expresses the time it takes for a particle to respond to changes in the flow
velocity. Here, FD has been divided by CC and this factor is kept also in the
simulations for general applicability.

The particle response time is helpful when establishing dimensionless pa-
rameters characterizing the flow. This can be exemplified, like in Crowe et al.
(1998) [2], by noticing how (2.12) implies that the expression for the particle
acceleration is

dv

dt
= (u− v)

τp
. (2.14)

Solving this differential equation in scalar form with u held constant and an
initial particle velocity of zero, gives v = u(1 − exp(−t/τp)). This clarifies
the role of τp as a dimensionless parameter describing how fast a particle at
rest achieves a certain velocity when influenced by the fluid flow, cf. figure
2.1.

Furthermore, it is appropriate to introduce the Stokes number

St = τp

τf
, (2.15)

where τf analogously to the particle response time must be a characteristic
time for the fluid. St indicates to which extent the particle inertia’s influence
its motion, compared to the influence from the fluid flow. The following
applies for the Stokes number:
∗In the simulations, particles of diameter dp in the order range 10−6−10−4 m are used,

and the kinematic viscosity is in the order of 10−4.
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Figure 2.1: The value of the particle response time τp is seen to influence how
fast the particle velocity v reaches the value of the fluid velocity u.

St� 1⇔ particle moves in straight lines independent of the flow,
St� 1⇔ particle follows the flow streamlines strictly.

A characteristic time for the flow in this work is described by the cylinder
dimensions and hence

τf = rc

U0
, (2.16)

where rc is the radius of the cylinder and U0 the mean velocity of the flow.
To investigate the motion of the particle as a function of St, equations (2.14),
(2.15) and (2.16) are combined. This yields

dv

dt
= U0

rcSt(u− v). (2.17)

Hereby it is seen that the Stokes number is related to the particle’s inertia;
a larger St gives a decreasing particle acceleration.
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2.3 Turbulent kinetic energy
The two-point correlation tensor or Reynolds stress tensor

Rij(r, t) = ui(x, t)uj(x + r, t) (2.18)

can provide information on the size of turbulent eddies. The tensor Rij is
the mean of all correlations, or covariances, between the velocity components
of the flow field. In the case of homogeneous turbulence, Rij is independent
of x, because the statistical properties remain the same under any arbitrary
spatial displacement, i.e. under a translation of the reference system. The
three-dimensional Fourier transforms of Rij can be defined as the spectral
functions

Φij(k, t) = 1
(2π)3

∫
Rij(r, t)e−ik·rdr, (2.19)

where dr denotes a volume integral. The motivation behind the Fourier
transform is that the velocity field itself can be expressed as a Fourier series
in terms of

u(r, t) =
∑

k

ũ(k, t)eik·r, (2.20)

where ũ(k, t) are the Fourier components. Furthermore, the inverse trans-
form of (2.19) is

Rij(r, t) =
∫

Φ(k, t)eik·rdk, (2.21)

an integral over the entire wavenumber k space. If now r = 0, t is omitted
for convenience and j is set equal to i, it is found that

1
2Rii = 1

2〈uiui〉 = 1
2

∫
Φii(k)dk. (2.22)

The turbulent kinetic energy is hereby expressed as an integral over k, and
equation (2.19) can be seen as an energy distribution in wavenumber space.
This means if the correlation tensor Rij is calculated by a numerical simula-
tion, the three dimensional energy spectrum is found by

E(k) = 1
2

3∑
i=1

ũi(k)ũi∗(k). (2.23)

Here, the asterisk denotes the complex conjugate.
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2.4 Kolmogorov theory and the energy spec-
trum

In the following, some aspects of the turbulence theory of Kolmogorov are
discussed. Some introducing concepts were discussed in section 1.2.2. The
theory of Kolmogorov (recapitulated for instance by Pope (2000) [14]) de-
scribes the transfer and dissipation of energy throughout the cascade of ed-
dies of decreasing size; how much energy is contained in eddies of different
size and where the energy is dissipated. Here, the eddy is a turbulent rota-
tional motion that spans a region of size Leddy. Across this region, the eddy
is relatively coherent, i.e. its shape does not change. Associated to the eddy
size Leddy, is a characteristic velocity ueddy. The largest eddies are of the size
l0; these are the energy-containing eddies, and l0 is called the integral scale
of turbulence. The characteristic velocity at this scale is in the order of urms.
Thus, these eddies have kinetic energy in the order of u2

rms. So with an eddy
turnover time τ0 at the integral scale, the rate of energy transfered at this
scale is

T0 ∼
u2

rms
τ0
∼ u3

rms
l0

. (2.24)

As already stated, dissipation takes place at the end of the energy cascade.
The rate ε of dissipation of energy is proportional to T0, as the turbulent
energy contained at the integral scale is carried along the cascade. The
Kolmogorov microscales can be deduced as given in Pope (2000) [14], where
the Kolmogorov length scale is found to be

η = (ν
3

ε
)1/4, (2.25)

and the time scale
τη = (ν

ε
)1/2. (2.26)

Here, ε is the average energy dissipation rate per mass. From this, the
Kolmogorov velocity will be given as

uη = η

τη
= (εν)1/4. (2.27)

These scales characterize the smallest, dissipative turbulent eddies, a fact
that is verified by noting that the Reynolds number based on these scales is
Reη = ηuη/ν = 1. This indicates effective dissipation and viscous dominance
at this scale. It is seen that

ε =
u2
η

τη
∼
u3
η

η
, (2.28)
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which is sensible when looking at (2.24).
The energy spectrum E(k) decays proportionally to k−5/3 for a certain k

range, the inertial subrange, where energy is transfered to succesively smaller
eddies. In the logarithmic plot, cf. figure 3.1, this is seen by a linear slope
of -5/3 in the medium high k range. This shape can be determined from
dimensional analysis, using the fact that the shape of E(k) is dependent
only on ε and k. For higher wavenumber the decay is steeper. The universal
forms of the spectra at medium wavenumbers, in the universal equilibrium
range, are found to be in accordance to Kolmogorov’s hypothesis of local
isotropy (Pope, 2000 [14]). This states that the small-scale eddies, where
Leddy � l0, are statistically isotropic, meaning their behaviour is the same
in all directions: ū′2 = v̄′2 = w̄′2. According to Kolmogorov, this loss of
directional information happens because of the chaotic reduction of eddy
scales down along the energy cascade. In addition, geometrical information
also is lost throughout the energy cascade, giving all small scale eddies the
same shape.

The inertial subrange is found within the high wavenumber range, while
the dissipation range corresponds to the highest k. For the lowest k, i.e.
to the left of the inertial subrange, the energy-containing range is found.
The magnitude of the length scales l is in the inertial subrange such that
η � l � l0, where l0 is the scale at which the largest eddies appear. In
the energy-containing range, E(k) does not have any universal form, but is
rather dependent on the particular flow (Pope, 2000 [14]). The theory of
Kolmogorov holds perfectly for very high Reynolds numbers; the shape of
the spectrum can deviate in case of the Reynolds numbers considered in the
present work.

2.5 Particle clustering in turbulence
A well-documented effect (see e.g. Chun et al. (2003) [15] or Squires &
Eaton (1991) [16]) of the presence of turbulence in a particle-laden flow is
the local clustering of particles, i.e. particle concentrations higher than the
mean value in certain regions in the flow field, while the concentration is
lower than the mean value in other regions. Particle clustering may influence
different aerosol processes such as settling, evaporation, interparticle colli-
sions and also formation of convective clouds in the atmosphere (Salazar et
al., 2008 [17]). Particles get thrown out of high vorticity regions, namely the
turbulent eddies, and are accumulated in the straining-flow regions between
the eddies. The phenomenon is also called preferential concentration, thor-
oughly explained for example in the studies by Aliseda et al. (2002) [18] and
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Wood et al. (2005) [19]. Particle clustering or preferential concentration of
particles implies a spatially inhomogeneous particle concentration. For the
preferential concentration to take place, the eddy must transfer an inertia
to the particle. Thus, the particle response time τp must be in order of the
eddy’s characteristic time τeddy. Being the time it takes for the eddy to make
one turnover, it can be expressed by

τeddy = Leddy

urms
, (2.29)

where Leddy is the typical size of a turbulent eddy. According to Aliseda et
al. (2002) [18], there has been some controversy regarding which fluid time
scale is most appropriate to use, as the eddies decrease in size down along the
energy cascade. For example Aliseda et al. (2002) [18] and Wang & Maxey
(1993) [20] use the Kolmogorov time scale τη. The highest vorticity gradients
occur at the Kolmogorov scale, thus this is a natural choice as the preferential
concentration is most significant in high vorticity areas. Previous work has
shown that with τeddy = τη as time scale, the preferential concentration is at
its maximum for Steddy = τp/τeddy ∼ 1 (Salazar et al., 2008 [17]). This is
explained as follows: If τeddy � τp, then the rotation of the eddy is too slow
and the particle follows the eddy perfectly. So a very light particle behaves
more as a fluid element. On the contrary, when τeddy � τp, the particle will
not have time to respond to the fast motion of the eddy. In the cases where
Steddy ∼ 1, the particle responds to the eddy motion and is thrown out of the
high vorticity region of the eddies; the particles are ’centrifuged’ outwards.
This extra inertia of the particles may also lead to higher deposition at a
cylinder in the flow domain, as the acceleration gained from the turbulent
eddies is present in addition to the convection related to the fluid motion.
This effect comes into play only for particles gaining this inertia close to
the cylinder. It is also found that the settling velocity of particles increases
monotonically with the local particle concentration (Aliseda et al., 2002 [18]).

As the particle number density is largely dependent on the value of the
vorticity, a correlation between these two is needed to establish a quantifica-
tion of the effect of preferential concentration. A way to do this (Squires &
Eaton, 1990 [13]) is to use the strain rate and rotation rate tensors, defined
as

Sij = 1
2(∂ui
∂xj

+ ∂uj
∂xi

) (2.30)

and
Ωij = 1

2(∂ui
∂xj
− ∂uj
∂xi

) (2.31)
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respectively†. By using these, we can express the second invariant of the
deformation tensor, defined to be

−2IId ≡
∂ui
∂xj

∂ui
∂xj

, (2.32)

as

−2IId = (Sij + Ωij)(Sji + Ωji)
= SijSji + ΩijΩji + SijΩji + SjiΩij

= SijSji − ΩijΩji,

(2.33)

where the antisymmetry of the rate of rotation tensor and the symmetry of
the rate of strain tensor, i.e. Ωij = −Ωji and Sij = Sji, is used to achieve
the last line. From (2.33) it is concluded that the second invariant of the
deformation tensor can be written as

IId = −1
2(S2 − 1

4ωjωj), (2.34)

where S is the magnitude of the rate of strain tensor and ωj is the j-
component of the vorticity of the flow field. As also stated by Squires &
Eaton (1991) [16], the properties of IId can be summed up as

IId

> |IIe| ⇔ high ω and low n,

< −|IIc| ⇔ low ω and high n,
(2.35)

where |IIe| and −|IIc| denote positive and negative threshold values respec-
tively. From this, a flow field classification can be made, explained by Squires
& Eaton (1991) [16]. Here, the turbulent flow field is divided into four zones,
namely eddy, convergence, streaming and rotational zones. The strongly
swirling motions are found in the vorticity containing eddy zones. This cor-
responds to the upper case in (2.35), where the irrotational strain is small
compared to the vorticity, leading to curved streamlines. In the interior of
the zone, the pressure pin is lower than a certain threshold value pe, due to
the rotational nature of the fluid in this domain. The convergence zone has
on the contrary highly straining motion and strong convergence and diver-
gence of streamlines, corresponding to the lower case in (2.35), where IId is
less than −|IIc|, the threshold value defining the convergence region. Here
the pressure stays above the pressure threshold value pc defining the region.
It follows that convergence zones are regions where stagnation in the flow is
†The Einstein summation convention is used here. The velocity gradient tensor ∂ui/∂uj

is expressed by ∇u in vector form.
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found. Furthermore, the streaming zone is defined by |IId| < min(IIe, IIc)
and the rotational zone by the same criterion for the value of the second defor-
mation tensor as the eddy zone, but by the pressure criterion −pe < pin < pc.
Thus, the rotational zone also possesses primarily vorticity, but is not char-
acterized by curved streamlines like the eddy zones. In the streaming zones,
the speed is high while the velocity vectors have low curvature.
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Chapter 3
Computational Fluid
Dynamics

As turbulent flows cannot be solved analytically, numerical methods are
needed. A numerical scheme in general has a spatial discretization that
constitutes an approximation of the derivatives of a finite number of vari-
ables. The spatial representation is prescripted to march forward in time, by
means of discretized time steps, from some initial conditions. Finite differ-
ence methods represent values at a discrete grid of points and approximate
the spatial derivatives by differencing. With a grid point distance ∆x and
time steps ∆t, for a proper numerical method, when ∆x → 0 and ∆t → 0,
the numerical solution must converge towards the ’true’ solution. Whether
this solution reflects the real-world situation simulated, depends on e.g. mod-
els used, restrictions made and the numerical scheme itself. The difference
between the numerical solution and the exact solution is the error E. If
E = O((∆x)n, (∆t)n) as ∆x → 0 and ∆t → 0, the scheme is of order n in
space and time.

In computational fluid dynamics, several methods are used to simulate tur-
bulent flows. One example is the Reynolds Averaged Navier-Stokes (RANS),
where the Navier-Stokes equation is averaged over time, with the turbulent
velocity being u = ū + u′. The averaging leads to RANS being time inde-
pendent. As a result of the time averaging, a turbulent shear stress, or the
Reynolds stress tensor, is introduced. This constitutes an additional term
in the equations and can be modeled by means of different hypotheses and
assumptions. As an example, the k − ε model is frequently used and based
on the Boussinesq hypothesis (Chang et al., 2011 [21]), where the Reynolds
stress is approximated by an algebraic equation. Here, in addition to the
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usual fluid equations, transport equations for the kinetic energy k and the
energy dissipation rate ε are solved. RANS is typically used in engineer-
ing applications, in order to minimize the numerical costs. However, due to
the turbulence modeling, not all scales exhibited by the flow are resolved by
RANS, only the larger scales. Some information will thereby be lost, and sim-
ulations cannot be said to be surely correct at all cases. This is the case also
in a Large Eddy Simulation (LES), another commonly applied turbulence
simulation method. This method is an improvement compared to RANS,
as time dependence is taken into account. In RANS, one single turbulence
model is used, which is not sufficient for an exact description of the flow, as
small eddies behave differently from the large ones. The small ones have an
isotropic nature and a universal behaviour, as discussed in section 2.4, while
the behaviour of large energy-containing eddies is dependent on the geometry
of the specific flow. LES takes this difference into consideration, in the sense
that the large eddies are time-dependently simulated for each problem, while
the behaviour of the smaller ones are captured with one model, due to their
universality. The Navier-Stokes equations are spatially filtered, in order to
eliminate the smallest length scales. Through this filtering process only the
largest scales are kept and can thus be resolved time dependently. Without
having to resolve all scales, the computational costs are reduced. However, as
the smallest scales are only modeled and not resolved, there is still room for
improvement. Therefore, when examining turbulence in a more fundamental
and accurate way, like in this thesis, Direct Numerical Simulation (DNS) is
used.

3.1 DNS
In DNS, the Navier-Stokes equations are basically solved with no assump-
tions or simplifications. Instead of statistically averaged equations, like in
RANS, the equations are in DNS solved in a direct manner. The turbu-
lent flow is in that sense regarded as any general flow. Unlike RANS and
LES, there is no modeling at any scales. All spatial and temporal scales are
resolved, all the way down to the Kolmogorov scale, implying a very high
computational cost. This is the reason why DNS cannot be applied to most
engineering problems: the range of scales is simply too wide in case of high
real-life Reynolds numbers, and the computational costs become too high
for computers of today to handle them. DNS becomes very costly also at
moderately high Reynolds numbers. As DNS instantaneously solves for all
flow variables, it gives the most precise decription of turbulence and can help
building better turbulence models. Precise details of turbulence parameters,

22



3.1. DNS

their transport and budgets are achieved. As stated by Squires & Eaton
(1990) [13], results from DNS can also provide information that cannot be
obtained from experiments. It is also advantageous in the present work as the
small scale turbulent vorticity may be significant for the particle behaviour,
and DNS provides precise information of this. When it comes to particle-
laden flows, Boivin et al. (1998) [1] point out that DNS is advantageous
as the properties of the turbulence are directly available all along particle
trajectories.

Figure 3.1: Sketch of the turbulent energy spectrum logarithmically plotted
against the wavenumber k. For increasing wavenumber, the regimes in which
RANS, LES and DNS work are seen. The largest length scale is l0. The k−5/3

proportionality is seen in the universal equilibrium range, while for low k, an
arbitrary graph shape is chosen.

3.1.1 Computing costs

As previously stated, the computing costs in DNS increase rapidly with the
Reynolds number. The costs are obviously also largely determined by the
resolution of the simulation. The biggest DNS up to this date was done by
Kaneda et al. (2003) [22] with a resolution of 40963, a three-dimensional
domain, a box, with 4096 grid points in each direction.
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Also in the present work, turbulence is created in a three-dimensional box.
The size of this box has to be big enough to contain the largest turbulent
eddies, which interact with and extract energy from the mean flow (Versteeg
& Malalasekera, 2007 [23]). On the other hand, a small ∆x is needed for
the dissipative scales to be resolved. As seen before, Rec ∝ ν−1. The mesh
spacing ∆x should be in the order of the Kolmogorov length η as given by
(2.25), η ∝ ν3/4. In order to get the smallest scales resolved, the number of
meshpoints in one direction i must be

Ni ∝ η−1 ∝ ν−3/4 ∝ Re3/4
c , (3.1)

leading to a total number of meshpoints in the order of

N3D ∝ Re9/4
c . (3.2)

This means that for every time step at least N3D equations are solved. To
get an appropriate value of the time step, it is noted that in order to solve
all equations at all grid points, it is desired that a fluid element only move
from one grid point to the next one within a single time step. Otherwise, in-
formation will be lost. To control the time step in this manner, the Courant-
Friedrichs-Lewy (CFL) number cCFL is introduced; it is shown by Moin &
Mahesh (1998) [24] that cCFL must be sufficiently low for the error to be
minimized. The implementation of the CFL number for this work will be
discussed in the next chapter, along with a description of the DNS code
used.
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Chapter 4
Numerical method

4.1 The Pencil Code
It is clear that Direct Numerical Simulations of flows with very high Rec
are not feasible. For simulations with feasible Rec, it is crucial to find a
fast and accurate computer code. The DNS code used here is The Pencil
Code [25], based on the finite difference method. The code is designed
for running on parallel computers, using Message Passing Interface (MPI)
for communication between the processors. The code deals primarily with
weakly compressible turbulent flows. It is highly modular, meaning that
the user can specify physics modules relevant for the specific problem. The
modules solving the equations are written in Fortran. The code can be
run on any UNIX based system with a f90 or f95 compiler. To acquire a
satisfactory accuracy, the code is of sixth order in space and a third order
Runge-Kutta method is used for the time integration. In The Pencil Code,
equations are at all instants solved along one dimensional arrays, or ’pencils’,
which ensures that all information needed by the working CPU fits in the
computer’s cache. This is considerably faster than working on the whole
domain at all instants. The CFL number, whose importance was discussed
in the previous chapter,

cCFL = umax∆t
∆xmin

(4.1)

has to be less than 1, for the code to remain stable. It is clear that with
cCFL > 1, a signal covers a greater distance than ∆xmin during the time ∆t.
The maximum speed umax = max(|u| + cs) of a fluid element is dependent
on the speed of sound cs, due to the compressibility of the flow. In all
simulations, cCFL = 0.4 is used, and this gives a unique ∆t for each iteration.
The value of cs is set according to the findings of Bjørnstad (2010) [11].
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4.2 Boundary and initial conditions
The Pencil Code allows for different boundary conditions, like symmetric,
anti-symmetric or periodic. The 2D domain containing the cylinder cross
section and the surrounding flow has periodic boundary conditions in the
y-direction, meaning that a particle hitting the wall at y = 0 or y = Ly
immediately is reinserted at the same x-point on the other side, with the same
velocity and in the same state, cf. figure 4.3(b). Particles are inserted close
to x = 0, a few grid cells in the direction of the fluid flow, and are removed
from the simulation when hitting the cylinder or the rightmost boundary at
x = Lx. Boundary conditions will be further discussed in later sections. The
turbulence is established prior to the simulation of the fluid flow and the
particle behaviour around the cylinder.

Figure 4.1: The circular cross section of the three dimensional cylinder is
projected onto the two dimensional domain on which the flow is simulated.

4.2.1 The turbulent box
The simplest turbulent flows are characterized by isotropy and homogene-
ity. Isotropy implies that the statistical features of the turbulence have no
directional preferences, i.e. the turbulence looks similar in all directions and
perfect disorder reigns (Hinze, 1975 [26]). Mathematically, isotropy can be
expressed by a vanishing gradient of the mean fluid velocity. Isotropic tur-
bulence is in the present work created inside a cubic domain, the turbulent
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box. Homogeneous and isotropic turbulence is not statistically stationary
(Eswaran & Pope, 1987 [27]), as there is no energy production and thus the
turbulence decays over time. Statistical stationarity is an attribute that is
advantageous in the analysis of turbulence, also in particle motion exam-
ination in the present work, and the decay of turbulence complicates the
understanding of e.g. particle motion (Boivin et al., 1998 [1]).

In the present work, by creating turbulence by the use of forcing, sta-
tistically stationary turbulence is achieved, and the above mentioned com-
plications are avoided. Energy is added at a low wave number, i.e. large
length scale, and the turbulence is developed until the energy added is equal
to the energy dissipated in the high wave number range. This leads to an
equilibrium where particle motion is independent of the turbulence’s initial
conditions (Boivin et al., 1998 [1]). The forced turbulence is basically created
by adding a stochastic forcing function (as given by Haugen et al. (2004)
[28])

f(x, t) = <{N fk(t) exp[ik(t) · x + iφ(t)]} (4.2)

as an external force to the right side of (2.2). As k(t) and φ(t) are chosen
randomly at each time step, the stochastic nature of turbulence is inherent
in the equation. The normalization factor is N = f0c(|k|c/∆t)1/2 and fk(t)
is perpendicular to k and is an eigenfunction to the curl operator. In The
Pencil Code, a wavenumber forcing value |kf | = kf is set. The magnitude
of the randomly chosen k(t) is in the range kf − 0.5 < |k(t)|/k0 < kf + 0.5,
where k0 = 2π/Lbox is the normalizing wavenumber corresponding to the
side lengths Lbox of the box. The effect of the forcing is that turbulent en-
ergy is put into the system at the spatial scales corresponding to the forcing
wavenumber kf , which in this manner determines the behaviour of the turbu-
lence. As kf is normalized by k0, the forcing length scale will be lf = Lbox/kf .

4.2.2 The two-dimensional flow domain
Prior to letting the turbulence enter the domain, von Kármán vortices, ex-
plained in section 1.2.4, in a steady state are established in the wake of the
cylinder. When this is done, the generated turbulence is used as inlet for
the two dimensional domain containing the flow, the cylinder and the par-
ticles, when running a turbulent simulation. The procedure is illustrated in
figure 4.2, and has been implemented in the code and tested for the present
study. A quadratic xy-slice of the turbulent box is divided into strips whose
velocity information is extracted and inserted at the leftmost side of the do-
main. Thus, it is important that the number of processors and the number of
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(a) Turbulent box.

(b) Turbulent inlet on the do-
main.

Figure 4.2: Figure (a) shows how turbulent velocity information containing
strips (yellow and blue here) at discrete increasing x-values are successively
extracted from the xy-plane, i.e. for constant z. As all strips for z = 0 are
extracted, in the blue marked plane, the procedure is repeated at next discrete
z-value. When the last xy-plane, the orange one, is used, the procedure starts
over again. In (b) it is shown how the turbulent velocities of the successive
strips are imposed on the boundary of the domain.

grid points in the y-direction is the same for both the three dimensional tur-
bulence generating simulation and the corresponding two dimensional flow
simulation. At successive time steps, the position of the strips chosen de-
pends on the distance traveled by the fluid, i.e. U0t. When the end of a
slice is used as inlet, the slice at the next discrete z-value is used in the same
manner. When the outer end of the box is used, i.e. the slice at the max-
imum z-value, the procedure is started over again with the strips from the
slice at z = 0. Imposing turbulence in this way essentially means adding the
turbulent velocity ut to the velocity U0x̂, imposed at x = 0, which would be
the inlet velocity in case of no turbulence. Hence, the velocity at the inlet is

uin = U0x̂ + µturbut, (4.3)

where µturb is a number describing the magnitude of the imposed turbu-
lent velocity; µturb > 1 implies that the turbulent velocity fluctuations and
thus urms in the 2D domain is increased compared to its values from the
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created box turbulence. The boundary conditions implemented when impos-
ing the turbulent velocity at x = 0 are called Navier-Stokes characteristic
boundary conditions (NSCBC), and are treated by a single module in The
Pencil Code. The advantage of using NSCBC is that the boundaries are
non-reflecting, meaning that any signal is let through them. If they were
reflecting, there would be the risk of standing waves, or numerical noise, dis-
turbing the solution. The direct numerical simulation of compressible flows
requires an accurate control of wave reflections from the domain boundaries,
as the accuracy of the solution is in general sensitive to solutions at bound-
aries (cf. Poinsot & Lele, 1992 [29] and Lodato et al., 2008 [30]). In turbulent
flow simulations, and specifically in DNS, where the range of scales is large,
reflected waves can cause problems; the boundaries are ’hit’ by e.g. convected
vorticity and sound waves, and the reflections of these lead to oscillations be-
ing superposed with the computed solution (Lodato et al., 2008 [30]). Thus,
the wrong results are obtained. The transparency of NSCBC prevents this.

The rectangular flow domain has side lengths Lx and Ly in the x and y
direction respectively, with Lx = 2Ly. Periodic boundary conditions are im-
posed at the lower and upper sides of the domain, at y = 0 and y = Ly. The
boundary conditions are the same for the particles as for the flow. Periodicity
implies that a fluid element or a particle hitting the boundary immediately
reappears in the same state with the same velocity at the opposite side.

4.2.2.1 Ghost points and the solid cylinder

Numerically, the boundary conditions are taken care of by the use of ghost
points, quasi virtual grid points, outside the domain. The domain is repre-
sented by a grid with nx points in the x-direction and ny in y. At each side
of the grid points in each dimension, three ghost points are added. Depend-
ing on which boundary conditions are used, values at the six ghost points
in each direction are set equal to the values calculated at the corresponding
grid points, cf. figure 4.3. In this way, a symmetric boundary condition can
be imposed by setting the same value to both the grid point and the ghost
point nearest, but on opposite sides of a boundary. As three ghost points are
present at each boundary, any grid point will have three nearest neighbours
on each side along each pencil, i.e. in each dimension. Thus, the boundary
conditions are sufficient for sixth-order spatial differences.

The position of the cylinder is in the middle of the domain. The cylinder,
being a solid geometry, is modeled using the immersed boundary method de-
scribed by Haugen & Kragset (2010) [4]. With this method, a grid of ghost
points is used within the cylinder area, such that imposed boundary con-
ditions represent a distinct wall between the cylinder and the flow domain.
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(a) Symmetric boundary conditions.

(b) Periodic boundary conditions.

Figure 4.3: Ghost points are assigned values according to the calculated values
at corresponding points, i.e. points with the same colour, in the domain.
In the case of antisymmetric boundary conditions, the values assigned to
the ghost points shown in figure (a) would be of the opposite sign of the
corresponding points in the domain.

Values at one of these ghost points are chosen according to the correspond-
ing mirror point, a point within the fluid domain grid which is found by
mirroring the ghost point across a symmetry line parallel to the tangent of
the curved cylinder. Interpolation between mirror point neighboring grid
points is needed for calculating the values at the mirror point, as it will not
necessarily be a grid point.

4.3 The particles

4.3.1 One-way coupling
As the focus is particle transport in turbulence, i.e. the impact of the tur-
bulence on the particles, one-way coupling is assumed. This implies that the
effect of the velocity field of the fluid affects the particles, but not the other
way around. This is already seen from the expression for the drag force (2.8);
the fluid velocity u is contributing to the particle motion. This one-way cou-
pling is the typical method when considering only particle transport, while
by two-way coupling also the modification of turbulence from higher mass
loadings of particles is studied (Maxey et al., 1997 [31]). One-way coupling

30



4.3. THE PARTICLES

implies that the turbulence behaves as if there were no particles present, and
the intensity of the turbulence is not lowered, as can be the case in a similar
real-flow scenario. However, the assumption is valid, since it is knowledge
of the particle behavior resulting from the presence of turbulence that is the
goal of this work. As pointed out earlier, a low particle to fluid density ratio
also makes one-way coupling reasonable.

4.3.2 Inserting particles

Among similar simulations done in the past, there have been some disagree-
ments related to the correct number of particles to insert to achieve the
desired statistical reliability of the data (Strutt et al., 2011 [32]). Therefore,
a large number of particles, N = 106, is inserted in each simulation. When
the turbulence has fully entered the domain and the statistically steady state
has been reached, particles are released a few cells downstream at the left-
most edge. If they are deposited at the cylinder or reach the rightmost
edge of the domain, they are removed from the simulation. The particles
are inserted continuously over a time interval corresponding to multiple Von
Kármán eddy periods, controlled by the particle insertion rate rinsert. Insert-
ing particles at the farthest edge upstream of the cylinder is necessary for
the particles to interact with the flow velocity and be distributed dependent
on the flow structure and thereby to achieve a more physical realization of
the system. The initial velocity of the particles is equal to the mean flow
of the fluid, U0x̂, and the width lpar,run, the y range over which the particle
cluster is inserted is set such that it at least spans the cylinder diameter D.
The width lpar,run can be adjusted in the different runs, depending on the kf
used. Particles inserted in the domain at an unnecessarily large |y|-position
will only increase computational cost, and not give any better deposition
statistics (Bjørnstad, 2010 [11]). However, it is essential that lpar,run is at
least as large as the largest turbulent eddies, because particles change veloc-
ity direction when being influenced by the eddies, and will thus be captured
even though they were not inserted in front of the cylinder. In the laminar
cases, it is sufficient with lpar,run = D, as the particle paths follow the laminar
streamlines perfectly and thus go straight in the x direction.

4.3.3 Capture efficiency

If in total N particles are inserted, then Ninit = N D
lpar,run

initially start right
in front of the cylinder. When Ncap particles are captured, this gives the
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capture efficiency
η = Ncap

Ninit
= lpar,run

D

Ncap

N
. (4.4)

As the particles with largest St are awaited to easily be captured because of
their large inertia, a lower number of these particles is needed, than number of
particles with smaller St, to achieve statistically significant results. Likewise,
a high number out of the total N particles have small St, because of the
much lower probability for these particles to be captured. In the present
work, all particles that hit the cylinder are captured. This implies that all
particles stick to the cylinder surface, which would not necessarily be the
case in a real-world scenario. The conditions under which particles will stick
to a cylinder surface are studied by Wang (1986) [33] and Rosner & Tandon
(1995) [34].

Here, capture is the same as deposition, used previously. Capture effi-
ciency thus quantifies the deposition of particles. When presenting and dis-
cussion the results, in the remaining part of the thesis, capture will primarily
be used.
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Chapter 5
Results and discussion

In this chapter, results from the simulations are presented. This includes
mainly capture efficiency curves both at Rec = 421 and Rec = 1685, com-
pared between different forced cases with turbulence and laminar reference
cases. Values of parameters used in the simulations are given in appendix B.
The 2D domain had the same physical size at both Rec. The simulations with
Rec = 421 were run on a domain with 1024 grid points in the x-direction and
512 grid points in the y-direction, while the Rec = 1685 simulations were run
with 2048 and 1024 grid points in the respective directions. The 3D box sim-
ulations of turbulence were run with resolutions 5123 and 10243 for Rec = 421
and Rec = 1685 respectively. The need for accurately resolving the boundary
layer of the cylinder is the strictest resolution requirement in the simulations.
As the thickness of the boundary layer scales as δlayer ∝ 1/

√
Rec, a Reynolds

number of 1685 requires doubled resolution in every direction in order to
resolve the boundary layer, compared to what is required for the four times
lower Rec = 421.

The turbulent pre-simulations are shortly discussed in section 5.1. The
deposition of particles on the cylinder, expressed by the capture efficiency, is
presented thereafter. In section 5.2, the results from the Rec = 421 simula-
tions are presented. The Rec = 1685 results are given in section 5.3, which
is followed by a discussion on comparing observations on the differences be-
tween the simulations at the two Reynolds numbers. This also includes the
results of backside impaction, particles colliding with the backside of the
cylinder. Particle clustering is treated in section 5.5. A discussion on how
the vorticity plays a role concludes the chapter.

In figure 5.1, the frontside and backside of the cylinder is illustrated. The
deposition of particles mainly takes place on the frontside of the cylinder.
Thus, the major emphasis is put on the results of the frontside capture effi-
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ciency η. However, some backside capture is found, but is only considered in
section 5.4.2. Backside capture will be denoted by ηback.

Figure 5.1: The frontside and backside of the cylinder. The fluid flows towards
the cylinder with mean velocity U0.

5.1 Simulations of turbulence in 3D
The goal of the 3D pre-simulations of turbulence was to establish homoge-
neous, statistically stationary conditions. Stationarity in the turbulence im-
plies that the stochastic fluctuations reach a steady state, i.e. urms stays con-
stant in time. For both Reynolds numbers, three different turbulent forcing
scales were applied, i.e. three turbulent boxes simulated for each Reynolds
number. Table 5.1 lists values of urms achieved in the simulations of tur-
bulence. Small length scale forcing corresponds to a forcing wavenumber
kf = 15, intermediate scale to kf = 5, while kf = 1.5 corresponds to large
scale forcing. The shape of the energy spectrum in figure 5.2 is seen to corre-
spond with the general trends described in section 2.4, even if the Reynolds
number is too low for the characteristic E(k) ∝ k−5/3 shape in the universal
equilibrium range to be present.
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Table 5.1: Values of urms for all the turbulence simulations, given in m/s.
The product urmskf becomes useful later, as it expresses the magnitude of
vorticity.

kf urms urmskf

Rec = 421
15 0.8637 12.956
5 1.337 6.685

1.5 2.117 3.176

Rec = 1685
15 1.191 17.865
5 1.404 7.02

1.5 1.473 2.21

Figure 5.2: Power spectrum of turbulent kinetic energy. The turbulence was
run at Rec = 1685 and forced at kf = 15, which is seen in the peak in energy
at k = 15. The energy is well dissipated for high wavenumbers, where the
irregularity at the highest wavenumber is due to the numerics.

5.2 Simulations with Rec = 421
Figure 5.3 shows the capture efficiencies, as function of the Stokes number,
resulting from the four cases L1-L4, as given in table 5.2. The typical shape is
as seen in the literature, e.g. Guha (2008) [7] and Haugen & Kragset (2010)
[4]. As described in the latter of these, three modes are found in the plotted
capture efficiency, namely the inertial impaction mode, the boundary stop-
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Table 5.2: Overview of the 2D simulations. In the column Case, ’L’ corre-
sponds to lower resolution runs and ’H’ to higher.

Case Resolution Rec Flow regime µturb
L1 1024× 512 421 Laminar · · ·
L2 1024× 512 421 Turbulent; kf = 15 1.0
L3 1024× 512 421 Turbulent; kf = 5 1.0
L4 1024× 512 421 Turbulent; kf = 1.5 1.0
H1 2048× 1024 1685 Laminar · · ·
H2 2048× 1024 1685 Turbulent; kf = 15 1.0
H3 2048× 1024 1685 Turbulent; kf = 5 1.0
H4 2048× 1024 1685 Turbulent; kf = 1.5 1.0
H5 2048× 1024 1685 Turbulent; kf = 15 1.5
H6 2048× 1024 1685 Turbulent; kf = 5 1.5
H7 2048× 1024 1685 Turbulent; kf = 1.5 1.5
H8 2048× 1024 1685 Turbulent; kf = 15 2.0
H9 2048× 1024 1685 Turbulent; kf = 5 2.0
H10 2048× 1024 1685 Turbulent; kf = 1.5 2.0

ping mode and the boundary interception mode. In the following sections,
these modes are identified according to the plotted capture efficiencies.

5.2.1 Inertial impaction mode
The inertial impaction mode is found for the region St & 0.5 for all four
simulation cases. This inertial impaction mode found for the largest particles
is also described by Douglas & Ilias (1988) [8]. It arises due to the large
inertia of the particles in this mode; they are barely affected by the fluid
flow, and it is thus awaited that the presence of turbulence does not lead
to any significant change in capture. This presumption is verified by in the
present work. The initial velocities of the particles are maintained and thus
the deposition is large; the particles starting in front of the cylinder stay in
front of the cylinder, and are to little extent affected by the boundary layer.

5.2.2 Boundary stopping mode
When the Stokes number decreases from St = 0.50, the capture efficiency falls
steeper than it does for decreasing Stokes numbers in the inertial impaction
mode. This is in agreement with Bjørnstad [11] and Haugen & Kragset [4].

36



5.2. SIMULATIONS WITH REC = 421

Figure 5.3: The frontside capture efficiency η plotted against the Stokes num-
ber St at Rec=421.

The simulations ran in the latter study are only laminar, and the capture
efficiency’s dependence on the Reynolds number is studied. However, both
Rec = 421 and Rec = 1685 are covered, so the achievements of the study
are comparable to the laminar results of this work. The important boundary
stopping mode in the range 0.15 . St . 0.5 is where the interesting results
are mainly found. The mode appears after a gradual transition from the
inertial impaction mode and into this region with the more declining capture
efficiency for decreasing Stokes numbers below 0.5. The lower limit for this
region, at St ≈ 0.15, correlates well with the what was found by Haugen &
Kragset (2010) [4] and Bjørnstad (2010) [11]. At this Stokes number and
below, the particles start lacking the inertia needed to penetrate the bound-
ary layer of the cylinder. As is shown by Haugen & Kragset (2010) [4], the
lower Stokes number limit for the boundary stopping mode depends on the
Reynolds number. This reflects the fact that the boundary layer character-
istics, e.g. its thickness, depend on the viscosity. The capture efficiency’s
strong dependence on a change in the Stokes number is the characteristic
attribute of this mode.
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5.2.3 Boundary interception mode
For St . 0.15, the boundary interception mode is found. It is seen that η is
again less dependent on St, meaning that the curve is consistently flattening
for decreasing St. In the boundary interception mode, the particles have such
a low inertia that they follow the fluid almost perfectly. Still, the impaction
rate is not zero. The particles are impacting due to them being physical
particles with finite radii, and some of them are therefore able to get close
enough to hit the cylinder. Haugen & Kragset (2010) [4] investigate which
and where particles are deposited by considering the laminar boundary layer
thickness, which is varying with position around the cylinder surface. In this
way, Haugen & Kragset (2010) [4] find where on the cylinder the particles
with the lowest Stokes numbers most likely will deposit, by looking how their
radial velocity towards the cylinder varies due to the varying boundary layer
thickness. This leads to an angle dependent deposition distribution around
the cylinder frontside.

Looking at figure 5.3, it can be said that this mode for case L4 is shifted
somewhat to the left compared to L2 and L3, due to the higher capture at
both St = 0.15 and St = 0.19. In general, as few particles are captured in
the boundary interception mode, statistical deviations may as stated give the
results less confidence. The turbulent capture efficiencies in this mode will
also be discussed in chapter 6.

5.2.4 The effect of turbulence on the capture efficiency
For easier to study the effects of the turbulence, the relative differences

δCase = ηCase − ηlaminar

ηlaminar
(5.1)

between capture efficiencies in the different turbulent cases and the laminar
are plotted. A negative δCase thus implies a larger capture in the laminar
case. For Rec = 421, the respective relative differences for L2 through L4
versus the laminar L1 are plotted in figure 5.4.

Bjørnstad’s (2010) [11] study also contains a laminar reference case and
2D turbulent simulations forced at kf = 1.5 and kf = 5 respectively. In the
inertial impaction mode, the general trend is, as previously stated, that the
turbulent η’s do not deviate much from the laminar. Bjørnstad’s (2010) [11]
findings support this. However, not any major differences between turbulent
and laminar cases are expected in this mode.

From the lower region of the boundary stopping mode and upwards, the
capture efficiency for case L4 obtains the highest values. The trend is that
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Figure 5.4: Frontside capture efficiencies at Rec=421, shown as relative dif-
ference δCase between the turbulent cases the laminar reference case.

lowering the forcing length scale, i.e. raising kf , yields lowered capture ef-
ficiencies. Thus, a higher δL3 than achieved in the present results would
be expected, as δL4 attains such high values in this mode. This is the case
in the results of Bjørnstad (2010) [11]; his kf = 5 simulations show higher
capture than the present simulations do. For the low-scale forced case L2,
there is only a smaller region approximately with St ∈ 〈0.2, 0.25〉 where the
capture efficiency is increased compared to laminar flow. For lower Stokes
numbers, the relative difference in capture efficiency for the cases L2 and
L3 stays slightly below zero. For higher Stokes numbers, especially in the
inertial impaction mode, it is approximately zero for all cases.

In the boundary interception mode, the behaviour of the particles in case
L3 is the same as found by Bjørnstad (2010) [11], namely a lower η than
in the laminar case, which is the result also in case L2. For the large scale
forced case what looks like random jumps are seen in δL4, indicating the less
predictable η behaviour for the lowest St.
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Figure 5.5: Frontside capture efficiencies at Rec=1685, for the laminar refer-
ence case H1 and the three turbulent forced simulations, where all three cases
have turbulent velocity magnitude µturb = 1.0.

5.3 Simulations with Rec = 1685
The high resolution simulations with Rec = 1685 (cases H1-H10 in table
5.2) were run with inlet turbulence simulated on a 10243 domain. Different
turbulence intensities were implemented by increased turbulent inlet velocity,
i.e. altering of µturb in (4.3). The NSCBC parameters had to be adjusted
carefully to avoid code crashes as the velocity of the turbulent eddies became
higher. The differences in frontside capture efficiencies due to this altering
of the turbulent velocities are studied in this section.

Figure 5.5 shows, in the same manner as figure 5.3, the frontside capture
efficiency plots, with their characteristic shape. The boundary stopping mode
can again be said to be in the domain 0.15 . St . 0.5, with the inertial im-
paction and boundary interception modes above and below this, respectively.
No particles of the smallest size have been captured in the kf = 5 turbulence
case H3. The number of particles captured is in all cases low in this region.
Thus, this result is within the statistical deviation of the simulation. Like
in some of the Rec = 421 results, the frontside capture efficiencies in the
cases with turbulence have jumps for the lowest Stokes numbers, compared
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to the laminar, which has a monotonically increasing capture efficiency for
increasing Stokes numbers. The jumps may be due to the fluctuating eddies
influencing the capture. A further discussion is given in chapter 6.

5.3.1 The impact of turbulence
In the following, the effects of turbulence at Rec = 1685, by means of the
different forcing wave numbers kf and increasing turbulent velocity magni-
tude µturb, are investigated by examining the plotted relative differences in
frontside capture efficiency. It proved difficult to apply turbulent inlet mag-
nitude significantly larger than µturb = 2.0, as it caused excess of numerical
reflections at the boundaries and thus code crash.

Figure 5.6: Frontside capture efficiencies with Rec = 1685 and µturb = 1.0,
turbulent results shown as relative difference to the laminar reference case
H1.

5.3.1.1 Turbulent velocity magnitude µturb = 1.0

The relative differences in capture efficiency with Rec = 1685 without am-
plification of the turbulence, i.e. with µturb = 1.0, are plotted in figure 5.6.
In the boundary stopping mode, from St ≈ 0.15 and upwards, the rela-
tive differences for all cases are monotonically increasing, until the peak is
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reached. The peak in relative difference is clear for all three cases, and found
at St = 0.24. So the effect of turbulence is at largest in the lower region of
the boundary stopping mode. The increase in η is as expected more dramatic
the larger the forcing length scale is, thus the lower kf is. At the peak, δH4
is almost nine times δH2. Furthermore, the kf = 1.5 turbulence capture of
particles with St = 0.15 is almost ten times the laminar capture. Case H3,
with kf = 5, also has a dramatic increase in capture, compared to the lami-
nar, from St ≈ 0.5 on, while the change is much less for case H2. It is also
noted that the effect of the turbulence is found at the same Stokes numbers
for all forcing scales.

Figure 5.7: Relative differences in frontside capture efficiencies for the turbu-
lent cases with Rec = 1685 and µturb = 1.5. The highest value, slightly above
50, is no shown.

5.3.1.2 Turbulent velocity magnitude µturb = 1.5

When the turbulent inlet velocity is increased, the effect of the turbulence
is found to be dramatically stronger. The peak in the relative difference
is found at St = 0.19, cf. figure 5.7. This largest value of the relative
difference, at round 50, is found in the intermediate scale forced case H6,
with the large scale capture being smaller. This as opposed to the simulations
with µturb = 1.0, where the relative capture increases with the forcing scale
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applied, which is the expected result. Interestingly, δH7 is around zero at
St = 0.15, even if the corresponding case H4 with µturb = 1.0 was around
9. As seen in figure 5.7, the relative capture then increases rapidly from
around zero to approximately 30 at St = 0.19 for this case. So all peaks are
shifted somewhat to the left, compared to figure 5.6. The peak in the low
scale forced case H5 is broader, compared to its height, than the other two.
The inertial impaction range mode is still found in the same range; amplified
velocity magnitude does not lead to increase in capture differences here. The
capture for kf = 5 being larger than kf = 1.5 is an anomaly indicating
that the implementation of µturb = 1.5 might have gone wrong. However,
the results confirm the trend of dramatically higher capture efficiency for
increasing µturb.

Figure 5.8: Relative differences in frontside capture efficiencies for the turbu-
lent cases with Rec = 1685 and µturb = 2.0. The highest value, slighty above
50, is not shown,

5.3.1.3 Turbulent velocity magnitude µturb = 2.0

The trend with strongly increasing relative capture efficiency for increasing
turbulence intensity continues as the velocity magnitude is raised to µturb =
2.0, as shown in figure 5.8. The results are more as expected, with increasing
capture efficiency with increasing forcing scale. There is no capture at the
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two lowest Stokes numbers investigated for the large scale forced case H10,
while the capture for this case is slightly below the laminar at St = 0.15 and
increases suddenly to above 50 times the laminar for St = 0.19. A decrease
is found for the intermediate scale forced case H9, compared to what is seen
in figure 5.7: The relative difference in frontside capture efficiency in case
H9 is about 70 % of its value in the corresponding case H6 with µturb = 1.5.
Furthermore, the cases H8 and H9 have their peaks at approximately the
same value of the relative; the lower scale forced case H8 peaks at about 90
% of the top value of case H9. The general trend seems to be that the effects
of the differently forced turbulence converge towards each other as µturb is
raised, and forcing scales becomes less important.

5.4 The effect of increased Reynolds number
The particle-laden flow has been simulated at two Reynolds numbers both
at laminar conditions and at three turbulent forcing scales. In the following,
major differences between the results for the two Rec will be presented and
briefly discussed. As a whole, capture efficiencies in the boundary stopping
mode are found to be higher for Rec = 1685 than for Rec = 421.

5.4.1 Frontside capture
In the figures 5.9 and 5.10, the different frontside capture efficiencies for the
two Reynolds numbers are plotted for comparison. All turbulent cases in
these figures are simulated with µturb = 1.0. It is seen that in the boundary
interception mode, the capture efficiency for Rec = 1685 is in general lower
than for Rec = 421. This is because the frontside capture efficiency for these
lowest Stokes numbers is entirely depending on the particle radius rp, which
in the Rec = 1685 cases are set to be the half of their value in the Rec = 421
cases, in order to apply the same Stokes numbers for both Reynolds numbers.
This is because St ∝ 1/ν and St ∝ r2

p, cf. (2.15)∗.
In all figures, the capture for the Rec = 1685 simulations exceeds the

capture for the Rec = 421 simulations at around St ≈ 0.20, in the lower region
of the boundary stopping mode. Considering figure 5.9, in the boundary
stopping mode, the difference in η between the two Rec seems to be larger
when turbulence is present, i.e. in figure 5.9(b). The plots of the laminar
results, in figure 5.9(a) coincides with the results of Haugen & Kragset (2010)
[4], where simulations were run at the same Reynolds numbers as here.
∗The kinematic viscosity ν in the Rec = 1685 simulations is one fourth of its value in

the Rec = 421 cases.
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From around St ≈ 0.5 and onwards, the capture at both Rec is much the
same in all plots in both figures 5.9 and 5.10. Small differences between the
Rec = 421 and the Rec = 1685 simulations are probably anomalies due to
the low number of particles released within the highest Stokes numbers, and
thus poor reliability in the data.

Regarding the kf = 1.5 simulations in figure 5.10(b), the value of the
Rec = 1685 capture efficiency is three times larger than the Rec = 421
capture efficiency already at St = 0.19. Also, the capture is higher for the
Rec = 1685 run throughout the whole St range except at St = 0.15. It can
be concluded that St = 0.15 is within the boundary interception mode, as
all Rec = 1685 η’s are considerably smaller than the η’s for Rec = 421. As
already stated, this is because the particle radii are smaller in the Rec = 1685
simulations, and the finite radiues is the parameter determining the capture
in this mode. Furthermore, in the laminar and low scale forced cases in
figures 5.9(a) and (b) respectively, the Rec = 1685 capture is lower than the
Rec = 421 capture also at St = 0.19. For these cases, it may be said that
St = 0.19 is found in the boundary interception mode.

Another feature is the slightly increased capture for the lowest Stokes
number for which there is non-zero capture, compared to the second lowest,
in the turbulent Rec = 1685 cases in figures 5.9(b) and 5.10. This can indicate
some unknown mechanism in this lower region of the boundary interception
mode, further considered in chapter 6.
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(a) Laminar cases: Case L1 with Rec = 421 and case H1 with Rec = 1685.

(b) Turbulent cases L2 and H2, with kf = 15

Figure 5.9: Frontside capture efficiencies for both Rec = 421 and Rec = 1685.
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(a) Turbulent cases L3 and H3, with kf = 5

(b) Turbulent cases L4 and H4, with kf = 1.5

Figure 5.10: Frontside capture efficiencies for the two larger turbulent forced
cases both for Rec = 421 and Rec = 1685.
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Figure 5.11: The backside capture efficiencies for all simulations with Rec =
421. The continuity in lines connecting the data points is broken when there
exists particle sizes, for which there is no capture. The range in St for which
there is capture is thus abrupted at certain points.

5.4.2 Backside capture
To further investigate the effects of the turbulent eddies on the particles, the
capture on the backside of the cylinder, ηback, is also calculated by means of
(4.4), with Ncap now being the number of particles captured on the backside.

In figure 5.11, the backside capture ηback for the Rec = 421 simulations is
plotted. It is seen that the values for ηback are very low. The characteristic
shape seen in the plots of the frontside capture efficiency is not present;
there is only a minor capture and it takes place in the lower Stokes number
range. As seen in figure 5.11, capture seems to be somewhat higher in the
turbulent cases L2-L4 than in the laminar L1. The medium scaled turbulent
case (L3) has the highest backside capture efficiency; capture takes place for
six particle sizes and over the largest St range, namely at all Stokes numbers
from St = 0.05 to St = 0.328, except at St = 0.15.

It is illustrative to see how the backside capture has increased in the
higher Rec cases, results of which are plotted in figures 5.12 and 5.13. For
the Rec = 421 cases, few distinct trends can be observed. However, when
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Figure 5.12: Values of the backside capture efficiency in the Rec = 1685
simulations with turbulent velocity magnitude µturb = 1.0.

the Reynolds number is raised, some general trends in the backside capture
are seen. A higher capture is found at Rec = 1685 for all Stokes numbers
in almost all cases. This becomes clearer when looking at the values given
in table 5.3. Since the data is more reliable, only the Rec = 1685 values are
considered when discussing trends. In some cases, the backside capture is
larger than the frontside capture for St . 0.19. For Rec = 1685, the backside
capture spans across a larger interval of values than it does for Rec = 421; all
point-connecting lines are continuous in the figures 5.12 and 5.13, implying
capture for all Stokes numbers in the capture range, which for example in
case H9 goes from St = 0.05 to St = 0.60. Also, the lowest non-zero capture
for all respective cases is found at the lowest Stokes numbers for Rec = 1685,
while for Rec = 421 it is more random where the capture is at its highest or
lowest in the different cases. The general behaviour for the Rec = 1685 cases
is that ηback increases from its initial minimum until it reaches the maximum
at St = 0.15 (or St = 0.19 for cases H8 and H9), from which it decays.

The backside capture comes into play when particles gain inertia from
the eddies directed towards the cylinder, meaning that particles need to be
trapped in a rotating eddy, following its motion. Which particles are cap-
tured on the backside is dependent on the particle response time τp (equation
(2.13)), which is proportional to St.
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Figure 5.13: Values of the backside capture efficiency in the Rec = 1685
simulations with turbulent velocity magnitude µturb = 2.0.

Table 5.3: Approximate values of the backside capture efficiency for Rec =
1685 simulations. As clear differences are found between the µturb = 1.0 and
µturb = 2.0 simulations, only these are given, together with the laminar result.
The values are given in units of 10−4.

µturb = 1.0 µturb = 2.0
Laminar kf = 15 kf = 5 kf = 1.5 kf = 15 kf = 5 kf = 1.5

St H1 H2 H3 H4 H8 H9 H10
0.05 0.40 0.57 0 0.24 0.57 0.13 0.24
0.10 15 39 24 19 11 32 24
0.15 0.93 80 25 2.4 36 30 33
0.19 0 31 5 0.5 52 39 14
0.245 0 17 0.90 0 33 30 8.3
0.30 0 7.5 0 0 9.5 16 8.6
0.328 0 8.1 0 0 6.2 4.1 3.0
0.51 0 0 0 0 0 2.2 0
0.60 0 0 0 0 0 3.3 0
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The mechanisms behind backside capture can be explained as follows.
As described by Haugen & Kragset (2010) [4], the characteristic time of the
eddies, τeddy, cannot be much different from τp: If τeddy � τp, the eddy
turn-over is too slow for the centrifugal ’force’ to throw the particle towards
the wall. When τeddy � τp, which is the case for large particles, the parti-
cle will not have time to respond to the turn-over and thus not obtain the
acceleration needed. Thus, a τeddy in the order of τp will result in backside
capture. Since the forcing scale lf = Lbox/kf is a characteristic length for the
turbulence, the characteristic eddy time can be defined in the same manner
as the characteristic fluid time, given by (2.16), such that

τeddy = lf
urms

= Lbox

urmskf
. (5.2)

In the laminar cases, τeddy is given by the dimensions of the cylinder, as
backside impaction in the laminar cases is caused only by the rotational
motion of the vortices in the wake. These wake vortices also play a role in
the turbulent ηback, but the differences in the turbulent ηback can be explained
by (5.2).

The product urmskf , values of which are found in table 5.1, determines
τeddy for the different turbulent cases. When µturb = 2.0, urms is doubled,
giving an even lower τeddy. According to these values, one would expect the
maximum of ηback for kf = 15 to be found for a lower St than in it is for
kf = 1.5, as τeddy is smallest for higher kf . But as seen in table 5.3 or figures
5.12 and 5.13, this is not the case; in the µturb = 1.0 case, ηback spans across
a larger St range for kf = 15 than it does for both kf = 5 and kf = 1.5, and
it attains considerably higher values both for µturb = 1.0 and µturb = 2.0.
Therefore, another mechanism must be into play, and this will be discussed
in section 5.6.
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(a) kf = 15

(b) kf = 5

(c) kf = 1.5

Figure 5.14: Clustering of particles with St = 0.30, turbulent cases with
µturb = 1.5 run at Rec = 1685.
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(a) St = 0.30

(b) St = 0.76

(c) St = 1.2

Figure 5.15: Clustering of particles in turbulence forced at kf = 15. All cases
are run with µturb = 2.0.
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5.5 Particle clustering
For Rec = 1685, the particles exhibited preferential concentration or clus-
tering. The Rec = 421 cases are not considered, as the phenomenon is less
apparent here. The mechanisms behind particle clustering are the same as
those behind backside impaction. Continuing the discussion from the previ-
ous section, the eddy Stokes number can be introduced as

Steddy = τp

τeddy
= τf

τeddy
St. (5.3)

Here, the definition St = τp/τf has been used. With the characteristic fluid
time τf = D/U0 and the characteristic eddy time τeddy given by (5.2), equa-
tion (5.3) can be expressed as

Steddy = D

U0

urmskf

Lbox
St. (5.4)

As explained in the previous section, τp ∼ τeddy is needed for back side
deposition, and thus also particle clustering, to take place. Thus, Steddy ∼ 1
is needed. As it is urmskf in the prefactor in front of St in (5.4) that is
varying between the different turbulent cases, this product determines for
which Stokes numbers clustering will be large, namely for those implying
Steddy ∼ 1. For the Stokes numbers considered in this work, this implies
that particle clustering is largest at kf = 15, while the effect gets smaller
for decreasing kf . This can be seen by inserting numerical values into Steddy.
The discussion of the role of the vorticity in the next section is related to this
explanation, since it is the vorticity of the turbulent eddies that give rise to
Steddy, with the magnitude of vorticity ω ∝ urmskf .

Figure 5.14 shows the scenario when all particles have entered the do-
main for the three turbulent cases with turbulent magnitude µturb = 1.5, all
depicting St = 0.3 particles. The clustering is seen to be largest in 5.14(a),
at kf = 15, resonable as this case has the largest value of urmskf . In this case,
many small eddies with high vorticity lead to accumulation of particles in the
shear zones between them. This is to a somewhat less extent also happening
in 5.14(b), at kf = 5. The larger eddies make the particles being dispersed
across a larger area, seen for instance by the ’arm of particles’ stretching out
above the cylinder. But the clustering is less apparent due to the local vor-
ticity being smaller than in 5.14(a). At the largest forcing scale, at kf = 1.5
in 5.14(c), clustering is even less apparent, but can also here be observed,
e.g. around a large eddy just in front of the cylinder.

Figure 5.15 shows clustering for three different particle sizes for a kf = 15
case run with µturb = 2.0. As the magnitudes of the three St are not very
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different from each other, the degree of clustering is roughly equal in all cases.
The higher urms, due to higher µturb, makes it plausible that the clustering
is seen to be higher here than in figure 5.14(a), which was predicted by
(5.4). However, the figures are only qualitative verifications that clustering
occurs at Rec = 1685, and that it is related to backside capture. No further
conclusions regarding clustering are made in the present work.

5.6 The role of the vorticity
It has been seen that the turbulent eddies, and thus the vorticity containing
parts of the flow, have considerable effects on the frontside capture efficien-
cies. In the figures 5.16 and 5.17, the vorticity component ωz is plotted for
different cases.

The laminar scenarios are depicted in figures 5.16(a) and (b), and show
the non-zero vorticity of the vortices in the cylinder wake. A major difference
between the Rec = 421 and the Rec = 1685 turbulence, is how the vorticity is
sustained in the latter case. This reflects the slower dissipation of the lower
viscosity ν, cf. 5.16(c) versus (d) and 5.16(e) versus (f). The higher viscosity
in Rec = 421 cases also leads to particle clustering being less apparent than in
the Rec = 1685 cases. Furthermore, the vorticity is larger in the small scale
forced cases, cf. 5.16(c) and (d) forced at kf = 15 versus 5.16(e) and (f) forced
at kf = 5; the smaller forcing length implies high concentration of eddies, and
thus vorticity. This trend is also seen for Rec = 1685, cf. figures 5.16(d) and
(f) and 5.17(a). On the other side, as energy is ’put in’ at a smaller scale,
the eddies are dissipated faster, as seen by comparing 5.16(c) and (e). This
is also expressed by the higher urms in the latter case. But in the Rec = 1685
cases, the energy of the eddies is sustained well throughout the domain. The
figures 5.17(a) and (d) show the turbulent kf = 1.5 cases with µturb = 1.0 and
µturb = 2.0 respectively. Here, another effect is demonstrated; the increased
turbulent velocity in (d), compared to (a), leads to higher vorticity at the
inlet and thus also throughout the domain.

These vorticity plots also further explain the increased backside capture
efficiencies for higher Rec. The vorticity downstream of the cylinder is larger
in case H2 than in H3 and H4, and leads to higher backside capture efficiency.
This is probably why the trend predicted by (5.2) was not fully present in
the backside capture results; the effect of the higher vorticity overruns what
was predicted about the ηback results by the value of urmskf in (5.2), and
the vorticity magnitude is thus the driving force behind backside impaction.
When µturb = 2.0, the differences in vorticity magnitude between the turbu-
lent cases are smaller than when µturb = 1.0. This is seen when comparing
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the µturb = 1.0 figures 5.16(d), (f) and 5.17(a) versus the µturb = 2.0 figures
5.17(b), (c) and (d). This higher degree of homogeneity probably leads to
the less spreading in the back side capture efficiency for µturb = 2.0.

In all cases at both Rec, the boundary layer seems to have the same struc-
ture, also with turbulence imposed; very close to the cylinder, high vorticity
concentration is found. This was also observed by Bjørnstad (2010) [11].
This implies that the increased capture for turbulent cases in the boundary
stopping mode is not due to the turbulence modifying the boundary layer
structure. The boundary layer also need much higher Rec to become turbu-
lent, cf. section 1.2.4. The next chapter investigates the assumed reason of
the higher frontside capture efficiencies when turbulence is present.
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(a) Case L1 (b) Case H1

(c) Case L2 (d) Case H2

(e) Case L3 (f) Case H3

Figure 5.16: Contour plots of the vorticity component ωz. All figures show
the whole 2D domain, with the cylinder coloured white in the center. Regions
of highly concentrated vorticity are couloured black. Cases with an ’L’ are
Rec = 421 simulations, ’H’ indicates Rec = 1685.
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(a) Case H4 (b) Case H8

(c) Case H9 (d) Case H10

Figure 5.17: Contour plots of the vorticity component ωz for some Rec = 1685
cases. In (a), turbulence is forced at kf = 1.5, with µturb = 1.0. The figures
(b), (c) and (d) show µturb = 2.0 turbulence with kf = 15, kf = 5 and kf = 1.5
respectively.
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Chapter 6
The frontside capture
efficiency in turbulent flow

The goal of this chapter is in a quantitative manner to fully explain why the
frontside capture efficiencies in the turbulent cases differ from the laminar
ones, and theoretically predict the frontside capture efficiencies in the tur-
bulent cases. Throughout the chapter, all capture efficiencies discussed are
frontside capture efficiencies.

6.1 The stochastic nature of the Stokes num-
ber

The Stokes number St is proportional to the fluid flow velocity, cf. (2.15)
and (2.16). In the turbulent case, the magnitude of the fluid flow velocity V ,
in general different from the mean flow velocity U0, is stochastically fluctuat-
ing. Thus, the Stokes number also is a stochastic variable, effectively being
different from the ’laminar’ St, expressed by the laminar fluid velocity U0.
This effective Stokes number can then be expressed as

Steff = St
U0
V, (6.1)

where St is given by (2.15) and (2.16). As Steff is a linear function of V , its
variance becomes

V ar(Steff) ≡ σ2
St =

(
St
U0

)2

V ar(V ), (6.2)
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cf. Walpole et al., 2007 [35]. Since U0 has zero variance, (6.2) shows that
σ2

St = 0 when V = U0. The expectation value of the effective Stokes number
equals

E(Steff) ≡ µ = St, (6.3)
which is natural since V fluctuates symmetrically around U0.

With a fluctuation in Veff , the effective Stokes number becomes Steff =
St + ∆, with ∆ being the resulting fluctuation in the Stokes number. Thus,
a Taylor expansion in the small parameter ∆ yields, by using (6.3),

η(Steff) = η(St + ∆)]

= η(µ) + η′(µ)∆ + η′′(µ)
2 ∆2 +O(∆3). (6.4)

The expectation value of this becomes

E[η(Steff)] = η(µ) + η′(µ)E[∆] + η′′(µ)
2 E[∆2] +O(E[∆3])

≈ η(µ) + η′′(µ)
2 σ2

St. (6.5)

By definition, σ2
St ≡ E[∆2]−(E[∆])2 = E[∆2]. Here, it is used that E[∆] = 0,

due to the symmetry of the velocity fluctuations around the mean. Further-
more, higher order terms, O(E[∆3]), have been neglected. The definition of
µ in (6.3) implies that η(µ) is the laminar capture efficiency. In order to use
(6.5) to obtain the expected values of the frontside capture efficiencies with
turbulence present, values for η′′(µ) are found. The results are discussed in
the next section.

Furthermore, σ2
St is needed to determine the frontside capture efficiency

η(Steff) for a given St. This can be found from the turbulent simulation
results, by looking at how the velocity of the particles deviate from the mean
flow velocity U0. This deviation expresses how the turbulence affects the
particles, and will typically be different for different Stokes numbers. This
gives each Stokes number a unique σ2

St. According to Walpole et al. (2007)
[35] it is appropriate to use the sample variance,

S2
V,St = 1

n− 1

n∑
(p,St)=1

(Vp,St − U0)2, (6.6)

as an estimate of V ar(V ). Here, the deviations from U0 of all the respective
particle velocities of all n particles of a given St are summed. The positions
and velocities of all particles are available at several time instants, and can be
returned from the code. Values of Vp,St were found in the different turbulent
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simulations by looking at the velocities of all particles of each Stokes number
at all y-positions within an appropriate x range ∆xp,St. To find reliable
values, the particles should not be too close to the cylinder, which is centered
at x = 0.2; they should only be affected by the turbulent eddies, not the
geometry of the cylinder. For the turbulence to have time to fully act on
the particle motion, xp,St should on the other side not be too close to x = 0.
For the calculations here, the range ∆xp,St ∈ [0.08, 0.12] was chosen, rather
arbitratily, since approximately the same values of S2

V,St were attained as long
as xp,St fulfilled the constraints indicated above.

The variance σ2
St of the effective Stokes number, according to (6.2) and

with V ar(V ) = S2
V , was calculated for the µturb = 1.0 turbulent cases L2-L4

and H2-H4. The values are given in table 6.1. The values of σ2
St increase

dramatically as St increases, for all turbulent forcing scales. Also, a larger
forcing scale gives larger σ2

St, which is natural since larger turbulent eddies
imply larger σ2

St. The effect of the Reynolds number is also clear; the tur-
bulent eddies influence the particles more in the highest Rec cases. This is
due to the lower degree of viscous dissipation. However, at the kf = 1.5 case
at Rec = 421, all particles have larger σ2

St than the corresponding case at
Rec = 1685. This is related to the high steady state urms of the kf = 1.5
turbulence at Rec = 421, cf. table 5.1.

Also, the differences in σ2
St between the Rec = 421 cases are larger than

it is between the Rec = 1685 cases. In the latter cases, the kf = 5 simulation
has even higher σ2

St than the kf = 1.5 run for all St, except for St = 10.0.
Thus, the values of σ2

St becomes less dependent on kf as the Reynolds number
increases. This indicates that there probably exists some Reynolds number
for which σ2

St converges towards a maximum for all kf .
As earlier explained, the smaller a particle is, the more it is influenced by

the turbulent velocity fluctuations; so particles with small Stokes numbers
have larger V ar(V ) than particles with large Stokes numbers, a fact verified
by the calculated values of S2

V . But as the values in the upper Stokes num-
ber range are much larger than those in the lower, the value of the Stokes
numbers becomes dominating in the calculation of σ2

St, cf. (6.2). Therefore,
σ2

St becomes larger as St increases, as is seen in table 6.1.

6.2 Fitting the η curves for laminar flow
In the model for the expectation value E[η(Steff)] in (6.5), a twice differ-
entiable expression η(µ) for the laminar capture efficiency is needed. The
shapes of the respective curves for case L1 in figure 5.3 and case H1 in figure
5.5 are seen to resemble sigmoidal growth curves (Seber & Wild, 1989 [36]).
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Table 6.1: The variance σ2
St of all St, calculated from the turbulent simulation

results. The values are given in units of 10−4. The forcing wavenumber
kf = 15 corresponds to cases L2 and H2, kf = 5 to L3 and H3 and the large
scale forcing kf = 1.5 to cases L4 and H4.

Rec = 421 Rec = 1685
St kf = 15 kf = 5 kf = 1.5 kf = 15 kf = 5 kf = 1.5

0.05 0.114 0.268 1.2 0.434 0.557 0.515
0.10 0.424 1.07 4.72 1.67 2.18 2.03
0.15 0.891 2.34 10.5 3.56 4.88 4.6
0.19 1.37 3.84 17.4 5.57 7.94 7.29
0.245 2.11 6.11 28.9 8.89 12.7 12.4
0.30 3.10 9.18 50.9 12.3 18.6 17.9
0.328 3.48 11.1 50.9 14.5 22.7 21.2
0.51 8.0 24.2 120 30.9 52.9 50.4
0.60 10.57 36.1 166 42.7 73.7 71.1
1.0 29.1 75.4 424 96.4 157 178
3.0 188.4 452 2615 597 1203 1185
10.0 689 2539 10205 3444 4372 6321

By using this knowledge and further analyzing the characteristics of the lam-
inar curves in figure 5.9(a), analytical expressions for η(µ) in the respective
laminar cases are found by nonlinear regressions. Details on the procedure
can be found in appendix A.1, and the resulting curves are plotted in figure
6.1. The second derivative η′′(µ) evaluated in all twelve laminar η data points
is the quantity of interest, and is plotted in figure 6.2: The second derivative
plotted in 6.2(a) is very close to zero for St < 0.19 and St & 0.5, while in
(b), η′′(µ) ≈ 0 for St < 0.19 and St & 1.0. But in the latter case, η′′(µ) is
negative but close to zero for St & 0.50. Thus, 0.19 . St . 0.50 is the range
where the predicted frontside capture efficiency for the turbulent cases will
be considerably different than the laminar, according to (6.5). This St range
coincides well with the boundary stopping mode described in chapter 5.

The values of η′′(µ), plotted in figure 6.2, are in the range 0.19 . St . 0.35
considerably higher than the values of σ2

St in this range. This means the
calculated η(Steff), according to (6.5) will be very sensitive do the value of
η′′(µ). In order to find satisfactorily accurate values for η′′(µ) in this range,
a new regression procedure was done to better match the Rec = 421 data
here, while η′′(µ) was found numerically for the Rec = 1685 data, as it proved
difficult to find a more accurate regression curve, than the one shown in figure
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6.1(b). The procedure is explained in appendix A.2, where also the values of
η′′(µ) are listed.

(a)

(b)

Figure 6.1: The laminar capture efficiency data is plotted versus St, with the
regression curve η(St) = η(µ), at Rec = 421 in (a) and Rec = 1685 in (b).
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(a)

(b)

Figure 6.2: The second derivative of the curves η(St) = η(µ) fitted to the
laminar η data, in (a) at Rec = 421 and in (b) at Rec = 1685.

64



6.3. PREDICTING THE η VALUES IN THE CASES WITH
TURBULENCE

6.3 Predicting the η values in the cases with
turbulence

Values of σ2
St were inserted into (6.5) together with the laminar capture ef-

ficiencies η(µ) and their double derivatives η′′(µ). This theoretical result
should ideally match η from the simulations of the different turbulent cases.
The figures 6.3 through 6.5 show the predicted η values together with the
simulation results. Only the µturb = 1.0 cases have been considered at
Rec = 1685.

In the calculations, η′′(µ) has been set to zero at the three lowest St and
the five highest St, due to what is seen in figure 6.2 and to the arguments in
the previous section. Thus, the calculated η(Steff) is equal to η(µ) for all these
St. This is, as seen in figures 6.3 - 6.5, legitimate: In the inertial impaction
mode, the differences between the calculated η(Steff) and the laminar are
minimal and due to deviations in the data, caused by the low number of
particles here.

At the lowest Stokes numbers, the results of the simulations with turbu-
lence clearly do not match what is predicted by (6.5). Even if η′′(µ) ≈ 0
in this regime, the capture efficiencies from the simulations with turbulence
deviate from those from the laminar simulations, and thus also the calculated
values. Looking at figure 6.5(b), the kf = 1.5 case at Rec = 1685, the simu-
lated capture at the two lowest Stokes numbers deviate from the calculated
one. As kf is increased, the calculated values of the capture for the lowest
Stokes numbers deviate more from the values from the simulations: In the
kf = 5 case in figure 6.4, the calculated capture at the four lowest Stokes
numbers are wrong compared to the simulation, while in the kf = 15 case,
this is the case for the five lowest ones. Another trend is the slightly higher
capture for the lowest Stokes number than for the second lowest. This is
observed in all Rec = 1685 cases. Also for Rec = 421, the capture in the sim-
ulations consistently deviates from the calculated value at the three lowest
Stokes number.

As a very high number of particles is released in this St range, there is
a not negligible number of particles captured, and thus it is not necessarily
statistical uncertainties that cause these deviations. The trend seems too
clear for the deviations to be random, or due to discrepancies in the data.
Conclusively, there might be a mechanism not yet explained in the literature
that cause the results in the boundary interception mode to deviate from
the predictions in (6.5). If so, this effect becomes more evident for larger
kf , i.e. for scaling at smaller length scales. From the figures 6.3(b) and
6.4(b) it is seen that for larger kf , this effect plays a role also in the lower
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region of the boundary stopping mode. The capture of particles with these
smallest Stokes numbers is dependent on the thickness and characteristics of
the boundary layer, and the full investigation of these details is important
for the understanding of the small particle capture here (Haugen & Kragset,
2010 [4]). This mechanism could be related to the eddies throwing particles
toward the cylinder frontside, in the same fashion as the mechanism causing
backside capture and particle clustering in turbulence.

Anyhow, the influence of the turbulent eddies on the paths of the smallest
particles close to the cylinder frontside, should be further investigated in
future studies.

The present results lead to the conclusion that (6.5), i.e. the fluctuating
Stokes number, only partly explains the turbulent frontside capture efficiency
differing from the laminar. The matching between calculated and simulated
values in the boundary stopping mode, for the four Stokes numbers in the
range 0.19 ≤ St ≤ 0.328, gets better for decreasing kf , as seen especially in
the Rec = 1685 plots in figures 6.3 through 6.5. Furthermore, the degree
to which the calculated capture efficiency in the boundary stopping mode
corresponds to the turbulent capture efficiency from the simulations, is as
previously mentioned highly sensitive to the values of η′′(µ) and σ2

St. Thus,
the quality of the result is depending on the accuracy of the regression curves
and the numerically approximated value of η′′(µ).
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(a) Rec = 421

(b) Rec = 1685

Figure 6.3: Calculated frontside capture efficiency for turbulence at kf = 15,
plotted along with the simulated η, case L2 in (a) and H2 in (b). The laminar
results are also plotted for reference.
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(a) Rec = 421

(b) Rec = 1685

Figure 6.4: Calculated frontside capture efficiency for turbulence at kf = 5,
plotted along with the simulated η at the same forcing wavenumber. Case L3
is seen in (a), case H3 in (b).
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6.3. PREDICTING THE η VALUES IN THE CASES WITH
TURBULENCE

(a) Rec = 421

(b) Rec = 1685

Figure 6.5: Calculated frontside capture efficiency for turbulence at kf = 1.5,
plotted along with the simulated η, in (a) case L4 and in (b) case H4.

69





Conclusions

By use of Direct Numerical Simulations, the influence of isotropic turbulence
on the behaviour of particles and their deposition on a cylinder in a cross
flow at two different Reynolds numbers, Rec = 421 and Rec = 1685, was
studied. Turbulence simulations of varying intensity were run on a three-
dimensional domain, with forcing at three different wave numbers. After
reaching homogenous steady state, the turbulence was imposed on a two-
dimensional flow domain, also with different turbulent velocity magnitudes
µturb increasing the inlet velocity and thus the turbulent fluctuations. Values
of µturb > 2.0 proved difficult to implement, as this lead to critically large
numerical reflections at the boundaries and thus code crash.

The deposition, expressed as the capture efficiency, of particles on the
cylinder frontside was seen to be greater in the turbulent cases, compared
to laminar reference cases, primarily in the Stokes number range 0.19 .
St . 0.328. This was found to be related to the statistical variance of St,
resulting from the fluctuating turbulent velocity leading to fluctuations in
the effective Stokes number, as well as the shape of the laminar capture
efficiency curve, with the frontside capture increasing rapidly in this Stokes
range. As Rec was increased from Rec = 421 to Rec = 1685, this effect
became more dominant, and especially as µturb was raised. For the smallest
particles, in the boundary interception mode, the turbulence also lead to
changes in the frontside capture efficiency. However, these changes could
not be explained by the fluctuations in the effective Stokes number. This
indicates that the turbulence causes some not fully understood mechanism
influencing the motion of the smallest particles in the close neighborhood of
the boudnary layer of the cylinder. Thus, a closer investigation of this is
necessary in further studies.

Particle capture at the backside of the cylinder in the Rec = 1685 tur-
bulent cases was seen to be relatively large for the lower half of the particle
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sizes used. The smaller scale forced turbulence had the largest backside cap-
ture for µturb = 1.0, due to its vorticity being the largest. The differences in
backside capture between the differently forced cases became smaller as µturb
was increased above 1.0. This was due to the resulting increasing vorticity
of the flow downstream of the cylinder.

Since the turbulent eddies in the Rec = 1685 cases were well sustained
throughout the two-dimensional domain, the particles dispersed in the tur-
bulent flow exhibited clustering, or preferential concentration. Particle clus-
tering is caused by the same mechanisms as backside impaction. Thus, the
magnitude of vorticity, and slow dissipation thereof, is of crucial importance
for the clustering to come into play.
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Appendix A
Obtaining values for η′′(µ)

In this appendix it is shortly explained how expressions for the laminar cap-
ture efficiency η(µ) in both Rec cases, and thus values of η′′(µ), were obtained.

A.1 Fitting η(µ) for all St
When studying the two laminar capture efficiency curves in figure 5.9(a),
one can observe that they resemble a sigmoidal growth nature. A sigmoidal
growth function f(x) can be characterized by its growth rate given by

df

dx
∝ g(f)[h(α)− h(f)], (A.1)

where g and h are increasing functions with g(0) = h(0) = 0 (Seber & Wild,
1989 [36]). As the simplest model for sigmoidal growth, Seber & Wild (1989)
[36] give the logistic model

f(x) = α

1 + e−κ(λx−γ) , with −∞ < x <∞, κ > 0 and 0 < f < α, (A.2)

which is found by setting g(f) = h(f) = f in (A.1) and the proportionality
constant to κ/α. Furthermore, another model is the Gompertz Growth Curve

f(x) = α exp(−e−κ(λx−γ)), with κ > 0 and α > 0, (A.3)

where g and h have been modified for the growth not to be symmetric about
the point of inflection x = γ, which is where the growth rate df/dx is at its
maximum in both (A.2) and (A.3). The shifting parameter λ > 0 is present
in the expressions (A.2) and (A.3) in order to be able to better control the
position of the fitting curves.
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Table A.1: The approximate values of the curve fitting parameters for η(µ)
at Rec = 421. The result is plotted in 6.1(a).

St range Equation α κ λ γ
〈0, 0.208024] A.3 1.0 7.5 0.2 0.31

〈0.208024, 0.351886] A.2 1.0 31 1.0 0.45
St range Equation a b c d e

〈0.351886,∞〉 A.5 -0.00121 6.32 0.344 1.47 0.0411

In addition to (A.2) and (A.3), two more sigmoidal fitting equations used
are the Janoschek growth function

f(x) = α− (1− exp(−κxσ)) (A.4)

and a five parameter logistic function

f(x)) = d+ a− d
(1 + (x/c)b)e . (A.5)

It proved difficult to fit the laminar η data to a single sigmoidal curve, so
a combination of the expressions given above were necessary, with different
expressions were used to fit the data for different St ranges, as given in
the tables A.1 and A.2. In the equations given, x = St, and the nonlinear
regression was done mainly with the programming language Python and its
function curve fit from the package scipy.optimize∗, and also partly with
the services provided at the web page www.zunzun.com.

Table A.2: The approximate values of the curve fitting parameters for η(µ)
at Rec = 1685. The result is plotted in figure 6.1(b).

St range Equation α κ λ γ
〈0, 0.158852] A.3 1.0 7.89 0.2 0.309

〈0.158852, 0.351886] A.2 1 33 1.0 0.43
St range Equation α κ σ
〈0.35,∞〉 A.4 0.99 1.05 -0.81

∗Documentation found at http://docs.scipy.org/doc/scipy/reference/optimize.html.
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A.2 Finding η′′(µ) for intermediate St
As the fitted curves seen in figure 6.1, resulting from the procedure explained
in the previous section, were found to have η′′(µ) ≈ 0 for St < 0.19 and
St > 0.328, a new attempt was made to find functions more accurately
fitting η(µ) in both Rec cases, valid for St ∈ [0.19, 0.328].

In the Rec = 421 case, the η data points in the range St ∈ [0.19, 0.508]
were used to fit a function describing η(µ) in this range. The Gompertz
growth curve (A.3) was found to match the data nicely with the parameter
values given in table A.3.

However, in the Rec = 1685 case, no satisfactorily accurate curve was
found to match the data. As the quantity of interest is η′′(µ), this double
derivative was found numerically from the η data from the simulation, instead
of finding it from a fitted function, as was done in the Rec = 421 case. This
was done by inserting fictive data points near the real data points in the
range St ∈ [0.19, 0.328], and using the central difference formula for the
second derivative, namely

f ′′(x) ≈ f(x−∆x)− 2f(x) + f(x+ ∆x)
(∆x)2 , (A.6)

with fictive data points inserted a distance ∆x from the original data point,
on either side, cf. figure A.1. The values of η′′(µ) are given in table A.4.

Table A.3: The approximate values of the curve fitting parameters for η(µ)
at Rec = 421, valid for St ∈ [0.19, 0.508].

Equation α κ λ γ
A.3 0.165 14.9 1 0.356
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Figure A.1: By inserting fictive data points (black) at either side of the origi-
nal laminar Rec = 1685 η data points (red), η′′(µ) has been approximated. At
the boundaries of the St range, the original η curve has been used as guidance
for placing the fictive points.

Table A.4: Values of the second derivatives of the laminar capture efficiency
curves, η′′(µ), at both Reynolds numbers for intermediate St. These values
are used when calculated the expected frontside capture efficiencies η(Steff)
in (6.5).

St Rec = 421 Rec = 1685
0.19 0.0330137 3.11697
0.24 4.26833 32.5093
0.30 11.0649 8.56507
0.328 6.41324 8.10952
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Appendix B
Some parameter values

B.1 Simulations with Rec = 421

Miscellaneous
Mean free path of gas: λ = 67 · 10−9 m
Velocity of mean flow: U0 = 5 m/s
Kinematic viscosity: ν = 0.0004 m2/s, giving Rec = 421.25
Speed of sound: cs = 40 m/s in 2D simulations

cs = 20 m/s in 3D simulations

The computational domains
Size of 2D computational domain: Lx = 0.4 m, Ly = 0.2 m
Position of the cylinder, center of 2D domain: x = 0.2 m, y = 0.0 m
Diameter of cylinder: D = 0.0337 m
Grid points in x and y respectively: 1024× 512
Size of 3D computational domain: Lbox = 0.2 m
Grid points in 3D: 512× 512× 512
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The particles

Insertion width, laminar case: lpar,lam = D
Insertion width, kf = 15 forced case: lpar,kf=15 ≈ 2.35D
Insertion width, kf = 5 forced case: lpar,kf=5 = 3D
Insertion width, kf = 1.5 forced case: lpar,kf=1.5 ≈ 5.94D
Total number of particles at each run: N = 106

Particle radii given in micrometers: 17.42, 24.63
30.16, 34
38.55, 42.66
44.60, 55.5
61.03, 77.89
134.9, 246.3

Stokes numbers: 0.050, 0.10,
0.15, 0.19,
0.245, 0.30,
0.328, 0.508,
0.614, 1.00,
3.00, 10.00

Initial velocity of particles: v0 = 5.0 m/s directed in x̂
Particle insertion rate in: rinsert = 3.325 · 106 particles/s

B.2 Simulations with Rec = 1685

Miscellaneous
Mean free path of gas: λ = 67 · 10−9 m
Velocity of mean flow: U0 = 5 m/s
Kinematic viscosity: ν = 0.0001 m2/s, giving Rec = 1685
Speed of sound: cs = 40 m/s in 2D simulations

cs = 20 m/s in 3D simulations

The computational domains

Size of 2D computational domain: Lx = 0.4 m, Ly = 0.2 m
Position of the cylinder, center of 2D domain: x = 0.2 m, y = 0.0 m
Diameter of cylinder: D = 0.0337 m
Grid points in x and y respectively: 2048× 1024
Size of 3D computational domain: Lbox = 0.2 m
Grid points in 3D: 1024× 1024× 1024
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B.2. SIMULATIONS WITH REC = 1685

The particles
Insertion width, laminar case: lpar,lam = D
Insertion width, kf = 15 forced cases: lpar,kf=15 ≈ 3.56D
Insertion width, kf = 5 forced cases: lpar,kf=5 = 3D
Insertion width, kf = 1.5 forced cases: lpar,kf=1.5 ≈ 5.94D
Total number of particles at each run: N = 106

Particle radii given in micrometers: 8.725, 12.315
15.08, 17
19.275, 21.33
22.30, 27.75
30.515, 38.945
67.45, 123.15

Stokes numbers: 0.050, 0.10,
0.15, 0.19,
0.245, 0.30,
0.328, 0.508,
0.614, 1.00,
3.00, 10.00

Initial velocity of particles: v0 = 5.0 m/s directed in x̂
Particle insertion rate in: rinsert = 3.325 · 106 particles/s
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