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Abstract

The e�ect of thermophoresis on the particle deposition on a cooled cylinder
in non-isothermal laminar gas �ow has been studied using Direct Numerical
Simulations (DNS). Simulations where thermophoresis have been taken into
account for di�erent Stokes numbers and particle-to-gas thermal conductivity
ratios, Λ, have been performed at Reynolds number Re = 380. In addition
reference cases, simulations where thermophoresis have not been taken into
account, have been performed both for isothermal and non-isothermal �ow
for Re = 20 and Re = 380.

The ratio between the front side particle impaction e�ciency in the non-
isothermal reference case and the isothermal reference case for the smallest
Stokes numbers considered was expected to be proportional to the ratio of
the free stream temperature and the cylinder temperature, according to an-
alytical considerations. The simulations for Re = 20 was in good agreement
with this relation, but for Re = 380 the front side particle impaction e�-
ciency for the smallest particles was lower in the non-isothermal reference
case compared to the isothermal reference case. This is believed to have
been caused by inaccuracies in the numerical method for the non-isothermal
simulation at Re = 380.

Thermophoresis was not found to a�ect the particle impaction for the
largest Stokes numbers. For intermediate and small Stokes numbers the ef-
fect of thermophoresis depended on Λ. The particle impaction e�ciency was
signi�cantly higher, both for the front side and the back side, in the ther-
mophoretic simulations compared to the non-isothermal reference case for
particles with Λ = 1 and Λ = 100. The particle impaction e�ciency for
particles with Λ = 1000 was lower, both for the front side and the back side,
in the thermophoretic case compared to the non-isothermal reference case.





Sammendrag

E�ekten av termoforese på partikelavsetningen på en kald sylinder i ikke-
isoterm laminær gass-strømning har blitt studert ved hjelp av Direkte Nu-
meriske Simuleringer (DNS). Simuleringer hvor termoforese var inkludert for
forskjellige Stokes tall og forskjellige forhold mellom partiklenes varmeled-
ningsevne og gassens varmledningsevne, Λ, blitt utført for Reynolds tall
Re = 380. I tillegg har referansesimuleringer, simuleringer der termoforese
ikke var inkludert, har blitt utført både for ikke-isoterm og isoterm strømning
for Re = 20 og Re = 380.

Forholdet mellom antallet partikelkollisjoner på forsiden av sylinderen for
den isoterme og den ikke-isoterme referansesimuleringen for små Stokes tall
var forventet å være proporsjonal med forholdet mellom temperaturen på den
innkommende gassen og temperaturen på sylinderen, i henhold til analytiske
vurderinger. Denne relasjonen stemte godt overens med simuleringene for
Re = 20, men for Re = 380 var antallet partikelkollisjoner på forsiden av
sylinderen lavere i det ikke-isoterme tilfellet i forhold til det isoterm tilfelle
for små Stokes tall. Det var trolig grunnet unøyaktigheter i den numeriske
metoden for ikke-isoterm strømning ved Re = 380.

Termoforese påvirket ikke antallet partikelkollisjoner på sylinderen for de
største Stokes tallene. For middels store og små Stokes tall var antall par-
tikelkollisjoner på sylinderen avhengig av Λ. Antall partikelkollisjoner, både
på forsiden og baksiden, var betydelig høyere for simuleringene med termo-
forese for partikler med Λ = 1 og Λ = 100, i forhold til den ikke-isoterme
referansesimuleringen. Antallet partikkelkollisjoner, både på forsiden og bak-
siden, på sylinderen var lavere for simuleringen med termoforese for partikkler
med Λ = 1000, i forhold til den ikke-isoterme referansesimuleringen.
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Chapter 1

Introduction

Particle deposition is interesting for a wide range of applications, and ther-
mophoresis is a phenomenon which might have an impact on particle depo-
sition in gases with temperature gradients.

1.1 Motivation

Although particles embedded �ow surrounds us on a daily basis, it is very
complicated to describe the exact motion. The motion of the particles will
depend on the �ow �eld of the gas and e�ects such as Brownian motion,
thermophoresis, electrophoresis and turbophoresis.

Particle deposition is of interest for several industrial applications, air �l-
ters rely on particles depositing on the surface of the �lter, so do di�erent
coating techniques for chemicals. For other applications such as industrial
boilers, furnaces and heat exchangers it is desirable to minimize the particle
deposition.

The motivation for this project is to increase the e�ciency of bio energy
plants. Biomass was the dominant energy source up to the 19th century, and
is still one of the most important sources of energy. But it is mainly used as
a heat source. The use of biomass and municipal solid waste for electricity
production have been limited due to the poor e�ciency of the power plants.
A bio energy plant functions by combusting the biomass and let the �ue gas
transfer the heat to tubes containing a �uid, for example water/steam. To
achieve high e�ciency super heated steam is needed, which means tempera-
tures in the order of 500 ◦C, these temperatures are achieved by heating the
water/steam several times. This is the same process as in coal plants, but
when bio-waste is combusted residue particles transported with the �ue gas
are partly melted and will stick to the tubes, see �gure 1.1. Combustion of
bio-waste leads to a much larger amount of partly melted residue particles
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CHAPTER 1. INTRODUCTION

Figure 1.1: Combustion of biomass in a bio energy plant leads to particle
deposition on the tubes containing water/steam

than in coal plants. Particles impacting on the tubes will lead to an insu-
lating layer on the tubes causing decreased e�ciency of the heat transfer.
If the residue particles consist of salt they may cause corrosion leading to
damage on the tubes, and if the particle deposition is substantial it can lead
to obstruction of the gas �ow past the tubes.

In order to optimize the e�ciency of bio energy plants the particle im-
paction on the tubes needs to be minimized, in order to achieve this the
mechanisms behind particle deposition on a cylinder needs to be understood.
The aim of this study is to improve the existing model by taking into account
the e�ects of temperature gradients in the gas.
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1.2. IMPORTANT CONCEPTS

1.2 Important concepts

In this subsection some general concepts will be discussed and previous work
on various relevant topics will be presented.

1.2.1 Particle deposition

For a particle to deposit on a surface it is required that the particle hits the
surface and that it sticks to it. These requirements are described by the par-
ticle impaction e�ciency and the particle adsorption coe�cient, respectively.
In this work the focus will be on the particle impaction e�ciency. Which
is de�ned as the ratio between the number of particles hitting the surface,
Nsurface and the number of particles initially directed towards the cylinder,
N0,

η =
Nsurface

N0

. (1.1)

As the �uid approaches a cylinder the �ow will be de�ected around the
surface, a particle immersed in the �uid will therefore experience a force di-
rected away from the cylinder due to the drag from the �uid. The particles
will be a�ected by the drag in varying degree depending on the size of the
particles, the smallest particles will follow the �ow to a much greater extent
than the largest particles. The particle impaction e�ciency will therefore de-
pend both on the incoming �ow and the particles immersed in the �ow. The
case was �rst treated theoretically with potential �ow theory by Israel and
Rosner (1982) [1], since it for potential �ow theory exists analytical solutions
of the �ow �eld around a cylinder. Potential theory does not describe the
viscous boundary layer near the cylinder where the particle impaction takes
place, is therefore insu�cient for small particles. Haugen and Kragset (2010)
[2] looked at the particle deposition on a cylinder assuming isothermal and
laminar �ow with Direct Numerical Simulation (DNS), which resolves the
boundary layer, for di�erent values of Reynolds and Stokes numbers. In this
context laminar refers to the incoming laminar �ow.

Since there will be a di�erence between the temperature of the incoming
gas and the temperature of the cylinder in a heat exchanger it is unrealis-
tic to assume isothermal �ow. To obtain a realistic model of the situation
the e�ect of temperature gradients must be determined. Temperature gradi-
ents in the gas will have two e�ects; the �ow �eld will be di�erent and the
thermophoretic force will act on the particles.
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CHAPTER 1. INTRODUCTION

1.2.2 Thermophoresis

The thermophoretic force is the force on particles submerged in a gas or liq-
uid with a temperature gradient. The direction of the force is opposite to the
temperature gradient. The e�ect was �rst observed in 1870 by Tyndall [3],
when he observed that a particle free zone around a heated surface appeared
in dusty air. In 1884 Aitken [4] proved that the microscopic explanation to
the e�ect was due to the heavier bombardment of the particle from the gas
molecules on the hot side compared to the cold side. The phenomenon where
particles are in�uenced by the thermophoretic force is called thermophoresis.
There are many applications of thermophoresis and cases where this e�ect
play an important part; e.g. �lters, particle deposition on boilers and di�er-
ent measurement techniques for aerosols during combustion.

There has been done much theoretical and experimental work on the
subject since the discovery of thermophoresis, but due to the complexity of
the governing equations there is still no complete analytical solution to the
problem. The thermophoretic force is caused by di�erences in the velocity
distribution of the gas particles, therefore the velocity distribution of the gas
molecules must be found in order to calculate the net momentum transfer.
The governing equation is the Boltzmann equation for a gas with tempera-
ture gradient. At present a general analytical solution of the equation does
not exist, however for certain approximations analytical solutions exist.

In many applications a �uid can be considered a continuum, i.e. only the
overall motion of the particles is considered and not the individual motion
of every particle, then the Navier-Stokes equations for the �uid �ow and
Fourier's equation for the heat �ow can be used. However in gases where the
size of an object submerged in the gas is small compared to the the mean free
path of the gas, λ, then the gas can no longer be considered a continuum.
The gas is then referred to as rare�ed and the general equation for a �uid,
the Boltzmann equation, must be used. Which is the case for microscopic
particles submerged in a gas or when the gas has very low density (very high
mean free path). The ratio between the mean free path of the gas and the
characteristic length, a, of an object is called the Knudsen number

Kn =
λ

a
, (1.2)

for a spherical particle a = rp, where rp is the particle radius. The mean free
path of a gas is the average distance a gas molecule travels between collisions
with other gas molecules. In Shen [5] the following relation is given

µ =
1

2
ρc̄λ, (1.3)

where µ is the dynamic viscosity and ρ is the mass density of the gas. The
average molecular speed, c̄, of a gas molecule with mass M for an ideal gas
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is

c̄ =

√
8kbT

πM
, (1.4)

where kb is the Boltzmann constant. By rearranging the following expression
for λ is obtained

λ = ν

√
πM

2kbT
. (1.5)

Some de�nitions of the mean free path di�er from this de�nition by a constant
factor

λ̂ =
2√
π
, (1.6)

as in Zheng [6]. A gas is considered rare�ed if Kn & 0.01, and can be divided
into di�erent regimes de�ned by the Knudsen number, as in Shen [5];

Near continuum region: Kn . 0.1
Transition region: 0.1 . Kn . 10
Free molecule region: Kn & 10

The Navier-Stokes-Fourier equations of classical �uid mechanics can still be
used in the near continuum region, but the boundary conditions at the surface
of the object must be changed. The mean free path of air under atmospheric
conditions is about 67 nm, which means that rare�ed gas dynamics must be
used if the characteristic length of an object is a ∼ 1 µm.

For most traditional engineering applications the continuum hypothesis
is therefore valid and classical �uid mechanics can be used, but there are
several applications where rare�ed gas dynamics must be taken into account.
Particle deposition as is the topic of this study is one case, other examples are
high altitude or space �ight (where the mean free path is very high) and nano
machines. It must be noted that although thermophoresis is not described
by classical �uid mechanics it does not vanish when the continuum limit of
the rare�ed gas is taken. For the two extreme cases Kn→ 0 (the continuum
limit) and Kn → ∞ (the free molecule limit) analytical solutions have been
derived for spherical particles and mono atomic gases. In the transition re-
gion only numerical solutions exists.

In the continuum limit the Boltzmann equation reduces to the Navier-
Stokes equation. By using continuum �uid mechanics with the correct slip
�ow boundary conditions the problem for Kn << 1 can be solved. This
method was �rst used by Epstein in 1929 [7] and later expanded by using
the complete slip conditions by Brock in 1962 [8]. This gives a non zero
thermophoretic force which is not described by classical �uid mechanics the
reason behind this is that the boundary conditions given by classical �uid
mechanics are not correct for gases with temperature gradients, this will
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CHAPTER 1. INTRODUCTION

discussed in subsection 2.2.1. In the free molecule regime the velocity dis-
tribution of the gas molecules is considered una�ected by the presence of a
particle. The velocity distribution can then be found, this was �rst done by
Waldmann in 1959 [8].

As there is no general solution for the transition regime and expansion
of the two limits into the transition region has proven unsuccessfull the only
alternative is to solve the Boltzmann equation numerically, however solving
it in its full form can be di�cult therefore simpli�cations are usually done
to the Boltzmann equation before it is solved numerically. Before accurate
numerical results existed an interpolation formula by Talbot et al [9] was
widely used and is still used today for practical applications. Most of the
work done on thermophoresis, both theoretical and experimental, is limited
to spheres. The few results on non-spherical particles is restricted to the
free molecule and near continuum regime, and they indicate that the shape
and orientation of the particles is important. The theory also assumes mono
atomic gas, the usual method is to use the translational part of the thermal
conductivity instead of the full thermal conductivity when considering poly-
atomic gases.

Several numerical results (see e.g. Young [10]) have shown a thermophoretic
force in the direction of the temperature gradient when the thermal conduc-
tivity of the particle is high compared to the gas, since it is opposite of the
usual direction it is called reversed or negative thermophoresis. However
since this never has been veri�ed experimentally and since negative ther-
mophoresis is a weak e�ect compared to positive thermophoresis it might be
a result of the numerical method.

Obtaining accurate measurements of the thermophoretic force is di�cult
due to the small size of the particles. Data for spherical particles agrees well
with the theoretical results see e.g. Young [10] or Zheng [6] for various com-
parisons. The Waldmann limit has to a great extent been veri�ed, but the
Epstein limit has not been veri�ed. The accuracy of the current models is
limited by the assumptions of mono atomic gas and spherical particles, when
most gases are polyatomic and most particles are non-spherical as well as the
simpli�cations done when solving the Boltzmann equation.

Thermophoresis has been included in many studies of particle deposition.
Shen [11] found theoretical expressions for the thermophoretic deposition on
a cold cylinder in laminar incoming �ow by using numerical solutions of the
boundary layer and by using an expression for the thermophoretic velocity
based on the interpolation formula by Talbot [9]. Chiou and Cleaver [12]
studied the particle deposition on a heated cylinder and found that this re-
duced the particle deposition by two orders of magnitude for the particles
studied. An experimental study showed that the absolute values of the de-
position were greater than the theoretical result, but the the magnitude of
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1.3. AIM AND OVERVIEW OF THE THESIS

the di�erence between the isothermal and non-isothermal deposition from
the theoretical study was in good agreement with the experimental. There
have also been several studies on thermophoretic deposition on channel walls
see e.g. Chiou, Chiu and Chen [13]

1.3 Aim and overview of the thesis

Previous work on thermophoretic deposition on a cylinder, does not employ
DNS, and previous work on deposition on a cylinder with DNS does not
include thermophoresis. The aim of this study is to determine the e�ect of
thermophoresis on the particle deposition on a cooled cylinder by using DNS.
The determining equations for the �uid and particle motion are presented in
chapter 2. In chapter 3 details of the numerical method used in the simula-
tions will be presented. Since thermophoresis is a phenomenon which arises
in non-isothermal �ow, the non-isothermal �uid implementation needs to be
veri�ed. This has been done by comparing non-isothermal reference cases
to corresponding isothermal reference cases. Where non-isothermal reference
case refers to a case where temperature gradients have been accounted for
in the �uid implementation, but thermophoresis has not been taken into
account in the description of the particle motion. Results for these cases
are presented and discussed in chapter 4. In chapter 5 results from ther-
mophoretic simulations with Re = 380 is compared to the results from the
corresponding non-isothermal reference case and the e�ect of thermophoresis
is discussed. Then conclusions based on the discussion of the reference cases
and the thermophoretic cases are made.

7



Chapter 2

Equations

There are two ways of looking at motion of particles; the Lagrangian and the
Eulerian formalism. In the Lagrangian formalism one tracks every single par-
ticle and its momentum, energy and position, while in the Eulerian formalism
one tracks momentum and energy at a speci�c location. In this study the
Lagrangian formalism has been used for the particle motion, while the Eule-
rian formalism has been used for the �uid motion. The Eulerian formalism is
valid as long as the �uid can be considered a continuum, close to small parti-
cles this assumption does not hold. Therefore the thermophoretic force and
the Stokes-Cunningham factor are introduced. Only one-way �uid-particle
interaction is assumed, i.e. the �uid a�ects the particles, nut the particles
do not in�uence the �uid.

2.1 Fluid equations

Many di�erent non-dimensional parameters can be used to describe �uid
�ows, depending on the nature of the �ow. Some of these parameters are
de�ned by temperature dependent quantities. In order to compare the non-
isothermal case to the isothermal case the values of these quantities will be
evaluated at the free stream temperature.

The determining parameter for a �uid �ow is the Reynolds number, Re,
which is a measure of the ratio between inertial and viscous forces. The
Reynolds number is de�ned as

Re =
uL

ν
, (2.1)

where u is a characteristic velocity, ν = µ
ρ
is the kinematic viscosity, µ is the

dynamic viscosity, ρ is the �uid mass density and L is a characteristic length.
In the case of �ow around a cylinder; u = u0 and L = D, where u0 is the

8
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velocity of the incoming �ow and D is the diameter of the cylinder.
There are two modes of heat transfer in a �uid; convection and conduction.

Convection is heat transferred by the �ow of the �uid, while conduction is
carried on through molecular interactions. An important parameter for heat
convection is the Prandtl number. The Prandtl number, Pr, is de�ned as the
ratio of the dissipation and the conduction

Pr =
ν

χ
=
µ

ρ

ρcp

k
=
cpµ

k
, (2.2)

where χ = k
ρcp

is the thermal di�usivity, k is the heat conductivity and cp is
the speci�c heat capacity at constant pressure.

When an incoming �ow approaches a cylinder the streamlines will be de-
�ected around the cylinder. If the Reynolds number is above a certain thresh-
old an unsteady �ow develops where Von Kármán eddies are found behind
the cylinder, as seen behind the pillars of a bridge across a river. Williamson
[14] found this threshold to be ReKármán = 49. The non-dimensional measure
of the frequency of the eddies, f , is the Strouhal number, for a cylinder it is
de�ned as

Str =
f

1/τf

, (2.3)

where
τf = D/u0 (2.4)

is the typical �uid relaxation time.
In order to accurately resolve the boundary layer Direct Numerical Simu-

lation (DNS) is used, as the name suggest DNS involves solving the determin-
ing �uid equations directly without any modeling. Even for relatively low
Reynolds numbers DNS is very computationally demanding. The method
used in the simulations will be discussed in more detail in chapter 3.

2.1.1 Classical �uid mechanics

Classical �uid mechanics will be used for the �uid implementation, classical
�uid mechanics assumes that the �uid is a continuum. The more general
description will be presented in subsection 2.1.2. Two central assumptions in
classical �uid mechanics are the boundary conditions at a solid wall. The no
slip condition states that the �uid at a solid boundary will have a velocity
identical to the solid. The no temperature jump condition states, in a similar
way, that the temperature of the �uid at the surface must be equal to the
temperature of the surface.

For a �uid the total mass of the system must be conserved, the change of

9
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mass in a volume element Ω is equal to the �ux through the surface ∂Ω of Ω,

∂

∂t

∫
Ω

ρdV = −
∫
∂Ω

ρu · ndA, (2.5)

where dV is a in�nitesimal volume element of Ω, dA a in�nitesimal surface
element of ∂Ω, n the normal vector of dA and u the �uid velocity. The time
derivative can be taken inside the integral since the volume element can be
assumed constant. The surface integral can be evaluated as a volume integral
by using the divergence theorem,∫

Ω

∂ρ

∂t
dV = −

∫
Ω

∇ · (ρu)dV = −
∫

Ω

(ρ∇ · u + (u · ∇)ρ)dV. (2.6)

By assuming zero gradients within the volume element the integrand on the
left hand side must equal the integrand on the right hand side,

∂ρ

∂t
= −(ρ∇ · u + (u · ∇)ρ). (2.7)

Using the advective derivative D
Dt

= ∂
∂t

+ u · ∇ and rearranging yields the
continuity equation,

Dρ

Dt
= −ρ∇ · u. (2.8)

The equivalent to Newtons second law in �uid mechanics is the Navier-Stokes
equation, obtained from conservation of momentum. The change in momen-
tum of a �uid volume element is equal to the force exerted on the control
volume by external forces and the momentum �ux, in this case no other
forces than the pressure and the viscous forces are considered,

∂

∂t

∫
Ω

ρudV +

∫
∂Ω

ρuu · ndA = −
∫
∂Ω

P · ndA+

∫
∂Ω

2µS · ndA, (2.9)

where P = P · I is the pressure tensor, P is the pressure, I is the unit tensor
and S is the traceless rate of stress tensor. By assuming Newtonian �uid

S =
1

2
(∇u + (∇u)T))− 1

3
I∇ · u, (2.10)

and using the divergence theorem equation (2.9) can be written as

∂ρu

∂t
+∇ · (ρuu) = −∇P +∇ · (2µS). (2.11)

The left hand side of the equation can be simpli�ed

∂ρu

∂t
+∇ · (ρuu) = ρ

∂u

∂t
+ u

∂ρ

∂t
+ ρu · ∇u + ρu∇ · u + uu · ∇ρ

= ρ
Du

Dt
+ u

Dρ

Dt
+ ρu∇ · u.

(2.12)
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2.1. FLUID EQUATIONS

By using the continuity equation (2.8) the left hand side of equation (2.11)
reduces to ρDu

Dt
and the compressible Navier-Stokes equation without an ex-

ternal force �eld is given by

ρ
Du

Dt
= −∇P +∇ · (2µS). (2.13)

Conservation of energy gives the following expression for temperature, as
implemented in The Pencil Code [15],

∂T

∂t
= −u · ∇T +

k

ρcv

∇2T + 2
ν

cv

S2 − (γ − 1)T∇ · u, (2.14)

where γ = cp
cv
, cp and cv are the speci�c heat capacities for constant pressure

and volume respectively. In addition to these equations an equation of state
for the gas is needed, if ideal gas is assumed the following expression is given

P = ρRT, (2.15)

where R = cp − cv, is the speci�c gas constant.
In general both viscosity and thermal conductivity are temperature de-

pendent, the exact dependency on temperature is determined by the proper-
ties of the �uid. In order to incorporate the e�ects of temperature a simple
model based on mono atomic gas where the gas molecules are considered to
be rigid spheres has been used. According to Chapman and Cowling [16] this
gives the following temperature dependence

µ

µ0

=

√
T

T0

, (2.16)

k

k0

=

√
T

T0

, (2.17)

where µ0 and k0 are the dynamical viscosity and the thermal conductivity at
a reference temperature T0.

2.1.2 The Boltzmann equation

The Boltzmann equation or the Boltzmann transport equation describes the
statistical distribution of a molecule in a �uid, the Boltzmann equation is
the general equation for a �uid. The solution of the Boltzmann equation is
the probability density f in phase-space, de�ned such that the probability of
�nding a molecule with mass M and momentum between p and p+dp and
position between x and x+dx at time t is given by f(x,p, t)dxdp. For a gas
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without collisions the following relation for the distribution f(x,p, t) must
hold

f(x +
p

M
dt,p + Fdt, t+ dt)dxdp = f(x,p, t)dxdp. (2.18)

The equation then states that a molecule with position x and momentum p
at time t will under in�uence of a force, F , be at position ,x+vdt = x+ p

M
dt,

and have momentum p+Fdt at time ,t+dt, where dt is a small time interval.
However when collisions occur the density of particles in the phase-space
volume dxdp changes,

f(x +
p

M
dt,p + Fdt, t+ dt)dxdp

− f(x,p, t)dxdp =
∂f(x,p, t)

∂t

∣∣∣∣
coll

dxdpdt.
(2.19)

The collision term represents the change in position and momentum of the
particle caused by collisions with other particles. Dividing with dxdpdt on
both sides and taking the limit dx → 0, dp → 0 and dt → 0 yields the
Boltzmann equation,

∂f

∂t
+

p

M

∂f

∂x
+ F

∂f

∂p
=
∂f

∂t

∣∣∣∣
coll

. (2.20)

The Boltzmann equation is highly nonlinear and especially the collision term
makes it very di�cult to solve. In equilibrium with no external forces and
neglecting the collision term the solution of equation (2.20) can be shown to
be the Maxwell distribution,

f =

(
1

2πMkbT

)3/2

e
− p2

2MkbT , (2.21)

where kb is the Boltzmann constant. Alternatively the Maxwell distribution
can be given in terms of the molecule velocity, c, instead of momentum

f =

(
M

2πkbT

)3/2

e
− Mc2

2kbT ,

=

(
β√
π

)3

e−β
2c2 ,

(2.22)

where β =
√

M
2kbT

. If the probability density function is known quantities

like density, momentum and pressure can be calculated. Then equations
for conservation of mass, momentum and energy can be derived. Shen [5]
shows that the zeroth order with respect to Knudsen number of the momen-
tum equation is the Euler equations and the �rst order is the Navier-Stokes
equation.

12



2.2. PARTICLE EQUATIONS

2.2 Particle equations

The motion of a particle is determined by Newtons second law F = mpa.
The acceleration, a, of a particle with mass mp is proportional to the force,
F , on the particle. The forces on the particle in a situation like this can
be the drag force from the �uid, gravity, electric forces, particle-particle
interaction, thermophoretic force and Brownian forces. Gravity is neglected
considering the small size of the particles, particle-particle interaction is not
considered since there is relatively low particle concentration in the �ue gases
in typical industrial boilers. Thermophoresis is a more general phenomenon
than electrophoresis, since temperature gradients obviously will be found in
an industrial boiler, while the particles are not necessarily charged or placed
in an electric �eld. Unlike the thermophoretic force Brownian forces are not
necessarily directed towards cylinder and will therefore probably be a weaker
e�ect. The forces on the particles considered in this study will therefore be
limited to the drag force and the thermophoretic force.

2.2.1 The thermophoretic force

It is not within the scope of this study to go into details of the derivation
of the expression for the thermophoretic force, but some results from the
near continuum region will be presented to give an understanding of the
phenomenon. The thermophoretic force is due to the interaction between
the gas molecules and the particles, this is usually modeled by assuming
that a fraction α of the incident particles is re�ected di�usively and the rest
specularly. Specular comes from Latin and means mirror, i.e. the molecules
are re�ected as light rays on a mirror, the momentum tangential to the
surface is conserved and the momentum normal to the surface reversed. In
the di�usive model the incoming molecules colliding with the particle are
assumed to be in equilibrium with the particle surface and leave the surface
with a Maxwellian velocity distribution given by the temperature at the
particle surface. Di�erent values for the momentum and energy transfer
coe�cients αm and αe can be used. Then the momentum and energy �uxes
can be de�ned as

ṗref = −(1− αp)ṗinc + αpṗeqm,

Ėref = −(1− αe)Ėinc + αeĖeqm,

(2.23)

where ṗ and Ė denotes the tangential momentum and kinetic energy �uxes.
The subscripts 'inc', 'ref' and 'eqm' denotes the incoming molecules, the
re�ected molecules and the molecules with velocity distribution given by the
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y

x

c

Figure 2.1: Incoming molecule and re�ected molecule at a �at wall

Maxwellian distribution at the surface. The values of αe and αp will lie
somewhere between 0 and 1, but the exact value is di�cult to determine
since it will depend on the material of the particle, the gas molecules and the
state of the surface. Most estimates of the values are close to 1, and therefore
a value of 1 will be used as in Young [10], which means di�usive scattering
only.

In order to derive the boundary conditions in the near continuum region
the �rst order Chapman-Enskog approximation can be used, as in Shen [5].
Consider the gas molecules close to a �at wall, one part of the molecules
will approach the wall, while the other part has been re�ected o� the wall.
The geometry of the problem is shown in �gure 2.1. By taking the average
velocity of the gas molecules the velocity of the gas is obtained, where u is
the gas velocity in the x-direction and us is the gas velocity in x-direction
at the surface. The �ux of x-momentum of one molecule with mass M is
de�ned as the change in momentum par unit area

ṗ =
M

V
cxcy. (2.24)
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By using the �rst order Chapman-Enskog approximation

fs = f0

[
1− 4kβ2

5nkb

(
β2c′2 − 5

2

)
c′x

1

T

∂T

∂x
− 4µβ4

ρ
c′xc
′
y

∂u0

∂y

]
, (2.25)

where f0 is the Maxwell distribution, the momentum �uxes for the incoming
and the re�ected molecules can be calculated

ṗ =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Mn(c′x + us)c
′
yfsdc

′,

ṗinc =

∫ ∞
−∞

∫ 0

−∞

∫ ∞
−∞

Mn(c′x + us)c
′
yfsdc

′,

ṗeqm =

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

Mn(c′x + us)c
′
yf0dc

′,

(2.26)

where n is the number of molecules per volume. Which means that

ṗeqm = 0. (2.27)

The total momentum is the sum of the momentum of the incoming and
re�ected molecules

ṗ = ṗinc − (1− αp)ṗspec + αpṗeqm = αpṗinc. (2.28)

Calculating ṗinc gives

ṗinc =

∫ ∞
−∞

∫ 0

−∞

∫ ∞
−∞

c′y (us + c′x)Mn

(
β3

π3/2

)
e−β

2c′2×[
1− 4kβ2

5nkb

(
β2c′2 − 5

2

)
c′x

1

T

∂T

∂x
− 4µβ4

ρ
c′xc
′
y

∂u0

∂y

]
dc′,

(2.29)

rearranging one obtains

ṗinc =

∫ ∞
−∞

∫ 0

−∞

∫ ∞
−∞

Mn

(
β3

π3/2

)
e−β

2c′2×[
c′yus + c′xc

′
y −

4kβ2

5nkb

(
β2c

′2 − 5

2

)
1

T

∂T

∂x
(c′yc

′2
x + c′yc

′
xus)

−4µβ4

ρ

∂u0

∂y
(c

′2
x c

′2
y + c′xusc

′2
y )

]
dc′,

(2.30)

the terms with an odd exponent of c′x will give zeros. Integrating the remain-
ing terms gives,

ṗinc = −1

2
Mn

us

β
√
π

+
1

10
Mn

k

βnkb

√
π

1

T

∂T

∂x
− 1

2
Mn

µ

ρ

∂u0

∂y
. (2.31)
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For ṗ the terms with an odd exponent of c′y will give zeros as well and

ṗ = −Mn
µ

ρ

∂u0

∂y
. (2.32)

Using equation (2.28), (2.31) and (2.32) yields

2
√
π
µβ

ρ

∂u0

∂y
= αp

(
us −

1

5

k

nkb

1

T

∂T

∂x
+
√
π
µβ

ρ

∂u0

∂y

)
, (2.33)

and isolating for us,

us =
2− αp

αp

√
πνβ

∂u0

∂y
+

1

5

k

nkb

1

T

∂T

∂x
, (2.34)

using the de�nition of λ from equation (1.5)

λ = ν

√
πM

2kbT
=
√
πνβ, (2.35)

and the following relation between k and µ from Shen [5]

k =
15

4

kb

M
µ, (2.36)

the velocity at the surface can be given by

us = λ
∂u0

∂y
+

3

4
ν

1

T

∂T

∂x
= Cpλ

∂u0

∂y
+Ktcν

1

T

∂T

∂x
. (2.37)

This relatively simple model gives Cp = 1.0 and Ktc = 3
4
. The �rst term, the

slip term, vanishes in the limit λ → 0. The second term, the thermal creep
term, does not vanish in the continuum limit and means that the gas has a
velocity component relative to the wall in the direction of the temperature
gradient. This implies a force on the gas from the wall in the direction of
the temperature gradient, and thereby a force on the wall from the gas in
the opposite direction, which is the cause of the thermophoretic force. The
expression for the temperature jump can be derived in a similar way

Tw =

(
2− αe

αe

)
λCe

∂T

∂y
. (2.38)

More sophisticated models give more accurate values of Cp,Ktc and Ce, than
obtained by this method. Averages based on di�erent models (see Young
[10]) are given in table 2.1.

16



2.2. PARTICLE EQUATIONS

Table 2.1: Di�erent parameters for the boundary conditions at a solid wall
taken from Young [10].

Parameter Value
Ce 2.17
Cp 1.13
Ktc 1.10

Given the boundary conditions the thermophoretic force on the particle
can be found in the slip �ow regime. Brock's [17] solution from 1963 can be
given in non-dimensional form as

Φ =
−12πKtc(1 + ΛCeKn)

(1 + 3CpKn)(2 + Λ + 2ΛCeKn)
, (2.39)

where Λ = kp
kgas

is the ratio of the thermal conductivities between the particle
and the gas and Φ is the non-dimensional thermophoretic force de�ned as

F th = ΦKn
µ2r2

p∇T
λρT

= Φ
µ2rp∇T
ρT

, (2.40)

where F th is the thermophoretic force, rp the particle radius and µ, ρ and T
is the dynamic viscosity, density and temperature for the undisturbed gas. It
is assumed that the particles will not in�uence the �uid �ow signi�cantly for
more than one mean free path length away from the particle. This solution is
intended for the near continuum regime, but Talbot et al. [9] discovered that
by adjusting Cp and Ktc slightly the expression in the limit Kn→∞ was in
good agreement with the Waldmann limit. The expression from Talbot et
al. has been widely used for practical calculations.

Young [10] incorporates results from numerical simulations in an interpo-
lation formula for practical calculations which can be used for all Knudsen
numbers. It is based on the Grad 13-moment method and numerical solutions
by Yamamoto and Ishihara [18] and Bresenev and Chernyak [19], where the
latter is preferred. The thermophoretic force in dimensionless form is then
given by

Φ =
−12π[Ktc(1 + ΛCeKn) + 3CpKn(1− Λ + ΛCeKn)]

(1 + 3Kn e−Cint/Kn)(1 + 3CpKn)(2 + Λ + 2ΛCeKn)
, (2.41)

where Cint is an interpolation constant. A choice of Cint = 0.5 is used as
recommended by Young [10]. The dimensionless thermophoretic force for
various Knudsen numbers and thermal conductivities is shown in �g 2.2.
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Figure 2.2: The thermophoretic force in dimensionless form

2.2.2 The drag force

The drag force on a particle, FD, with velocity v in a �uid with velocity u
is given by

FD =
1

2
ρCDA|u− v|(u− v)/Cc =

1

2
ρCDA|urel|urel/Cc, (2.42)

where A = πr2
p is the cross section of a particle with radius rp. If the particle

Reynolds number, Rep = 2rp
|urel|
ν

is less than 1000, the drag coe�cient CD

is given by

CD =
24

Rep

(1 + 0.15Re0.687
p ). (2.43)

When the particles are small continuum �uid mechanics must be corrected
as mentioned earlier, in the case of drag this is done by introducing the
Stokes-Cunningham factor,

Cc = 1 + Kn
(
1.257 + 0.4e−1.1Kn

)
. (2.44)

The drag force can be written in a compact form as

FD =
mp

τp

urel, (2.45)
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wheremp is the mass of the particle and τp is the particle response time given
by

τp =
2mpCc

ρCDπr2
p|urel|

=
Sd2

pCc

18ν(1 + 0.15Re0.687
p )

, (2.46)

where S = ρp
ρ
, ρp is the particle mass density and dp is the particle diameter.

A measure of the particle response to drag is the Stokes number, St, which
is de�ned as the ratio between the particle response time, τp, and the �uid
time scale, τf ,

St =
τp

τf

. (2.47)

2.2.3 Thermophoretic velocity

Given a steady �ow with constant temperature, density and viscosity the
drag force will eventually balance out the thermophoretic force and the par-
ticle will have a constant velocity relative to the �uid, the thermophoretic
velocity vth. Using equation (2.40) and (2.45) the following expression can
be obtained

vth = Φ
µ2rp∇T
ρT

· τp

mp

= Φ
µ2rp∇T
ρT

· S(2rp)2Cc

18ν(1 + 0.15Rep
0.687)

· 1
4
3
πρpr3

p

= Φ
3µCc∇T

18πρT (1 + 0.15Re0.687
p )

.

(2.48)

It has to be noted that Rep will depend on the thermophoretic velocity.
However if it is assumed that Rep ≈ 0 is valid, the thermophoretic velocity
reduces to

vth = ΦCc
ν∇T
6πT

, (2.49)

and a non-dimensional thermophoretic velocity, Ψ, can be de�ned as

Ψ =
vth · T
ν∇T

=
ΦCc

6π
. (2.50)

In �gure 2.3, Ψ has been plotted in for various Λ. The thermophoretic veloc-
ity is often the quantity measured when measuring the thermophoretic force
in experimental set-ups. The thermophoretic force and the drag force depend
upon quantities like temperature, velocity, density, viscosity and temperature
gradient of the gas, these quantities are determined by the �uid equations
described in section 2.1, since the particles in general are not exactly located
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Figure 2.3: The thermophoretic velocity in dimensionless form.

at a grid point interpolation is required. In the following a �rst order in-
terpolation scheme is used for density, temperature and velocity and for the
temperature gradient a nearest grid point interpolation is used.
.
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Chapter 3

Numerical method

In order to solve the particle and �uid equations a numerical method is re-
quired. When the Navier-Stokes equations are solved with Direct Numerical
Simulation an e�cient code is needed because it is very costly even for rela-
tively small Reynolds numbers. The code used is The Pencil Code [15] which
calculates the �uid �eld and based on this the force on the particles. The
parameter values used in the simulations can be found in appendix A.

3.1 The Pencil Code

The Pencil Code is a high-order �nite-di�erence code for compressible hy-
drodynamic �ows written in FORTRAN90. The code runs e�ciently under
MPI on massively parallel shared- or distributed-memory computers, like
e.g. large Beowulf clusters. The Pencil Code is named after its use of pen-
cils, which means that quantities like density and velocity is calculated along
one dimension at the time for each time step, this is done to ensure that all
the memory required by the CPU is available in the computers cache.

3.1.1 Discretization

There are many methods for discretization of di�erential equations. The
methods used in this project and implemented in The Pencil Code is the
�nite-di�erence method in space and Runge-Kutta in time. The �nite-
di�erence method is based on approximating the spatial derivatives with
�nite di�erences. The order of the method corresponds to the accuracy of
the method i.e. a sixth order method, which is used in this context with
a grid spacing of ∆x has an error of O(∆x6). In order to approximate the
derivative of a quantity at a grid point i six neighbour points are required
(i − 3, i − 2, i − 1, i + 1, i + 2, i + 3) for a sixth order method. The sixth
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order �rst derivative scheme used in The Pencil Code [15] is given by

∂gi
∂x

=
−gi−3 + 9gi−2 − 45gi+1 − 9gi+2 + gi+3

60∆x
. (3.1)

The discretization used in time is an explicit Runge-Kutta method of third
order. The Runge-Kutta method is based on successive iterations starting
with the solution from the explicit Euler method. A partial di�erential equa-
tion (PDE), can be transformed to an ordinary di�erential equation (ODE)
by discretisizing in the spatial direction, thus obtaining a semi discrete dif-
ferential equation. Consider the simple PDE

∂g

∂t
=
∂g

∂x
, (3.2)

the right hand term can be discretisized according to equation (3.1) and be
denoted as R(g, t)

∂g

∂t
= R(g, t), (3.3)

then the explicit Euler method can be used to discretisize in time

g1(t+ ∆t) = g1(t) + ∆t · R(g(t), t). (3.4)

The i-th order Runge-Kutta is then given by

gi(t+ ∆t) = αigi−1(t) + ∆t · R(gi−1(t), ti−1) (3.5)

where αi is a constant. The 3rd order Runge-Kutta method used in this
study is therefore of order O(∆t3).

For a numerical method to be meaningful it is required to be consistent,
i.e. that when ∆x→ 0, ∆t→ 0 the error of the numerical method vanishes,
in addition the method must be stable. When these criteria are ful�lled
the method is convergent by the Lax equivalence theorem, also called the
Lax-Richtmeyer equivalence theorem, as in Strikwerda [20].

3.1.2 Stability conditions

As mentioned above an absolute criteria for the numerical method is stability.
The stability condition is determined by the Courant-Friedrichs-Lewy (CFL)
condition which states that the time step must be smaller than the time
information uses to travel one grid length, the CFL time step will then be
the smallest of the convective and di�usive time step:

∆t = min

(
c∆t

∆xmin

Umax

, c∆t,v
∆x2

min

Dmax

)
(3.6)
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where c∆t and c∆t,v are the CFL numbers and

∆xmin ≡ min(∆x,∆y) (3.7)

Umax ≡ max (|u|+ cs) (3.8)

Dmax = max(ν, γχ) (3.9)

cs is the speed of sound. In addition the time step must be smaller than
the particle response time determined by equation (2.46). Because the com-
puting cost increases with decreasing time step it is desirable to have a high
Mach number (low speed of sound), Ma = u0

cs
, but not too high because of

compressible e�ects.

3.1.3 The solid geometry

Solid objects, like in this case a cylinder, have to be included in the �ow
domain. To make the code general a Cartesian grid has been used, which
does not follow the boundary of the cylinder. This requires a modi�cation
of the equations close to the boundary. The method used in this study is
the immersed boundary method, which adds a virtual force to the momen-
tum equation (2.11) to make sure the boundary conditions are ful�lled. The
method was �rst introduced by Peskin to study the �ow around heart valves
[21] and now refers to a class of methods for simulations of �ow around
boundaries on non-body-conformal grid, for an overview see Mittal and Iac-
carino [22].

There are in principle no restrictions on the choice of the virtual forcing
as long as the boundary conditions are met. The method used in this study
is the discrete forcing approach where the equations are �rst discretisized on
a Cartesian grid and then the forcing is introduced. This approach allows
direct control over the numerical accuracy, stability and discrete conservation
properties of the solver.

In order to accurately resolve the boundary layer ghost points are used
within the solid body. Values are assigned to the ghost points based on the
properties of their mirror points in the �uid ensuring a sharp wall between
the �uid and the solid. The mirror points are found by identifying the sur-
face normal. Because of the curvature of the boundary the mirror point of
a grid point inside the cylinder will not always coincide with a grid point in
the �uid, then interpolation of the four nearest neighbours is required. If the
grid point is too close to the cylinder to have four neighbours in the �uid an
interpolation is made along the surface normal between the surface and the
point where the surface normal intersects its �rst grid line inside the �uid.
The state of the latter point is found by a linear interpolation of the closest
grid points along the grid line.
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Figure 3.1: The oscillations of the drag coe�cient in y-direction when the
�ow �eld is statistical stationary.

When the �uid points are too close to the boundary spurious e�ects may
arise due to the e�ective delocalized dependency in the �nite di�erences.
Since calculating the central sixth-order �nite di�erence requires the use of
ghost points given by mirror points relatively far from the original point. To
avoid spurious e�ects a pre-de�ned cut-o� is chosen (e.g. 0.7 ∆x), such that
if the grid point is closer than this to the boundary a value is assign explicitly
based on the same procedure as described in the previous paragraph.

In the stream wise direction partial re�ecting Navier-Stokes characteristic
boundary conditions (NSCBC) have been used for the �uid. The particles
are inserted a few grid points down stream and removed at the outlet. For
the �uid and the particles periodic boundary conditions are used in the span
wise direction.

3.2 The particles

There will take some time before the numerical solution of the �ow �eld is
statistical stationary and the Von Kármán eddies form behind the cylinder.
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Therefore a simulation without particles was performed �rst to initialise the
�ow �eld. When the �ow �eld was statistically stationary the particles were
inserted. In �gure 3.1 the drag coe�cient of the cylinder is shown when
the �ow �eld was stationary. Because of the oscillations caused by the Von
Kármán the particles was inserted over a time of at least three Von Kármán
periods in order to achieve good statistics. The initial velocity of the particles
was set equal to the �uid velocity. And the initial positions of the particles in
the span-wise direction were uniformly distributed in a range such that they
span the cylinder diameter. The particles was removed at the outlet and if
they impacted on the cylinder, and the simulation was run until no particles
remained.

25



Chapter 4

The non-isothermal reference

cases

In this chapter the results for the simulations without thermophoresis will
be presented and discussed. The results consist of isothermal and non-
isothermal cases at Re = 20 and Re = 380. In the non-isothermal case
the free stream temperature, T0, and the cylinder temperature, Tc, was set
to: T0 = 873 K and Tc = 700 K. In the Re = 20 case a grid size of 1024×512
was used and in the Re = 380 case a grid size of 2048×1024 was used. The
case with Re = 20 is stationary and less computationally demanding than the
case with Re = 380, and was therefore performed to determine the di�erences
between isothermal and non-isothermal �ow.

Table 4.1: The front side impaction e�ciency for the non-isothermal case,
ηfront, and for the isothermal case, η̃front, for di�erent Stokes numbers and
Re = 20.

St ηfront η̃front ηfront/η̃front

0.05 0.000227 0.000183 1.24
0.10 0.000421 0.000397 1.06
0.15 0.000685 0.000634 1.08
0.30 0.002329 0.001757 1.33
1.00 0.257760 0.632461 1.19
3.00 0.632461 0.616187 1.03
10.00 0.902221 0.894426 1.10
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Figure 4.1: The front side particle impaction e�ciency for non-isothermal
and isothermal �ow for Re = 20.

4.1 Low Reynolds number simulations

The front side impaction e�ciencies for the isothermal and non-isothermal
case for simulations with Re= 20 are shown in �gure 4.1. The front side im-
paction e�ciencies and the ratio between the non-isothermal and the isother-
mal front side impaction e�ciencies are given in table 4.1. The results show
slightly larger impaction e�ciency for the non-isothermal case compared to
the non-isothermal case for all Stokes numbers considered.

Haugen and Kragset [2] identi�ed three modes of impaction depending
on the Reynolds number and the Stokes number. The particles with the
largest Stokes numbers, St > 0.7 for Re = 20, experience classical impaction.
The particles have su�cient inertia to penetrate the boundary layer in this
mode. In the boundary stopping mode the particles no longer penetrates the
boundary layer, this mode exists for 0.3 < St < 0.7 for Re = 20. For Stokes
numbers below this the particles experience boundary interception; i.e. the
particles follow the �ow perfectly. One must keep in mind that the Stokes
number depends on the viscosity, St ∼ 1

µ
, which is temperature dependent. In

the non-isothermal case the viscosity decreases as the temperature decreases
towards the cylinder, meaning that the particles resist the �ow better than
indicated by the free stream Stokes number. This e�ect would explain the
higher impaction e�ciency in the non-isothermal compared to the isother-
mal case. The free stream Stokes number should therefore be replaced by an
e�ective Stokes number, but since the e�ective Stokes number would depend
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Figure 4.2: The isothermal and the non-isothermal show the same angular
dependence of 1/Bθ and the maximum value is almost the same.

on how much time the particles spend in the boundary layer it would be very
complicated to �nd.

In the boundary interception mode the particles follow the �ow perfectly,
but still impact due to the �nite extent of the particles. Haugen and Kragset
[2] gave an expression for the front side impaction e�ciency as a function of
Stokes number in the boundary interception mode. In this section a simi-
lar expression will be derived for the non-isothermal case. For the Reynolds
number considered the boundary layer will be laminar and the tangential
velocity in the boundary layer can be assumed linear

uθ = Aθx̂, (4.1)

where Aθ is a constant depending on the Reynolds number, x̂ is the normal
distance from the surface. The angle θ is 0◦ at the front side and increasing
clockwise around the cylinder. For the isothermal case Haugen and Kragset
[2] used the following expression for the boundary layer thickness

δ =
BθD√

Re
(4.2)
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to �nd

Aθ =
u0

√
Re

BθD
, (4.3)

where 1/Bθ is a Reynolds number independent constant. The skin friction
coe�cient is de�ned in White [23] as

Cf =
τ

1
2
ρu2

0

, (4.4)

where τ is the shear stress at the wall. In this case

τ = µ
∂uθ
∂x̂

= µAθ, (4.5)

which implies that

Cf =
2νAθ
u0

=
2√
Re

1

Bθ

, (4.6)

or
1

Bθ

=
Cf

2

√
Re. (4.7)

In the isothermal case Haugen and Kragset [2] measured Aθ and �tted a sine
to the values of 1/Bθ for various Reynolds numbers with a best �t of

f̃ = 2.2 sin(1.6θ), (4.8)

in the range 0◦ < θ < 80◦. In �gure 4.2, 1/Bθ have been plotted for
the isothermal and non-isothermal case for Re= 20. The results for the
isothermal case are in excellent agreement with equation (4.8) while the non-
isothermal results �t better with a �t of

f(θ) = 2.1 sin(1.6θ). (4.9)

The di�erence between the cases is only 5% and they show the same angular
dependence. Using equation (4.9) the tangential velocity can be expressed
as

uθ = αf(θ), (4.10)

where

α =
u0

√
Re

D
. (4.11)

The di�erence between the isothermal and non-isothermal case can be ex-
plained by looking at the viscous term in the Navier-Stokes equation (2.11),

1

ρ
∇ · (2µS) = 2ν∇ · S +

2S

ρ
· ∇µ, (4.12)

29



CHAPTER 4. THE NON-ISOTHERMAL REFERENCE CASES

Figure 4.3: The density, ρ, as a function of distance from the cylinder x̂ at
θ = 0◦

both ν and µ decreases as the temperature decreases towards the cylinder.
If only the �rst term is considered a decrease in ν corresponds to an increase
in the Reynolds number giving a thinner boundary layer. While the second
term will be directed away from the cylinder giving a thicker boundary layer.
In this case since the isothermal, f̃ , is slightly higher than the non-isothermal,
f , the net result is a thicker boundary layer in the non-isothermal case.

The continuity equation (2.8) can be written in cylindrical coordinates in
two-dimensions as

ur
∂ρ

∂r
+
uθ
r

∂ρ

∂θ
= −ρ∂ur

∂r
− 1

r
ρ
∂uθ
∂θ

, (4.13)

where r is the distance from the center of the cylinder. Since the density
gradients are caused by the temperature gradients and the temperature gra-
dients close to the cylinder can be assumed to only have a radial component
it can be deduced that ∂ρ

∂θ
≈ 0. Requiring the boundary layer to be thin

compared to the radius Rc of the cylinder reduces the equation to

ur
∂ρ

∂x̂
+ ρ

∂ur
∂x̂

= − ρ

Rc

∂uθ
∂θ

,

∂ρur

∂x̂
= − ρ

Rc

∂uθ
∂θ

,

(4.14)

where x̂ is the distance from the cylinder surface. The density as a function
of distance from the cylinder from the non-isothermal simulation is shown in
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Figure 4.4: The isothermal and non-isothermal 1/Br is essentially the same.

�gure 4.3. The density close to the cylinder can be approximated by

ρ = ρc − ξ · x̂, (4.15)

where ρc is the density at the cylinder surface and ξ is the density gradient
close to the cylinder. Numerical estimates can be obtained from the �gure
4.3 giving ρc = 1.26 kg/m3 and ξ = 44.44 kg/m4. The estimate for ρc agrees
well with the ideal gas law, which gives ρc = ρ · T0

Tc
≈ 1.25 kg/m3. Using

equation (4.14) and (4.15), an expression for the radial velocity can be found

ur = −1

ρ

∫ x̂

0

ρ

Rc

∂uθ
∂θ

dx̂′ = − 1

ρRc

αx̂2∂f

∂θ

(
1

2
ρc −

1

3
ξx̂

)
, (4.16)

equation (4.15) implies that ρc = ρ+ξ ·x̂, inserting this in the above equation
yields

ur = − 1

2Rc

αx̂2∂f

∂θ

(
1 +

1

3

ξx̂

ρ

)
. (4.17)

Comparing with the isothermal radial velocity, ûr, from Haugen and Kragset
[2] gives

ur = ûr

(
1 +

1

3

ξx̂

ρ

)
, (4.18)
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Figure 4.5: The maximum angle of front side impaction, θmax as function of
Stokes number for isothermal and non-isothermal �ow for Re = 20.

in the very close boundary layer the second term can be neglected, the radial
velocity will then be proportional to the square of the distance from the
surface i.e.

ur = Arx̂
2, (4.19)

where

Ar = − α
D

∂f

∂θ
=
α

D

1

Br

, (4.20)

which implies
1

Br

= −∂f
∂θ

= −3.36 cos(1.6θ). (4.21)

For small angles, i.e. close to the front side stagnation point, the radial
velocity will be directed towards the cylinder surface. When ∂f

∂θ
= 0 the

boundary layer is at its thinnest and from this point onwards the radial
velocity will be directed away from the surface. A particle which has not
impacted at this point will not impact on the front side at all, by using
equation (4.21) this is found to happen at θ ≈ 56◦. In �gure 4.4, 1/Br has
been plotted for the isothermal and non-isothermal case, both agree well with
the expected results and the radial velocity become zero at the same angle
for the two cases. This is re�ected in �gure 4.5, where the maximum angle
of impaction for the two cases are plotted as a function of Stokes number.

The total mass �ow in the boundary layer between the cylinder surface
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and one particle radius away from the surface is

ṁb = H

∫ rp

0

ρuθdx̂
′
= Hαf(θ)

(
1

2
ρcr

2
p −

1

3
ξr3

p

)
,

=
1

2
Hαf(θ)r2

pρc

(
1− 2

3

ξrp

ρc

)
,

(4.22)

where H is the length of the cylinder. The total mass �ow inserted between
the axis and ∆y away from the axis far upstream is

ṁu = Hu0ρ0∆y, (4.23)

by setting ṁu = max(ṁb), the following expression is obtained

η =
∆y

rc

=

√
Re

4

(
rp

rc

)2

fmax
ρc

ρ0

(
1− 2

3

ξrp

ρc

)
, (4.24)

by using the ideal gas law and assuming ξrp
ρc
≈ 0 the following expression is

obtained

η ≈
√

Re

4

(
rp

rc

)2

fmax
T0

Tc

. (4.25)

Comparison with the isothermal expression, η̃, from Haugen and Kragset
gives

η = η̃
fmax

f̃max

T0

Tc

. (4.26)

Inserting the numerical values for fmax, f̃max, T0 and Tc yields

η = η̃ · 2.1

2.2
· 873

700
≈ 1.19 · η̃. (4.27)

This equation was derived assuming the particles follow the stream perfectly,
which means St = 0. No �nite particles follow the stream perfectly, but the
results of the impaction e�ciencies from the simulations is in good agreement
with equation (4.27) for St = 0.05. This indicates that equation (4.27) is valid
for the interception mode.

The simulations at Re = 20 have shown that the front side impaction
e�ciency in the non-isothermal case is slightly higher than in the isothermal
case. The dominating e�ect behind this for the small Stokes numbers was
found to be that the higher density close to the cylinder leads to a higher mass
�ow in the non-isothermal case compared to the isothermal case. Meaning
that a streamline ∆y away from the center-line in the non-isothermal case
is closer to the cylinder surface than the corresponding streamline in the
isothermal case.
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Figure 4.6: The front side particle impaction e�ciency for isothermal and
non-isothermal �ow for Re = 380.

4.2 Intermediate Reynolds number simulations

The front side impaction e�ciencies for the non-isothermal and isothermal
cases with Re = 380 are shown in �gure 4.6. In contrast to what was found
in the previous section the impaction e�ciency for the three smallest Stokes
numbers was considerable lower in the non-isothermal case compared to the
isothermal case. The smallest particles are very sensitive to the very close
boundary layer. For Re = 380 the �ow is non-stationary, in order to plot
1/Bθ and 1/Br the average of the velocity above and below the cylinder is
taken, such that ūθ(θ) = 1

2
(uθ(θ)− uθ(2π − θ)) and correspondingly for ur.

The plot of 1/Bθ in �gure 4.7 shows no considerable di�erences between the
isothermal and non-isothermal reference case at least not larger than was
found for Re = 20. The plot of 1/Br in �gure 4.8, however shows large
variations in 1/Br for the non-isothermal case, and positive values of 1/Br

even for small angles. These variations suggest that the lower impaction
e�ciency in the non-isothermal compared to the isothermal case is a result
of errors in the numerical method. The smallest particles are most sensitive
to the close boundary layer and is probably the explanation to why only the
smallest particles are a�ected by the numerical errors.

Haugen and Kragset [2] performed grid independence tests and found for
Re = 421 that a grid size of 1024×512 was su�cient for isothermal �ow.
Since a grid size of 2048×1024 still gives problems in the non-isothermal
case, it is unlikely that a further increase of the grid size will improve the
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Figure 4.7: The Reynolds-number-independent constant 1/Bθ as a function
of the angle θ. Both the isothermal and the non-isothermal case, with Tc =
700 K, agrees well with the �t from equation (4.8). The close_linear_limit
parameter is set to l = 0.7 for both cases.

situation.
Close to the cylinder interpolation is required to avoid spurious e�ects

caused by delocalization of the numerical method, as described in chapter 3.
The cut-o�, close_linear_limit, determining how close a �uid point must be
to the cylinder surface before interpolation is required was originally set to
l = 0.7. Which means that if a grid point is closer to the cylinder surface
than 0.7·∆x the value of that grid point is interpolated. The parameter l
was varied and the results for 1/Bθ and 1/Br are shown in �gure 4.9 and
�gure 4.10 respectively. Increasing l does improve the situation for the radial
velocities close to the front side stagnation point, but it causes problems
around 40◦. In the non-isothermal case it is di�cult to �nd a value of l,
which yields satisfactory results. Possible solutions to this problem could
be to use a higher order interpolation scheme, using a one-sided stencil for
calculating derivatives close to the cylinder surface or using a body-conformal
grid.

The current method uses only the two nearest grid points when calculating
the values for grid points close to the cylinder, extending the method to using

35



CHAPTER 4. THE NON-ISOTHERMAL REFERENCE CASES

Figure 4.8: The Reynolds-number-independent constant 1/Br as a function
of the angle θ. The non-isothermal case, has positive values for the radial
velocity close to the front side stagnation point, which does not agree with
the �t from equation (4.21) and the isothermal case. The close_linear_limit
parameter is set to l = 0.7 for both cases.

the four nearest neighbours instead would be desirable. Achieving higher
order interpolation could be rather complicated as one must be sure that the
grid points used for interpolation are �uid points. The interpolation could
be eliminated altogether by solving the problem with delocalization by using
a one-sided stencil for calculating derivatives close to the cylinder. Instead
of calculating the derivatives using three grid points on either side one could
have an uneven distribution using e.g. 4 points to the left and two points to
the right and thus avoid using more than one ghost points within the cylinder
when calculating derivatives. The last option is to use a body-conformal grid
instead of the immersed boundary method, using a body-conformal grid will
make it easier to implement the boundary conditions, but it is in general
di�cult to generate the grid and it would make the code less general. All of
these methods will require substantial amount of time to implement, which
would require more time than the time frame of this study. With knowledge
of the boundary layer for di�erent choices of l and with the considerations
done for low Reynolds number as background, the e�ect of the numerical
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Figure 4.9: Variation of the interpolation parameter l gives di�erent results
for 1/Bθ in the non-isothermal case, Re = 380.
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Figure 4.10: Variation of the interpolation parameter l gives di�erent results
for 1/Br in the non-isothermal case, Re = 380.
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Figure 4.11: Front side impaction e�ciency as function of Stokes numbers
for the isothermal case and for the non-isothermal cases with di�erent values
of the limit_close_linear parameter, l, for Re = 380.

errors on the particle impaction can be discussed. A comparison between
the front side impaction e�ciencies for the non-isothermal cases and the
isothermal case is shown in �gure 4.11, and a similar comparison for the
maximum angle of impaction is shown in �gure 4.12.

The non-isothermal case with l = 0.7 has positive radial velocities for small
angles and the maximum angle of impaction is therefore only θmax ≈ 10◦ for
the smallest Stokes numbers. For the two other cases the radial velocities are
either strongly negative and then strongly positive, l = 0.9, or the opposite
for l = 0.99. If the radial velocity is strongly negative many of the particles
which had not impacted will impact, while if the radial velocity is positive
the particles do not impact. In the previous section it was found for Re = 20
that the maximum angle of impaction for the isothermal and non-isothermal
case was more or less the same. If it is assumed that the same holds for
Re = 380 one can deduce that a strong positive radial velocity at θ ≈ 40◦

will have little e�ect on the front side particle impaction for the small Stokes
numbers considered in this case, because the maximum angle of impaction
in the isothermal case is below 40◦.

For Re = 380 the choice of l = 0.99 gives the most accurate results for
the front side particle impaction in the non-isothermal case. Since 1/Bθ and
1/Br is in good agreement with the isothermal case for θ < 40◦, and since
the inaccuracies at θ ≈ 40◦ repel the particles rather than attracting them.
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Figure 4.12: Maximum angle of front side impaction, θmax, as a function of
Stokes number for the isothermal case and for the non-isothermal cases with
di�erent values of the limit_close_linear parameter, l, for Re = 380.

4.2.1 Back side impaction

Because of the Von Kármán eddies formed behind the cylinder for Re >
ReKármán there is particle impaction on the back side even when the drag
force from the gas is the only force on the particles considered. If the eddy
turnover time is long enough for the particle to gain momentum in the direc-
tion opposite of the free stream direction and short enough for the particle
to escape the eddy, then the particle might impact on the back side.

The back side impaction e�ciency for Re = 380 is shown in �gure 4.13.
There were only back side impaction for the three smallest Stokes numbers.
The mechanisms behind back side impaction are much more complicated than
for the front side impaction and there is di�cult to explain the di�erences
between the di�erent non-isothermal cases and the isothermal case.
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Figure 4.13: The back side impaction e�ciency as function of Stokes numbers
for the isothermal case and for non-isothermal cases for di�erent values of
the limit_close_linear parameter, l, for Re = 380
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Chapter 5

Thermophoresis

In this chapter the results from the simulations with thermophoresis will
be presented and discussed. In the range of particle sizes considered the
thermophoretic force depends on the particle-to-gas thermal conductivity
ratio, Λ = kp

kgas
. The values of Λ chosen in this study are 1, 100 and 1000. A

Reynolds number of Re = 380 has been used. Since l = 0.99 gave the best
results for the non-isothermal reference case this value has been used in the
thermophoretic cases.

5.1 The front side impaction

The front side impaction e�ciency is shown in �gure 5.1, and the ratio be-
tween the front side impaction e�ciencies for the cases with thermophore-
sis and the front side impaction e�ciency for the non-isothermal reference
case are given in table 5.1. For St & 1.0, there are no substantial di�er-

Table 5.1: The ratio between the front side impaction e�ciency with ther-
mophoresis and without thermophoresis for di�erent Stokes numbers and
values of Λ.

St Λ = 1 Λ = 100 Λ = 1000
0.05 205.999 7.288 0.000
0.10 127.679 5.169 0.111
0.15 104.619 5.269 0.520
0.30 9.790 2.386 0.871
1.00 1.017 0.992 1.014
3.00 0.999 0.988 0.998
10.00 1.012 0.987 1.012
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Figure 5.1: The front side impaction e�ciency for the non-isothermal case
as function of Stokes numbers with and without thermophoresis for di�erent
values of Λ

ences in the impaction e�ciency of the non-isothermal reference case and
the thermophoretic cases. These particles experience classical impaction,
they penetrate the boundary layer and are therefore not a�ected much by
thermophoresis. For St . 1.0 thermophoresis a�ects the particle impaction
e�ciency depending on Λ.

The particle impaction e�ciency is presented as a function of Stokes num-
ber, while the thermophoretic force was presented in terms of the Knudsen
number in chapter 2. Using equation (1.2) and (2.47), and assuming Cc ≈ 1
and Rep ≈ 0, the relation between the Knudsen number and the Stokes
number for a particle can be found as

Knp = λ

√
4 · S · u0

9 · St · ν ·D
=

1

3
Knc

√
Re · S

St
, (5.1)

where Knc is the cylinder Knudsen number Knc = λ
Rc
. Inserting numerical

values for the case considered gives

Knp = 8.17 · 10−4 · 1√
St
, (5.2)

the Knudsen numbers for the particles considered in this case is therefore in
the range 2.58 · 10−4 < Knp < 8.17 · 10−3. The Stokes number in terms of
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Figure 5.2: The thermophoretic velocity as a function of Stokes number for
di�erent values of Λ.

the Knudsen number then becomes

St = 6.68 · 10−7 · 1

Kn2
p

. (5.3)

Using this relation and the expression for the thermophoretic velocity (2.48),
vth can be expressed in terms of the Stokes number. In �gure 5.2, vth has
been plotted as a function of Stokes number for the values of Λ used in the
simulations, when representative values of ν, T and ∇T have been inserted.

The relative small values of the thermophoretic velocity, in the order of
mm/s, a�ects the impaction e�ciencies signi�cantly. This can be explained
by considering that the smallest particles are of the order of 10 µm and the
particles impacting on the cylinder can spend relatively long time in the close
boundary layer.

The cases with Λ = 1 and Λ = 100 give higher impaction as the ther-
mophoretic force is directed towards the cylinder. The impaction e�ciency
in the thermophoretic case is for Λ = 100 and Λ = 1 respectively, almost
one order and two orders of magnitude greater than the impaction e�ciency
in the reference case for the smallest Stokes numbers considered. While the
case with Λ = 1000 gives lower impaction for the smallest Stokes numbers
and for St = 0.05 no front side impaction was found at all.
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Figure 5.3: The maximum angle of front side impaction as a function of
Stokes number for the non-isothermal case with and without thermophoresis
for di�erent values of Λ

The parameters Kn and Λ are in general temperature dependent since they
depend on the �uid quantities λ and kgas respectively, but in these simulations
they have been held constant. Since the temperature decreases towards the
cylinder λ decreases towards the cylinder. The value of the Knudsen number
should therefore be lower close to the cylinder compared to the free stream
value, likewise Λ should be higher close to the cylinder compared to the free
stream values. Using temperature dependent Kn and Λ would give some
minor corrections to the particle impaction e�ciency.

The maximum angle of front side impaction is a�ected by thermophoresis
as well, the cases with Λ = 1 and Λ = 100 give a higher θmax than the non-
isothermal reference case. They both reach a maximum value of θmax ≈ 40◦,
it is likely that this is an e�ect of the numerical inaccuracies for the non-
isothermal case in this region as discussed in the previous chapter. For the
case Λ = 1000 the maximum angle of impaction is lower than in the reference
case.

In the case without thermophoresis analytical considerations was made
regarding the small Stokes number impaction, in this subsection a similar
approach will be used for the thermophoretic case. It will be assumed that
the particles reach equilibrium between the thermophoretic force and the drag
force instantaneously, the particle velocity in the radial direction can then be
given as the sum of the radial velocity of the �uid and of the thermophoretic
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Figure 5.4: The back side impaction e�ciency for the non-isothermal case
as function of Stokes numbers with and without thermophoresis for di�erent
values of Λ

velocity
˙̂x = Ar · x̂2 + vth, (5.4)

inserting the expression for Ar gives

˙̂x = −3.5
α

D
cos(1.6θ) · x̂2 + vth, (5.5)

without thermophoresis the maximum angle of impaction was found when
the �rst term became positive, but with thermophoresis the maximum angle
of impaction takes place either at a higher angle, if vth < 0, or at a lower
angle, if vth > 0.

5.2 Back side impaction

The back side impaction e�ciency is shown in �gure 5.4. The ratio between
the back side impaction e�ciencies for the cases with thermophoresis and
the non-isothermal reference case is given in table 5.2. It is seen that ther-
mophoresis leads to a considerable increase for Λ = 1 and Λ = 100 compared
to the non-isothermal reference case. For Λ = 1 back side impaction was
found even for St = 0.3. The back side impaction e�ciency in the ther-
mophoretic case with Λ = 1000 was slightly lower than in the non-isothermal
reference case and no back side impaction was found for St = 0.05.
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Table 5.2: The ratio between the back side impaction e�ciency with ther-
mophoresis and without thermophoresis.

St Λ = 1 Λ = 100 Λ = 1000
0.05 179.986 6.142 0.000
0.10 179.910 6.297 0.652
0.15 146.192 5.743 0.582

5.3 The e�ect of thermophoresis

In this study only particles with 0.05 < St < 10 have been considered, how-
ever based on the expression of the thermophoretic force and the results for
the Stokes numbers considered some considerations can be made for the gen-
eral case. It was found that thermophoresis has little e�ect on the impaction
e�ciency for St & 1, therefore particle impaction for higher Stokes number
than those considered will essentially be una�ected by thermophoresis.

Since θmax for the cases with Λ = 1 and Λ = 100 probably were a�ected
by the numerical inaccuracies, it is likely that the e�ect of thermophoresis
on the front side particle impaction e�ciency is even higher than what was
found in these simulations. In the thermophoretic case with Λ = 1 the in-
accuracies around 40◦ probably had little e�ect on the front side impaction
e�ciency, but the implementation of temperature dependent Λ and Kn on
the other hand can have a substantial e�ect. Since for this value of Λ the
particles experience negative thermophoresis for some of the Stokes numbers.
If the Knudsen number of the particle is shifted then the onset of negative
thermophoresis might occur for a di�erent Stokes number.

It is di�cult to say what e�ect the numerical inaccuracies have on the
back side impaction, because if the number of particles impacting on the
front side is decreased there are more particles reaching the back side of the
cylinder. On the other hand the inaccuracies may de�ect particles that oth-
erwise would have impacted on the back side.

Although the numerical method used in this study should be improved in
the non-isothermal case, the simulations performed give valuable information
about the e�ect of thermophoresis. It is clear that thermophoresis have a con-
siderable e�ect on the front side particle impaction. The impaction e�ciency
for St . 1.0 was found to be material dependent, for low particle conductiv-
ities it was substantially increased and for high particle conductivities it was
decreased. In appendix B values of Λ used in di�erent experimental studies
can be found. For much lower Stokes numbers than those considered in this
study the impaction e�ciency is expected to be material independent, since
the thermophoretic force is material independent in the free molecule limit.
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CHAPTER 5. THERMOPHORESIS

5.4 Further work

The focus of further work should be to improve the method to eliminate
the numerical inaccuracies for non-isothermal �ows at intermediate Reynolds
numbers. When this has been done the e�ect of thermophoresis on the parti-
cle deposition at other Reynolds numbers than Re = 380 should be studied,
since the Reynolds number considered in this study does not necessarily rep-
resent the real situationin a heat exchanger. The temperature of the incoming
gas and of the cylinder may be di�erent as well, which may have an e�ect
both on the �uid �ow and on the thermophoretic force. Brownian motion will
not be speci�cally directed towards the cylinder as thermophoresis, but can
still be important for the particle deposition and future work should consider
this e�ect as well.

The incoming �ow is not necessarily laminar, if the �ow is turbulent the
temperature distribution around the cylinder will be di�erent from the lam-
inar case. The thermophoretic force will then not necessarily be directed
towards the cylinder. Another aspect of turbulent non-isothermal �ow is
Turbulent Thermal Di�usion (TTD) a phenomenon described theoretically
by Elperin, Kleeorin and Rogachevskii in 1996 [24]. TTD also gives a force on
the particle towards the cylinder, but has di�erent origins then thermophore-
sis.

The simulations have shown that the smallest particles are very sensi-
tive to the thermophoretic force. Therefore accurate knowledge of the ther-
mophoretic force on the particles is needed in order to describe the particle
impaction for the smallest particles. Very little experimental data on ther-
mophoresis on particles with the Knudsen numbers considered in this work
exist, this is especially the case for high particle conductivities where it is
unclear if negative thermophoresis exists. Further it was assumed spherical
particles, mono atomic gas and no rotation of the particles, in general this
can not be assumed to hold.
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Conclusion

The e�ect of thermophoresis on the particle deposition on a cooled cylinder
in non-isothermal laminar gas �ow has been studied with Direct Numer-
ical Simulation using the immersed boundary method with ghost points;
for Re = 380, Tc

T0
= 700/873, particle-to-gas thermal conductivity ratios

Λ = 1, 100, 1000 and Stokes numbers in the range 0.01 < St < 10. In
addition to the simulations where thermophoresis were taken into account
two reference simulations have been performed; an isothermal reference case
and a non-isothermal reference case. To verify the �uid implementation for
non-isothermal �ow an isothermal and a non-isothermal reference case for
Re = 20 was performed.

Analytical considerations found that the ratio between the front side
impaction e�ciencies for the smallest particles in the non-isothermal and
isothermal reference case was proportional to T0

Tc
, which agreed well with the

simulations for Re = 20, but not for Re = 380. The reason to this is believed
to be inaccuracies in the numerical method for the non-isothermal simulation
at Re = 380.

It was found that thermophoresis does not a�ect the particle impaction
for St & 1.0, for St . 1.0 the e�ect of thermophoresis depended on Λ. Both
the front side and back side particle impaction e�ciency was signi�cantly
higher for the thermophoretic cases with Λ = 1 and Λ = 100 than for the
non-isothermal reference case. For Λ = 1000 lower particle impaction e�-
ciency was found in the thermophoretic case compared to the non-isothermal
reference case both for the front side and the back side.

For the Stokes/Knudsen numbers considered in this study the ther-
mophoretic force on the particles is material dependent and therefore the im-
paction e�ciency will be material dependent for the Stokes numbers where
thermophoresis has an e�ect. For much smaller particles than those con-
sidered in this study the thermophoretic force will no longer be material
dependent.
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Appendix A

Parameter values

All simulations

The computational domain

Length of domain: Lx = 0.4 m, Ly = 0.2 m
Radius of cylinder: Rc = 0.01685 m
Position of cylinder at the center of the domain: x = 0.2 m, y = 0.0 m

Particles

Insertion width: wpar = 2 ·Rc

Number of particles inserted: N = 3 · 106

Insert rate: rinsert = 3.325 · 107 s−1

Stokes numbers: St = 0.05, 0.10
0.15, 0.30
1.00, 3.00, 10.00

Initial velocity of particles: ux = 5.0 m/s
Particle density: ρp = 1000.0 kg/m3

Miscellaneous

Mean free path gas: λ = 67.0 nm
Gas density at inlet: ρ0 = 1.0 kg/m3

Velocity of incoming �ow: u0 = 5.0 m/s

Re = 20

Particle radii: rp (µm) = 79.95, 113.04, 138.42
195.78, 347.47, 619.11, 1130.37
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Isothermal case

Speed of sound cs = 40.0 m/s
Kinematic viscosity: ν = 0.00843 m2/s
limit_close_linear: l = 0.7

Non-isothermal case

Thermal conductivity at inlet: k0 = 0.03371 W/(m ·K)
Kinematic viscosity at inlet: ν0 = 0.00843 m2/s
Inlet temperature: T0 = 873.0 K
Cylinder temperature: Tc = 700.0K
Speci�c heat capacity at constant pressure: cp = 4.0 J/(kg ·K)
Prandtl number: Pr = 1.0
limit_close_linear: l = 0.7

Re = 380

Particle radii: rp (µm) = 17.42, 24.63, 30.16
42.66, 77.89, 134.90, 246.30

Isothermal case

Speed of sound cs = 40.0 m/s
Kinematic viscosity: ν = 0.00044 m2/s
limit_close_linear: l = 0.7

Non-isothermal case

Thermal conductivity at inlet: k0 = 0.00177 W/(m ·K)
Kinematic viscosity at inlet: ν0 = 0.00044 m2/s
Inlet temperature: T0 = 873.0 K
Cylinder temperature Tc = 700.0 K
Speci�c heat capacity at constant pressure: cp = 4.0 J/(kg ·K)
Prandtl number: Pr = 1.0
Particle-to-gas thermal conductivity: Λ = 1, 100, 1000
limitclose_linear, reference case lref = 0.7, 0.9, 0.99
limit_close_linear, thermophoretic cases lth = 0.99
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Appendix B

Particle-to-gas thermal

conductivity ratio for various

particles and gases

Particle and gas Λ1

TCP in air 10
NaCl in air 309 -322
PMMA in air 7.9
SiO2 in air 74
Wax in air 4.6
PSL in air 5.4
Ag in air 22530
Vegetable oil in air 10
Castor oil in air 9.5
Silicone oil in air 7.5
TCP in air 10
Hg in air 581
DOP in air 6
Glass in air 40
Ni in air 4700
Al in He 1519
DOP in He 0.8
NaCl in Ar 300
Cork in Ar 2.5
PSL in CO2 10
DOP in CO2 12
Glass in CO2 75

1Taken from table 2 and 3 in Young [10]
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