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Abstract

Direct numerical simulations (DNS) of round and coaxial jets are performed.
The Pencil Code is used for generating the three-dimensional and time-dependent
flow field. Mixing is investigated by implementation of a passive scalar in the
simulations.

The primary objective of the work is to study mixing properties of the passive
scalar in the coaxial jets. Three simulations with different outer to inner jet exit
velocity ratios are therefore conducted for comparison. The results for the time-
averaged mean velocities and the mean passive scalar fields are presented together
with their associated turbulence fluctuations. Mixing is contemplated according
to these results, the potential core lengths and the downstream locations of where
self-similarity is obtained. The results show reasonable agreement with existing
literature.

The studies of the round jets aim to validate the use of the Pencil Code on
simulations of turbulent jets.
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Chapter 1

Introduction

Round jets are commonly studied both experimentally and numerically because of
their easy configuration. A round jet can be defined as the flow one gets when a
naturally evolving fluid is issued from a circular orifice. The main purpose of this
project was to investigate turbulent mixing processes in a coaxial jet. A coaxial jet
forms when the fluid is issued from a central and a co-annular orifice. Coaxial jets
are considered as an effective method for mixing of two different fluids. The coaxial
jet configuration is widely used in industrial application for effective mixing, e.g.
in combustion devices. The motivation for the present work was for application in
hydrogen double gas turbines. It is crucial for the hydrogen to mix properly with
the warm exhaust in the second combustion chamber to prevent explosion.

Before one can start to investigate the mixing processes in a coaxial jet, it is
necessary to acquire some basic knowledge of turbulent flows and the jet configu-
rations. Chapter 3 and chapter 4 presents the necessary theory of the subject.

In the first part of the 19th century the Irish mathematician George S. Stokes
and the French engineer Claude Navier independently found that all fluid flows are
governed by a partial differential equation later named the Navier-Stokes equations
(White, 2005). The Navier-Stoke equations express the conservation of momentum
for a flow. The equations are seemingly quite simple, but it has solutions that are
not fully understood even to this day.

The behavior of a fluid flow is very dependent on the viscosity of the fluid.
Towards the end of the 19th century, Osborne Reynolds did a number of exper-
iments where he studied the transition between laminar and turbulent flows. A
dimensionless parameter which correlates to the viscous behavior of fluids was
later named after him (White, 2005). The Reynolds number is the ratio of iner-
tial forces to the viscous forces in the flow. A low Reynolds number indicates a
viscous, smoothly varying, laminar flow, whereas a high Reynolds number implies
a turbulent flow with fast varying velocity fluctuations.

A turbulent flow consists of a large range of scales, both length scales and time
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2 Chapter 1. Introduction

scales. In the 1940s, Andrey Kolmogorov introduced his ideas of the smallest scales
in a turbulent flow. In his universal equilibrium theory he argues that the smallest
scales in a flow are statistically independent of the large scale, i.e. the large-scale
turbulence and the mean flow. The smallest scales are similar for every turbulent
flow (Tennekes and Lumley, 1983). Kolmogorov found that the smallest length
scale, velocity scale, and time scale were all functions of the energy dissipation
rate and the viscosity. The dissipation is the process where energy is converted
into heat and is due to the viscous forces in the flow. The viscous forces destroy
the smallest eddies and convert their energy into thermal energy.

Turbulent flows are still considered one of the last unsolved problems in classi-
cal physics. The state of turbulence is unsteady, three-dimensional and extremely
complex. However, all the characteristics of turbulent flows are embodied in the
Navier-Stokes equations for fluid motions. For turbulent flows the solutions to
these equations are complex and must be found numerically. This has only been
possible since the 1980s after the many advances in computer science. Directly
solving the Navier-Stokes equations with numerical methods is called direct nu-
merical simulations (DNS) and today the data produced by DNS is considered as
valid as data from experiments. DNS use no models or approximations to solve the
Navier-Stokes equations, i.e. the whole range of spatial and temporal scales in the
turbulence is resolved. This puts requirements on the computational mesh which
results in calculations demanding many CPU hours. In engineering it is there-
fore usual to make use of turbulence models to keep the computational costs at
a minimum. These computational methods are Reynolds-averaged Navier-Stokes
(RANS) and large eddy simulation (LES). The numerical methods are further
discussed in chapter 2.

Several work on turbulent jets, both numerical and experimental are published.
To mention some, experimental studies of a round jet were done by Panchpakesan
and Lumley (1993) and Hussein et al. (1994). Lubbers et al. (2001) did one of the
first numerical investigations of mixing of a passive scalar in a round jet. In 1992
Dahm et al. (1992) published a work on both experimental and numerical investi-
gations of the near field of a coaxial jets. In Rehab et al. (1997) and Villermaux
and Rehab (2000), there were done experiments on mixing and investigation of the
flow regimes in coaxial jets with water. Warda et al. (1999) also did experimental
studies of coaxial jets, where they focused on the effect of different outer to inner
jet velocity ratios. More recent numerical investigations on coaxial jets have been
done by Silva et al. (2003), Balarac and Si-Ameur (2005) and Dinesh et al. (2010).
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Chapter 2

Numerical methods

The fundamental equations of fluid flows are seemingly simple, but most of the so-
lutions are so complex that they must be obtained numerically. All the simulations
presented in this work were performed with the Pencil Code.

2.1 Fluid equations

The Navier-Stokes equations describe the motion of a fluid. The equations are
mainly derived from the fact that momentum is conserved. Generally the Navier-
Stokes equations for a compressible fluid read

∂U

∂t
+ U · ∇U = −1

ρ
∇P +

1

ρ
∇ · (2νρS) +

F

ρ
(2.1)

∂ρ

∂t
+ ∇ · (ρU) = 0, (2.2)

where U is the fluid velocity vector, ρ is the density of the fluid, P is the pressure,
ν is the kinematic viscosity of the fluid, S is the traceless rate of strain tensor, and
F is the sum of all other body forces per volume acting on the fluid, e.g. gravity.
The traceless rate of strain tensor,

Sij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

− 1

3
δij

∂uk

∂xk
, (2.3)

describes how fast the velocity components change in each of the three directions.
Equation 2.1 is referred to as the momentum equation. The left hand side

of this equation is related to the inertia of the fluid. The first term on the left
hand side can be recognized as the local acceleration, while the second term is the
convective acceleration, i.e. the time independent acceleration of the fluid (White,
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4 Chapter 2. Numerical methods

2005). On the right hand side of the momentum equation the forces are repre-
sented. The right hand side consists of the pressure force, the viscous forces, and
the body forces. Equation 2.2 is referred to as the mass continuity equation.

No general solution of the Navier-Stokes equations is known. Actually, the
Navier-Stokes equations only have analytical solutions to the simplest laminar
cases, thus one has to rely on numerical methods to obtain solutions for realistic
cases. However, the solutions of the Navier-Stokes equations are very complex
and it is not even proven that all solutions exists. This is why fluid turbulence is
sometimes referred to as one of the major unresolved problems in classical physics.

In statistical studies of the equation of motion one ends up with more unknowns
than equations. This is called the closure problem of turbulence theory. Thus, it
is necessary to make assumptions about the flow to obtain solutions. It is usual
to make use of a simple equation of state, i.e. a connection between the pressure
and the density of a flow.

2.2 Computational fluid dynamics

Numerical methods are widely used both in engineering and in research to solve the
Navier-Stokes equations for flow motion. Such models are for example Reynolds-
averaged Navier-Stokes equation (RANS), Large eddy simulations (LES), and Di-
rect numerical simulations (DNS).

In engineering it is often good enough to use a turbulence model to solve the
equations for some mean quantities. This is easier and faster than to solve the
Navier-Stokes equations directly, and most importantly it will keep the numerical
costs at a minimum. RANS and LES make use of such models.

RANS is the standard numerical method for simulating flow motion for the
industry today. The idea of RANS is to decompose the velocity vector into a mean
part and a fluctuating part and averaging the Navier-Stokes equations in time,
making the solutions time independent. The obtained RANS equations governs
the mean flow. It is found that the only parts of the turbulence that influence the
mean flow are some random turbulent fluctuations, called the Reynolds stresses,
uiuj. Thus, it is only necessary to model the Reynolds stresses to simulate the
turbulent flow.

RANS gives good results for simple flows, but may not be reliable in all cases.
In computational turbulence research it is important to simulate the turbulent
flow without any models, i.e. one has to resolve all the scales of the flow to obtain
accurate results. This type of simulation is called DNS.

Since DNS needs to resolve all the scales in the flow, both spatially and tem-
porally, the computational mesh size has to be comparable to the smallest length
scale of the flow and the time step must be comparable to the inverse of the highest

4



2.3. The Pencil Code 5

frequencies. This requires a lot of memory and many CPU hours, and in addition
huge amounts of data is produced.

In contrast to laboratory study, one can deduce the correlations between the
fluctuating quantities and obtain extremely detailed information of the flow struc-
tures with DNS. In addition, many experiments which are too difficult or expensive
in the laboratory can be implemented with DNS. However, there are some limi-
tations regarding DNS. The most important one is that DNS is limited to fairly
low Reynolds numbers due to cost considerations. Another important limitation of
DNS is the issue of specifying open boundary conditions. The difficulties for inflow
and outflow boundary conditions get even worse for compressible fluids (Moin and
Mahesh, 1998).

In LES, the fluid motions for the largest scales are represented directly as in
DNS, while the smaller scales are modeled. This makes the computational costs
of LES somewhere in between RANS and DNS.

The present work uses DNS because it was found necessary to make sure that
all scales are resolved. In the future, it could be convenient to use LES to keep the
computational cost lower and to be able to do simulations with higher Reynolds
numbers. It would then be important to use the DNS results to validate the
modeling of the LES.

2.3 The Pencil Code

All the simulations presented in this work were performed with the Pencil Code.
The Pencil Code is a higher order finite difference code originally designed to
deal with weakly compressible turbulent flows (Pencil Code Manual). The code is
written in Fortran 90 and is used to solve the Navier-Stokes equations and other
types of partial differential equations. The methods used are 3rd order explicit
Runge-Kutta in time and 6th order central spatial discretization. The coordinate
system is Cartesian.

The spatial discretization must be of high order to resolve all the scales in the
flow and give realistic results for an affordable resolution. As pointed out in Moin
and Mahesh (1998), Fourier spectral schemes are more accurate and give smaller
resolution requirements. The Pencil Code uses a central difference scheme because
it is faster and it makes implementation of non-periodic boundaries and paral-
lelization easier. The 6th order spatial derivatives give the accuracy needed. The
code uses MPI (Message Passing Interface) for communication between processors
on multiprocessor computers. The processors divide the domain so that they solve
for an equal amount of grid points. Around each of these sub-domains there is a
layer consisting of three mesh-points, called “ghost zones”, for the derivations.

The Pencil Code is based on an explicit formalism rather than an implicit

5



6 Chapter 2. Numerical methods

formalism which is more computationally demanding. Explicit formalisms use the
current state of the system to find the solution of the system at the next time step.
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Chapter 3

Turbulence

Most fluid flows are turbulent, and can be found many places on an everyday
basis. This chapter presents some characteristics of turbulent flow to give a broader
understanding of the nature of turbulence.

3.1 Turbulent flows

Turbulent flows can be characterized by four attributes. The flows are irregular,
turbulent diffusive, three-dimensional and they have a large Reynolds number
(Tennekes and Lumley, 1983).

Figure 3.1 gives a picture of the differences between a laminar and a turbulent
flow. In the laminar region the velocity field vectors are all parallel, but as soon as
the flow becomes turbulent, velocity fluctuations, denoted u′ and v′ in figure 3.1,
of all sizes appear in the flow. The velocity fluctuations make the flow irregular,
chaotic and random. In spite of the chaos and randomness, the flow is a solution
of the Navier-Stokes equations.

In a turbulent flow the turbulence is diffused. In all flows, heat, mass, and
momentum are transported from areas with high concentration to areas with lower
concentration. The special feature with a turbulent flow is that also turbulence is
diffused. By saying that turbulence is diffused, it is meant that there is a spreading
of velocity fluctuations. This increases the diffusion of mass, heat, and momentum
with many orders of magnitude compared to molecular diffusion, resulting in a
more rapid mixing. This is visualized in figure 3.1 where a dye is put into the
flow and it is seen that it is not mixing in the laminar region, but in the turbulent
region it is rapidly mixed in the flow.

In addition to velocity fluctuations, high level vorticity fluctuations play an
important role in turbulent flows. The vorticity ω is the curl of the velocity
vector,

7



8 Chapter 3. Turbulence

Figure 3.1: Transition between laminar and turbulent flow (MIT Open Course-
ware).

ω = ∇× U. (3.1)

Vortex stretching is essential in production of turbulence and is an important
mechanism to maintain vorticity. The curl of the Navier-Stokes equations describes
the evolution of vorticity. The left hand side of the equations becomes

∇×
(

∂U

∂t
+ U · ∇U

)

=

∂(∇× U)

∂t
+ U · ∇ (∇× U) − (∇× U) · ∇U + (∇ ·U) (∇× U) =

∂ω

∂t
+ U · ∇ω − ω · ∇U, (3.2)

where ∇ · U = 0 is used for convenience (incompressible flow). The last term,
ω ·∇U, is referred to as the vortex stretching term (Pope, 2000). The x-component
of this term,

(

∂w

∂y
− ∂v

∂z

)

∂u

∂x
+

(

∂u

∂z
− ∂w

∂x

)

∂u

∂y
+

(

∂v

∂x
− ∂u

∂y

)

∂u

∂z
, (3.3)

is, like the two other components, dependent on three dimensions. In other words,
the vorticity fluctuations will not be produced if the velocity fluctuations only exist
in two dimensions. This is why a turbulent flow has to be considered in all three
spatial dimensions. Turbulence cannot maintain itself, it needs energy supply, e.g.

8



3.2. Turbulent scales 9

the shear in the mean flow. It is the interactions between vorticity vectors and
velocity gradients that create and maintain the turbulence in a flow.

A flow is either turbulent, laminar or in a transition state in between depending
on the Reynolds number of the flow. The Reynolds number is defined as

Re =
UL

ν
, (3.4)

where U and L are the characteristic velocity and length scales of the flow, and ν is
the kinematic viscosity. For instance, in the case of a jet, the characteristic velocity
can be the jet velocity, and the characteristic length can be the jet’s diameter.
Viscosity is a measure of the fluid’s resistance to flow. Air has low viscosity, while
e.g. syrup has high viscosity. Kinematic viscosity is defined as ν = µ/ρ, where µ
is viscosity and ρ is the density of the fluid. A flow becomes turbulent when the
Reynolds number is sufficiently high. High Reynolds number indicates instability
in viscosity versus inertia in the flow, which results in turbulence.

3.2 Turbulent scales

Eddies of many different sizes are formed due to the turbulence in a flow. The
largest eddies get their energy from the mean flow and have a length scale on the
order of magnitude as the width of the flow. The nonlinear terms in the equation
of motion create smaller and smaller eddies until the smallest eddies are destroyed
by the viscosity of the fluid. Thus, the viscosity determines the dimensions of the
smallest scales in the flow. The kinetic energy of the smallest eddies is dissipated
into thermal energy. The process where smaller and smaller eddies are created is
called the turbulence cascade process. The largest eddies transport most of the
momentum, heat and mass and contain most of the energy whereas the smallest
eddies contain little energy but have higher vorticity than the larger scales.

The largest scales in the flow are L, U and t for length, velocity and time,
respectively. The scales of the smallest eddies in the flow are called the Kolmogorov
microscales. Kolmogorov argued that the small time scale of the smallest eddies
made them statistically independent of the relative slow large scale turbulence
and of the mean flow. Thus, as Kolmogorov concluded in his universal equilibrium

theory, the small scales will be similar in all turbulent flows (Tennekes and Lumley,
1983). The small scales do not remember the structure or orientation of the large
scales which indicates that the small scales are close to isotropic, i.e. independent
of direction.

The Kolmogorov microscales for length, velocity and time are defined as (Ten-
nekes and Lumley, 1983),

9



10 Chapter 3. Turbulence

η ∼
(

ν3

ǫ

)1/4

, v ∼ (νǫ)1/4 and τ ∼
(ν

ǫ

)1/2

, (3.5)

where ν is the kinematic viscosity and ǫ is the energy dissipation rate. It can be
assumed that the dissipation rate is on the order of the energy supply rate from
the larger scales to the smaller scales. Thus, the dissipation rate can be connected
to the largest scales by

ǫ ∼ U2 · t = U2 · U

L
=

U3

L
(3.6)

This gives the relation between small scales and large scales,

η

L
∼

(

UL

ν

)

−3/4

= Re−3/4. (3.7)

The relation is directly dependent on the Reynolds number, resulting in an in-
creasing range of scales with an increasing Reynolds number. This is the reason
why DNS simulations are limited to relatively low Reynolds numbers. In addition,
a smaller time step is required for higher Reynolds number following

τ ∼ η

v
∼ L

U

( ν

UL

)1/2

=
L

U
Re−1/2. (3.8)

Thus, a higher Reynolds number requires a finer grid and a smaller time step,
which demands more memory and CPU hours.

Even though there is a wide range of scales in turbulent flows, the smallest
scales are much larger than the molecular length scales. Thus, a turbulent flow
can be treated like a continuum. This is important to note since the Navier-Stokes
equations are valid only for continuums.

10



Chapter 4

Turbulent jets

In this chapter an introduction to the basic concepts of jets is given. The material
is mainly found in chapter 5 in Pope (2000).

4.1 The round jet

A round jet appears when a fluid is fed through an axisymmetric source with a
higher velocity than the surroundings, and it is spread free from external forces.
Because of its easy configuration, jets are one of the most studied turbulent free
shear flows. A turbulent free shear flow is characterized by a mean velocity gradient
that develop in the absence of solid boundaries. The turbulence is generated by
the mean velocity shear.

    Nozzle

r

θ

x

D

y, V

UJ

z, W

x, U

Figure 4.1: A sketch of the configuration in round jet experiments.
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12 Chapter 4. Turbulent jets

Figure 4.1 shows the configuration and coordinate system for a round jet. The
nozzle ideally produces an approximately flat topped velocity profile, with velocity
UJ . The jet flows into a fluid that initially is at rest or has a low coflowing velocity.
The flow is statistically stationary and axisymmetric. The velocity components
in the x, y, and z directions are denoted U , V , and W . The Reynolds number
for a round jet is defined by Re = UJD/ν, where UJ is the jet exit velocity, D is
the nozzle diameter, and ν is the kinematic viscosity of the fluid. The Reynolds
number can be considered the most important parameter for the round jet. When
the Reynolds number is sufficiently high, turbulent structures will form in the shear
layer. Figure 4.2 shows a picture of a round jet. It is seen that the jet spreads out
in the radial direction. This implies that the velocity in the x direction decreases.

Figure 4.2: Photograph of the concentration in a round jet with Re=1500 (Dahm
and Dimotakis (1990)).

When the evolution of jets is studied, one is often interested in how the jet
spreads and how the centerline velocity behaves. The centerline velocity is denoted
U0. The velocity in the coflow is denoted Ua. In figure 4.3 a schematic diagram
of the jet evolution is given. The flow consists of three different regions, the
potential core, the mixing layer, and the surrounding region. The potential core
is an irrotational region where U = UJ and where there are no spanwise or normal
velocities. The streamwise location where the potential core ends is denoted x =
xc. The region where the potential core is still present is called the zone of flow
establishment. After the two mixing layers merge at the end of the potential core,
the zone of established flow begins. Somewhat downstream of xc the flow becomes
a fully developed turbulent flow.

12



4.2. Mean properties and self-similarity 13

Zone of established flowestablishment
Zone of flow

UJ

Ua

U

x
x = xc

bg

Mixing layers

D

Ua

Jet width, b

Figure 4.3: Schematic diagram of round jet in coflow

4.2 Mean properties and self-similarity

A turbulent flow is always time-dependent, but on average it can be steady. Thus,
it is necessary to consider average properties to describe it. The instantaneous
quantity is decomposed into the mean value and a fluctuating part. For instance
for the velocity field one gets

Ui = 〈Ui〉 + u′

i, (4.1)

where 〈Ui〉 is the mean velocity and u′

i is the fluctuating velocity in the xi-direction.
The velocity profiles shown in figure 4.3 represents the mean velocity. The shape
of the profile in the zone of established flow is Gaussian, and a special feature of
jet flows is that this shape does not change after the fully developed region. The
velocity profile of 〈U〉 /Uo becomes self-similar.

The concept of self-similarity is important in studies of turbulent flows. The
idea is that if you have a quantity Q(x, y) that depends on two independent vari-
ables, and it can be scaled in such a manner that it keeps the same shape it is
self-similar. That is, if there exists characteristic scales Q0(x) and δ0(x) for Q(x, y)
such that

13



14 Chapter 4. Turbulent jets

ξ ≡ y

δ0(x)
(4.2)

Q̃(ξ, x) =
Q(x, y)

Q0(x)
, (4.3)

are independent of x, then there will be a function Q̂(ξ) such that Q̃(ξ, x) = Q̂(ξ)
and Q(x, y) is self-similar, only dependent on one independent variable, Q0(x),
δ0(x), and Q̂(ξ) (Pope, 2000).

For a round jet typical similarity coordinates for the cross stream are r/r1/2,
r/(x − x0) or r/bg, where r1/2 is found where

〈

U(x, r1/2)
〉

= 1

2
U0(x) and x0 is the

virtual origin of the jet. In the present work r/bg is used. The velocity half-width,
bg, is defined by the radial location at which 〈U(x, bg)〉 = e−1Uo(x). For a round
jet in a stagnant environment it is found that,

U0(x)

UJ
∼ 1

x − x0

, (4.4)

bg ∼ x (4.5)

〈U〉
U0

= exp

(

−r2

b2
g

)

. (4.6)

If the coflow is very small, it can be assumed that it does not influence the jet
dynamics very much.

4.3 The coaxial jet

A coaxial jet is a jet that appears when there is a co-annular source in addition
to the central source and the fluids are fed in at different velocities through the
sources. The coordinate system is the same as for the round, single jet. The
coaxial jet configuration is known as a simple way to mix two fluids. It is also a
convenient configuration for instance for cooling the inner jet.

Figure 4.4 shows a schematic diagram of the downstream evolution for a coaxial
jet. In this case there will be two potential cores and four mixing layers. The
location of the end of the potential cores are here denoted xc,1 for the inner one,
and xc,2 for the outer. It can be argued that the length of the potential cores
depends on the outer to inner velocity ratio, ru, and the ratio of outer to inner
diameters of the coaxial jet, β, defined as

14
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Mixing layers

jet width

x = xc,2

U2

U1

D1D2 x = xc,1

Ua

Figure 4.4: Schematic diagram of coaxial jet with a coflow

ru =
U2

U1

(4.7)

β =
D2

D1

, (4.8)

where U2 is the velocity of the co-annular flow, U1 is the velocity of the inner jet,
D2 and D1 is the diameters of the outer and inner jet, respectively. The velocity
of the coflow is denoted Ua also for the case of coaxial jets.
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Chapter 5

Entrainment models in coflowing

environments

Entrainment is the incorporation of the fluid from the surroundings into the jet
(Enjalbert et al., 2009). The turbulent eddies generated in the shear layer between
the jet and the surroundings mix fluid from the surroundings into the jet. An
inflowing entrainment velocity, ue, can be introduced as the velocity at jet width,
b (see figure 4.3). The entrainment models considered here are those presented in
Chu et al. (1999), Lee et al. (2003), and Rehab et al. (1997).

The entrainment models deal mainly with the self-similar region of the jets.
The scope of these considerations will be to find out if it is possible to use these
models for finding a prediction of the length of the potential cores, both for the
single jet and the coaxial jet.

5.1 Prediction of potential core length for a single

jet

As discussed in the previous chapter, it is found that U0(x) decays as x−1 and
that the jet spreads linearly, bg ∼ x, for a jet in a stagnant environment. For
a single jet in coflow, the case is a little different. In Chu et al. (1999) there is
given a derivation of the spreading rate for a single jet in coflow. They use a
top-hat velocity profile as the characteristic velocity profile to obtain the results.
The derivations are done by momentum conservation considerations. The idea of
the top-hat velocity profile is that the mass and momentum flux integrals will be
easier to evaluate. The expression Chu et al. (1999) end up with for the spreading
rate is
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5.2. Prediction of the inner potential core length for coaxial jet 17

dbg

dx
=

βs√
2

U0 − Ua

U0 + Ua
, (5.1)

where βs = 0.154 is a constant derived from the spreading rate of single jet in
stagnant ambient.

Now the top-hat approach uses bg = B/
√

2, where B equals the width of the
top hat profile. Knowing that at the inlet B = D, and at the end of the potential
core B equals the jet width, one finds

B

D
=

1
√

1 + Ua/UJ

. (5.2)

The centerline velocity inside the potential core equals the jet exit velocity, so the
combination of equation 5.1 and 5.2 gives,

xc

D
=

√

1 + Ua/UJ

βs(1 − Ua/UJ)
. (5.3)

5.2 Prediction of the inner potential core length

for coaxial jet

The formulation adopted here is similar to the one presented in Rehab et al.
(1997). The idea is that the entrained fluid has to cross the interface of where the
entrainment takes place. The fluid is here assumed incompressible. With mass
conservation considerations it can be argued that,

1

4
πD2

1U1 =
1

2
πD1

[

(

1

2
D1

)2

+ x2

c,1

]1/2

ue, (5.4)

where the left side of the equation represent the fluid injected through the inner
nozzle and the right side represent the entrained fluid across the inner potential
core cone.

When the annular gap is on the order of D1, it is expected that the inner and
outer potential core lengths are about equal. The entrainment velocity is then
given as

ue = Cα(U2 − U1), (5.5)

where C ≈ 0.5 is a constant determined from single jet mass conservation consid-
eration and α is found by u′ = κU2 = α(U2 −U1) in the inner mixing layer (Rehab
et al., 1997). This gives the expression for the inner potential core length as
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18 Chapter 5. Entrainment models in coflowing environments

xc,1

D1

=
1

2

(

1

C2α2(ru − 1)2
− 1

)1/2

. (5.6)

There is not found an explicit derivation of a predicted length of the outer
potential core, xc,2. As mentioned, Rehab et al. (1997) suggest that the inner and
outer potential cores will have about the same length when the annular gap is on
the order of the inner diameter, D1.
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Chapter 6

Computer simulations

The aim of this work is to investigate mixing in coaxial jets. Since the Pencil Code
has never been used for simulations of jets before, simulations of a single round jet
are performed to validate the code. The single jet configuration is easier than for
coaxial jets, and there exists more experimental and DNS data for this case. This
chapter presents how the simulations were performed.

6.1 Computational domain and boundary condi-

tions

The simulations were performed in a rectangular box of lengths Lx, Ly and Lz .
The streamwise direction is denoted x, while y and z are the normal and spanwise
directions respectively. The grid spacing is constant in each direction.

The inlet boundary is the non-reflecting Navier Stokes characteristic boundary
condition (NSCBC) inlet of Lodato et al. (2008). A given velocity profile is imposed
for each time step at the inlet. The outlet boundary is the partially reflecting
NSCBC of Poinsot and Lele (1992).

In the spanwise and normal directions, periodic boundary conditions are used.
Ideally outflow boundaries should have been used at these boundaries too, but the
implementation of this gave some discontinuity problems especially at the corners
of the domain. It was therefore decided to use periodic boundaries to get the code
to work properly and to be able to produce results.

6.2 Physical properties

The fluid in the simulations is compressible with a mean density of ρ = 1.0 kg/m3.
An isothermal equation of state was assumed, i.e. P = ρc2, where P is the pressure
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20 Chapter 6. Computer simulations

and c is the speed of sound. The speed of sound was set to c = 40 m/s. A higher
speed of sound requires smaller time steps, while undesirable effects start to occur
if the speed of sound is too low. The speed of sound used was found sufficiently
high to avoid those effects.

6.3 Velocity inlet

The shape of the velocity inlet profile prescribed for each time step is

U(x0, t) = Umed(x0) + Unoise(x0, t) · Uprofile(x0), (6.1)

where Umed is the mean velocity profile, and Unoise(x0, t) · Uprofile(x0) is some
noise designed to get a disturbance mainly in the shear layers. The noise on the
inlet is explained more in details in section 6.3.3.

6.3.1 Single jet

The mean velocity profile of the single jet is represented as

Umed(x0, r) =
UJ + Ua

2
− UJ − Ua

2
tanh

(

r − R

2θ

)

, (6.2)

where UJ is the centerline velocity of the jet, Ua is the velocity of the coflow, R is
the radius of the jet, and θ is the momentum thickness. Figure 6.1 shows a sketch
of the inlet velocity profile.

The hyperbolic-tangent velocity profile is found to model the round jet flow in
the near field region very well and is widely used (Michalke and Hermann, 1982).
The momentum thickness is a measure of the thickness of the shear layer. It was
found appropriate to use θ = R/13 as in Silva et al. (2003).

6.3.2 Coaxial jet

For the coaxial jets, the shape of the mean velocity profile is

Umed(x0, r) =

{

U1+U2

2
− U1−U2

2
tanh

(

r−R1

2θ

)

for r < Rm

U2+Ua

2
− U2−Ua

2
tanh

(

r−R2

2θ

)

for r > Rm,
(6.3)

where Rm = (R1 + R2)/2, θ = R1/2. R1 and R2 is the radius of the inner and
outer jets respectively. Figure 6.2 shows a sketch of the mean inlet velocity, U1 is
the inner jet velocity, U2 is the outer jet velocity, and Ua is the coflow velocity.
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Ua
Ua

UJ

D1

Figure 6.1: Sketch of the inlet velocity profile for the single jets. UJ is the jet
velocity, Ua is the velocity of the coflow, and D is the diameter of the jet.

6.3.3 Inlet velocity perturbation

To trigger the formation of turbulent structures in the mixing layer, some noise
was imposed on the inlet together with the mean velocity profile. This was done by
making isotropic and homogeneous turbulence in a cube of the same size Ly and Lz

as in the main rectangular box. The isotropic and homogeneous turbulence in the
pre-produced turbulence-box where made by applying a large scale forced input
of energy. Then the simulation was carried out until the input energy equaled the
energy lost due to viscous and internal forces and a statistically steady state were
obtained.

The velocity field obtained in this turbulence-box was then multiplied with a
given profile to get the noise only where wanted. By looping over the normal grid
planes in the turbulence-box, a new inlet condition occurred for every timestep.
The next normal plane used was given by

∆x =
Ū

∆t
, (6.4)

where Ū is a mean velocity at the inlet and ∆t is the timestep in the main sim-
ulation. For the single jet UJ was used as this mean velocity, while U2 was used
for the coaxial jet. Interpolation is used to find the correct normal plane to match
the main simulation. The new inlet condition was then different from, but not
independent of the inlet conditions in the previous timestep. When the end of the
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22 Chapter 6. Computer simulations

D1

D2

UaUa

U1

U2 U2

Uprofile(x0)

Figure 6.2: Sketch of the inlet velocity profile for the coaxial jet. U1 is the inner jet
velocity, U2 is the outer jet velocity, and U3 is the velocity of the coflow. The small
profiles denoted Uprofile(x0) is the region where velocity perturbation is prescribed.

turbulence-box was reached, the looping started from the beginning again.

The shape of the noise profile for the single jet was set to

Uprofile(x0, r) = 0.2

[

UJ

2
− UJ

2
tanh

(

r − Rprofile

2θ

)]

, (6.5)

where UJ and θ are the same as in equation 6.2, and Rprofile is slightly larger than
the radius of the jet. The maximum noise was 25% of UJ .

When the simulations of the single jets were analyzed, it was found that the
influence from the inlet seemed to dominate the flow more than wanted. For this
reason, the shape of the noise profile for the coaxial jets were made in a different
manner than for the single jets. For the coaxial jets, the profile was only set in
a very narrow region around the shear layers. The shape of Uprofile(x0) for the
coaxial jets is shown in figure 6.2. The maximum noise was about 25% of U2 also
for the coaxial jets.
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6.4. The passive scalar 23

6.4 The passive scalar

Turbulent mixing processes in the jets was investigated by introducing a passive
scalar in the computational simulations. The transport equation for the passive
scalar, C , is given as,

ρ
∂C

∂t
+ ρU · ∇C = D

[

ρ∇2C + ∇ρ∇C
]

, (6.6)

where D is diffusion constant of the passive scalar. The diffusion is assumed
constant (Pencil Code Manual), and its value was set to 1×10−4 in all simulations.
The scalar is conserved and it does not affect the velocity field in any manner.

For the single jet, the passive scalar has the value one inside the jet, and zero
elsewhere. For the coaxial jet, the passive scalar is given the value one inside
the co-annular jet, and zero elsewhere. The passive scalar can be considered as a
measure of concentration, and is sometimes also referred to as the mixing fraction.

As for the velocity, it is expected to find self-similarity for the radial concen-
tration. The similarity coordinate used for the concentration in this work is bgc,
defined by the radial location at which 〈C(x, bgc)〉 = e−1C0(x).
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Chapter 7

Results

In this chapter, the results of the direct numerical simulations are presented. Five
simulations denoted RUN1-RUN5 have been performed. Table 7.1 and 7.2 show
the parameters of the different simulations. Note that the domain size is given in
unit of the jet’s diameter.

Table 7.1: Single jet simulations
RUN1 RUN2

Grid 1024x256x256 1024x512x512
Domain size [D] 28.6x7.1x7.1 28.6x14.2x14.2
ν [m2/s] 6.0 × 10−5 9.0 × 10−5

Re= UJD/ν 1820 1213
UJ [m/s] 6 6
Ua [m/s] 0.9 0.3
Statistics time [s] 0.31 0.41
D [mm] 18.2 18.2

The ’statistics time’ in the tables is the time over which the statistics were
calculated. The velocity field and the concentration were saved every ∆t = 0.01
s. The total CPU hours that were required to perform all the simulations was
approximately 150,000, producing more than 1.5 Terra bytes of data. Interactive
Data Language (IDL) and Visualization and Analysis Platform for Ocean, Atmo-
sphere, and Solar Researchers (VAPOR) were used to visualize the results and to
produce the figures in this chapter.
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Table 7.2: Coaxial jet simulations
RUN3 RUN4 RUN5

Grid 768x256x256 768x256x256 768x256x256
Domain size [D1] 42.9x14.3x14.3 42.9x14.3x14.3 42.9x14.3x14.3
ν [m2/s] 1.0 × 10−4 1.0 × 10−4 1.0 × 10−4

Re= U2D1/ν 364 546 728
U2 [m/s] 4 6 8
ru = U2/U1 2 3 4
β = D2/D1 2 2 2
Statistics time [s] 0.94 0.62 0.73
D1 [mm] 9.1 9.1 9.1

7.1 Single jet statistics

The first simulation, RUN1, served as a test simulation to see that the jet behaved
as it should. There was no passive scalar implemented in this simulation. Figure
7.1 shows the mean values of the centerline velocity and the axial velocity at several
downstream locations. As discussed in chapter 4, it was expected to find that

U0(x)

UJ
∼ 1

x − X0

(7.1)

〈U〉 − Ua

U0 − Ua
= exp

(

−r2

b2
g

)

, (7.2)

after the potential core. Equation 7.2 is modified for jet with coflow. Figure 7.1
shows that the centerline velocity is acting more or less as it should in the first
part of the domain, but that the centerline velocity decay slower than expected
towards the end. In addition it is observed that the centerline velocity suddenly
increases at the very end of the domain. The profile of the axial velocity is not as it
should be. Instead of converging into the self-similar Gaussian profile, the profile
becomes narrower and narrower downstream. It was suggested that the reason for
these problems is that the domain was to small. The jet does not act right since
there are periodic boundary conditions in the spanwise and normal directions.
As the jet reaches the boundary, it will start to push itself together through the
boundaries of the domain. The outgoing velocity field at one boundary will be the
incoming velocity at the opposite boundary. This will enforce the jet to become
more narrow than it would if it was evolving naturally, which again detains the
centerline velocity to decay as it should.

In the second simulation of the single jet, RUN2, it was therefore decided
to increase the domain size to the double in both the spanwise and the normal
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26 Chapter 7. Results

Figure 7.1: Mean centerline velocity scaled by the jet exit velocity and mean axial
velocity profiles at several downstream locations. The dashed line in the right
panel represent the curve fit for RUN2.

directions. In this simulation the passive scalar was also tested. This simulation
was very time consuming because of the large domain, and more than 60,000 CPU
hours was used for this simulation alone.

Figure 7.2 shows the same results as was shown for RUN1, the mean values
of the centerline velocity and the axial velocity at several downstream locations.
These results were found much more satisfying. The centerline velocity still has
the sudden increase at the end of the domain. This implies that this problem is
due to the outflow boundary condition rather than the domain size. Because of
the influence of the outflow boundary, the statistics of the last 10 diameters of the
domain are not considered. The centerline velocity is compared to experimental
data from Hussein et al. (1994) and Panchpakesan and Lumley (1993). These
experimental papers only consider the jets in the self-similar region, from x = 15D.
The lines are therefore dashed for smaller x. The agreement between the simulation
and the experimental data is good. The same shape is obtained, but it is seen that
the potential cores of the experimental data is larger than for this simulation. The
numerical results of Lubbers et al. (2001) are also presented in this figure, and
it is seen that the potential core in that work is found even further downstream.
Possible reasons for the differences in the potential core lengths is discussed and one
reason is found to be that the disturbances imposed at the inlet are too dominant.

The mean axial velocity profiles are also found to be much better compared
to the Gaussian profile than what was found in RUN1. It was expected to find
self-similarity from about x = 15D, so it is still not perfect. A possible reason for
this is that the averaging is not done over a long enough period of time. As it can
seen in both panels of figure 7.2, the lines are not perfectly smooth, which also is
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Figure 7.2: Mean centerline velocity scaled by the jet exit velocity and mean axial
velocity profiles at several downstream locations. The mean centerline velocity
is compared to the curve fits given in the experimental papers by Hussein et al.
(1994)(HGC) and Panchpakesan and Lumley (1993)(PL) as well as in the numer-
ical paper by Lubbers et al. (2001)(LBB).

Figure 7.3: Mean centerline concentration and mean axial concentration at several
downstream locations.
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Figure 7.4: Contour plots of instantaneous and mean concentration of the jet in
RUN2 with ten contour levels equally spaced from 0 to 1. The jet cross-section
have 5 contour levels equally spaced. The upper panel is instantaneous, while the
three others are mean values.
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an indication of the same.
In figure 7.3 the mean centerline concentration and the mean axial concentra-

tion are shown. A similar behavior as the velocity field is seen. The centerline
concentration starts to decay for a slightly smaller x than the velocity. The mean
axial concentration profiles seem to follow the Gaussian profile better than what
was found for the mean velocity. The analysis also show that generally bg < bgc,
especially at the first 15 diameters of the domain.

Figure 7.4 shows contour plots of the concentration. The upper figure shows
an instantaneous concentration distribution in the streamwise direction. The irro-
tational flow close to the inflow plane can be seen in this figure. Around x = 2D,
the flow starts to roll up and becomes turbulent. In the middle panel of figure
7.4, the mean concentration is shown. Here the potential core becomes visible.
The potential core is found to end at x = 3.1D. Both the mean concentration in
the streamwise direction and the cross-section show that the jet is not completely
axisymmetric. This could again imply that the averaging is not done over a long
enough period. Another suggestion is that Lx in the pre-simulated turbulence-box
is not long enough. In movie visualizations of the flow some periodicity can be
seen. The evolution of the jet will be very dependent of the perturbations on the
inlet since the simulation is performed with a relatively low Reynolds number.

All the results from RUN2 show reasonably good agreement with the DNS
results of Lubbers et al. (2001). The main difference is that the potential core is
shorter and the jet starts to roll up closer to the inlet in the present work. The
results were considered good enough to carry on with simulations of coaxial jets.
To get less influence from the turbulence on the inlet, the profiles of the forced
turbulence were made smaller and only around the shear layers for the coaxial jets

7.2 Coaxial jet statistics

Due to the influence of the periodic boundaries and the outflow boundary condition
on the outlet, only the first 20D1 of the domain is considered for the coaxial jets.
Figures 7.5 through 7.7 show the statistics of the three coaxial jet simulations.
In figure 7.5 the mean axial velocity profiles and the root-mean-square at several
downstream locations are shown. The shape of the axial velocity profile at x = 0D1

equals the imposed velocity field. At x = 8D1 the profiles still have a coaxial shape,
while at x = 12D1 the maximum velocity is found at the centerline for all three
simulations. Somewhere between this two locations, the jet loose their two-layer
structures and get the shape of a single jet. The root-mean-square velocity profiles
serve to represent the turbulent intensity. The most intense turbulent activity is
found in the inner shear layer until x = 4D1. Downstream of this the most intense
turbulence is found in the outer shear layer. The magnitude and shape of the
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Figure 7.5: Radial evolution of the streamwise velocity and the rms velocity fluc-
tuations at several downstream locations for the simulations of coaxial jets.
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Figure 7.6: Radial evolution of the concentration and the rms concentration at
several downstream locations for the simulations of coaxial jets.
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Figure 7.7: Downstream evolution of the concentration and downstream evolution
of the rms concentration in both central and annular jet for the simulations of
coaxial jets. The central jet line corresponds to the centerline, while the annular
jet line is in the middle of the the outer jet at the inlet.

32



7.2. Coaxial jet statistics 33

Figure 7.8: Contour plot of the mean concentration of the jet with ten contour
levels equally spaced from 0 to 1. The jet cross-section have 5 contour levels equally
spaced.
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intensities are in good agreement with the result of Balarac and Si-Ameur (2005)
where a coaxial jet with ru = 5 were simulated. They found a maximum turbulent
intensity at x = 10D1 with the magnitude 0.18U2. The experimental investigations
of Warda et al. (1999) on the other hand found a maximum turbulent intensity at
x = 14D1 with the magnitude of 0.11U2, when ru = 1.6

The radial evolution of the concentration and the root-mean-square concentra-
tion at several downstream location are shown in figure 7.6. The concentration
plots show a similar tendency as the velocity plots. It can also be seen that the
concentrations profiles are wider than the velocity profiles. This is the same that
was found for the single jet in RUN2, and is in good agreement with the preferential
transport of the scalar over the momentum (Pope, 2000).

Figure 7.9: Radial evolution of the velocity and the concentration at the last
downstream locations in the domain scaled by the similarity coordinate bg and bgc

respectively for the simulations of coaxial jets.

Figure 7.7 shows the streamwise evolution of the concentrations and the root-
mean-square values of the concentration. The figures for the concentrations show
that for larger ru, larger values of concentration at the centerline are obtained.
The values of the concentration fluctuations are also larger for larger velocity
ratios. Compared to Balarac and Si-Ameur (2005) it is seen that the centerline
concentrations starts to increase closer to the inlet than what they found. The
same apply for the concentration in the annular jet, it starts to decrease closer to
the inlet. Except for this, all the figures 7.5 through 7.7 show good agreement to
Balarac and Si-Ameur (2005).

Contour plots of the mean concentrations are given in figure 7.8. As for the
single jet, it is again seen that the jets are not perfectly axisymmetric. Together
with the fact that the curves in the figures 7.5 through 7.7 are not very smooth, this
suggests that the averaging is not done over a long enough period of time. Due to
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the fact that the simulations were very time consuming and the time limitations in
this work, there was not enough time to run the simulations further. The potential
cores are clearly visible in the figure.

In figure 7.9 the radial velocity and the concentration scaled by the similarity
coordinates is shown for some of the last downstream locations in the flow. It
can be seen that the coaxial jets show a good tendency of self-similarity at these
locations. Especially the figure of the centerline velocity shows promising results.
The results for the concentrations are not as smooth as for the velocities. It is
also seen that specially the results from RUN4 deviate from the Gaussian shape.
RUN4 is averaged over less amount of time than the two others, which may be the
cause of this discrepancy.

7.3 Prediction of potential core lengths

Table 7.3 gives the x-coordinate at the end of the potential cores. The theoretical
values derived from equations 5.3 and 5.6 are also shown..

Table 7.3: Potential core lengths in units of D and D1

RUN2 RUN3 RUN4 RUN5
xc,1 3.3 1.4 1.4 1.4
xc,2 - 2.0 3.9 4.7
xc,1,theory 7.0 8.3 6.7 6.3

Remembering that u′ = κU2 = α(U2 − U1) in equation 5.6 it was found that,

u′ ≃











0.06U2 = 0.120(U2 − U1) for ru = 2 (RUN3)

0.05U2 = 0.075(U2 − U1) for ru = 3 (RUN4)

0.04U2 = 0.053(U2 − U1) for ru = 4 (RUN5).

(7.3)

The actual lengths of the potential cores found by analyzing the simulated jets
are not in agreement with the predicted ones. As mentioned, it was found that the
single jet starts to roll-up closer to the inlet for the present work than what it does
in the simulation performed by Lubbers et al. (2001) . The same was the case for
the coaxial jets compared to the simulation performed by Balarac and Si-Ameur
(2005).

Again, the influence of the pre-simulated turbulence-box has to be considered
as a possible reason for the deviation. Since the amplitude of the inflicted noise
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is about 25% of the jet velocities, it seems to affect the jets evolution more than
what would be the case for a natural evolving jet.

Another observation is that for the coaxial jets, the outer potential cores are
longer than the inner ones. The equation 5.6 were derived assuming that the inner
and outer cores were approximately the same length. Most likely, the equation
can not be used when the outer potential core is longer than the inner. The flow
in the inner jet gets trapped between the outer cores in a very different way than
when the outer potential core is shorter than the inner one.

In the simulations of the coaxial jets in this work, β = 2 was used. This is
the same as was used in Silva et al. (2003). They found that both the inner and
outer potential cores ended at x = 5D1 when they used ru = 3.3. Except from
Silva et al. (2003) most publications on coaxial jets make use of a smaller outer to
inner diameter ratio. Even though it is emphasized in Rehab et al. (1997) that the
prediction of potential core is valid for large annular gaps, it is not not certain that
it applies to such big annular gap as used in this work. The simulations in this
work keep the inner jet exit velocity constant, while the outer jet exit velocities
are varied. This differs from the most published work on coaxial jets, which rather
keep the outer jet velocity constant in their investigations.

7.4 Visualization of the coaxial jets

Figure 7.10 shows three dimensional visualizations of the coaxial jet simulations to
x = 20D1. The visualization gives a good picture of the flows. The colored figures
show the instantaneous concentrations of the passive scalar. It can be seen that
for the larger velocity ratios the jets keep their initial shape for a longer distance.
In addition it is seen that smaller structures are visible for higher ru. This is
reasonable since higher Reynolds number gives smaller scales.

The right panel of figure 7.10 shows iso-surfaces of positive Q. Q is the second
invariant of the velocity gradient tensor,

Q =
1

2
(ΩijΩij − SijSij) , (7.4)

where Sij = 1

2
( ∂ui

∂xj
+

∂uj

∂xi
) is the rate of strain tensor and Ωij = 1

2
( ∂ui

∂xj
− ∂uj

∂xi
) is the

vorticity tensor. Note that Sij not is the traceless rate of strain tensor used in
equation 2.1. Q is a good indicator of coherent vorticities, as it defines regions of
both high local vorticity and low rate of deformations (Neto, 2008).

In the near field flow it can be seen that the structures have what can be
identified as helical shaped vortex rings located in the shear layers. This is as
expected according to Silva et al. (2003). Further downstream growing of smaller
scale turbulence begins. Again it is seen that smaller scales are present in the higher
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7.4. Visualization of the coaxial jets 37

Figure 7.10: Visualizations of the coaxial jets. The figures to the left show the
instantaneous concentration where green indicates high and blue indicates low
concentration. The figures to the right show instantaneous iso-surfaces of positive
Q.
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velocity ratio simulations. As the smaller scales become apparent the structures
seem to loose their preferential directions for RUN4 and RUN5. This indicates
that the jets have reached a state of fully developed turbulence (Silva et al., 2003).
The same effect is not visible in RUN3.

The lowest Reynolds number is found in RUN3 with Re=364. The visualization
of Q makes it clear that this is to low to get a fully turbulent flow. The viscous
forces in the flow destroy the eddies before they get the chance to develop fully.

7.5 Turbulent mixing in coaxial jets

As the main scope of this study was to investigate mixing in coaxial jets, the
properties of the mixing are summed up in this section.

The three simulations RUN3 through RUN5 showed relatively similar spatial
evolution. The figures 7.5 and 7.6 show that the coaxial jets have lost their two-
layer structures at x ≈ 12D1. With more careful investigation it was found that
for RUN3 this happens at x ≈ 11 and at x ≈ 9 for RUN4 and RUN5. The three-
dimensional visualizations of the jets made it clear that RUN3 had not reached fully
developed turbulence. It is therefore not considered in the further investigations.

As seen in figure 7.7, the concentration in the inner jet reaches the same value
as in the outer jet at x ≈ 7D1 for both RUN4 and RUN5. At this location, the
mixing fraction is 0.7 for RUN4 and 0.8 for RUN5. Then the mixing fraction
increases further in the inner jet and gets a maximal value of 0.75 for RUN4 and
0.85 for RUN5, before it again gets the same value as in the outer annular jet. This
happens at x ≈ 11D1 and x ≈ 12D1 for RUN4 and RUN5, respectively. At these
locations the mixing fraction is 0.5 for both simulations. Beyond this point both
the mean concentrations and the root-mean-square concentrations have more or
less the same values. Figure 7.9 showed that even further downstream at x = 16D1

the concentration profiles became approximately self-similar.
In the present work it was found that the inner potential cores had the same

length, whereas the outer potential length increased with increasing velocity ratios.
Taking into account that the simulations were done with a very low Reynolds
number, it is assumed that the inlet perturbations give a big contribution to how
the jets evolve in the near field. All the simulations of the coaxial jet used the same
turbulence-box for the inlet velocity perturbations, though it is hard to know how
much this affected the evolving of the jets in the near field. Another important
aspect is that in the present work the coaxial jets with higher velocity ratios also
have a larger Reynolds number. This makes it hard to know what is an effect of
larger Reynolds numbers and what is an effect of the differences in the velocity
ratios.

It is hard to make general conclusions about mixing in coaxial jets from these
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7.5. Turbulent mixing in coaxial jets 39

observations. In these particular cases it is seen that at about 4D1 to 5D1 down-
stream of the end of the potential cores, the coaxial jets get the shape of a single
jet. Further downstream the jets also obtain self-similarity, and it can be assumed
that mixing properties of single jets will apply in this region. If the theory behind
the predictions of potential core lengths was studied closer, and a more general
expression was found, it would likely be possible to predict when the coaxial jets
start to act like a single jet. This theory should probably take the Reynolds num-
ber, the outer to inner diameter ratio and the velocity ratio into account. It would
also be important to study the influence from the imposed perturbation in the
inlet velocity closer.
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Chapter 8

Discussion

In this chapter some of the issues concerning the simulations and the results are
discussed. Some of the possible sources of error have already been mentioned. An
attempt to sum up all of the possible errors is done here.

8.1 Inlet velocity perturbation

First the possible influence of the periodicity due to the pre-simulated turbulence
is investigated closer. Figure 8.1 shows the minimum streamwise velocity in the
domain as a function of time. From this figure it becomes clear that there is a
periodicity in the flow. The period for this periodicity is about 0.06 s, which is the
same as the time used for looping over the normal grid planes in the turbulence-
box.

The amplitude of the maximal noise on the shear layers was most likely much
higher than what was necessary to trigger the formation of turbulent structures. In
addition to the statistics not being averaged over a long enough period of time due
to time limitations in this work, this could also be a reason for perfect axisymmetry
not being obtained.

8.2 Boundary conditions

Periodic boundaries in the spanwise and normal directions were briefly discussed
earlier in chapter 7. When the boundary of the jet start to approach the edges
of the domain in the spanwise and normal directions, it will push the jet together
through the periodic boundaries. To avoid the influence of this problem, the
domain was made relatively large. Only the first part of the domain was considered
when the results were analyzed. This was also done to avoid possible influence from
the outlet, which also behaved unexpectedly.
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8.3. Momentum conservation 41

Figure 8.1: Minimum streamwise velocity in the domain as a function of time.
Periodicity due to the pre-simulated turbulence is observed

To get better results it would be important to find a good solution for the
outlet boundary conditions at the spanwise and normal boundaries, as well as to
find a better solution at the streamwise outlet. This would make it possible to
use a smaller domain and the simulations would be less time consuming, making
it possible to do simulations with higher Reynolds number.

8.3 Momentum conservation

Another worrying problem found when analyzing the simulations is due to con-
servation of momentum. It was found that the total streamwise momentum flux
decreases significantly downstream in the simulations. Figure 8.2 shows the down-
stream evolution of the total streamwise momentum in the domain. It is observed
that the total momentum differs by about 1% for RUN2 and 5.5% for RUN5. The
Pencil Code solves the equations of motion in a non-conservative form. Thus, the
conserved quantities will only be conserved up to the discretization error of the
scheme (Pencil Code Manual).

The decrease in the momentum flux is then an indication of the Reynolds num-
bers being too high. During movie visualizations of the single jet test simulations
"wiggles" in the vorticity field were observed. According to the Pencil Code man-
ual, the presence of "wiggles" indicates that the simulation is under-resolved. To
avoid this, the simulated fluid was made more viscous for the coaxial jets. This
resulted in relatively low Reynolds numbers. However, "wiggles" were still found
in the coaxial jet simulations. The consequences of the discretization error are not
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42 Chapter 8. Discussion

Figure 8.2: Relative downstream momentum flux. A significant momentum loss is
observed.

known.

8.4 The Reynolds number

Table 7.2 shows that the Reynolds number differs in the three simulations of coaxial
jets. The coaxial jet with highest velocity ratio also have the largest Reynolds
number. When analyzing the results, this makes it hard to know what is an effect
of the Reynolds number and what is an effect of the different velocity ratios. A
different approach would be to change just one of the parameters at a time.

Another concern considering the Reynolds number is that they are very low.
For comparison, the lowest Reynolds number is ten times smaller in the present
work than what was used in Silva et al. (2003). As discussed in chapher 2, this
is a limitation with direct numerical simulations. However it was found that the
Reynolds number in RUN3 was too low to get fully developed turbulence. This is
also a good argument for keeping the outer jet exit velocity constant and rather
vary the inner jet exit velocity.
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Chapter 9

Conclusion

Mixing of a passive scalar in coaxial jets was studied numerically using direct
numerical simulation. The coaxial jets had hyperbolic mean velocity profiles that
were imposed at the inlet. A pre-simulated turbulence-box was used to make
disturbances in the shear layers at the inlet. Three different cases with different
outer to inner jet velocity, ru = 2, 3 and 4, were investigated keeping the inner jet
exit velocity constant. The inner to outer jet diameter ratio, β = 2, was the same
for all three cases. The three simulations all showed promising results compared to
existing literature. In addition to the coaxial jets, test simulations of single round
jets were performed for validation of the code. The code used was the Pencil Code.

The passive scalar was set to one inside the co-annular jet and zero elsewhere.
For larger ru it was found that the maximum concentration at the centerline
reached larger values. The root-mean-square fluctuations of the concentration
also got larger values for larger outer to inner jet velocities ratio. Due to this
observations it can be concluded that higher velocity ratio give more rapid mix-
ing. However, it is hard to say what the effect of the velocity ratio is considering
the fact that the higher velocity ratio jets have larger Reynolds number. Larger
Reynolds number also results in more rapid mixing.

It was found that the coaxial jets lost their two-layer structures at a distance
about 5D1 downstream of the end of the potential cores. Further downstream fully
developed turbulence was obtained for the two jets with highest Reynolds numbers.
At a distance x ∼ 16D1 from the inlet the coaxial jets became approximately self-
similar.

The present work serves in many ways as pioneer work in adapting the Pencil
Code for use on turbulent jets. When analyzing the obtained results many issues
concerning the simulations were brought up. Still the results are of qualitative
value. The tendencies in the results are reasonable, considering the discussed
issues in the simulations. Due to the promising results, it can be concluded that
the Pencil Code absolutely can be used in further investigations of turbulent jets.
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