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a b s t r a c t

As lean premixed combustion systems are more susceptible to combustion instabilities

than non-premixed systems, there is an increasing demand for improved numerical

design tools that can predict the occurrence of combustion instabilities with high

accuracy. The inherent nonlinearities in combustion instabilities can be of crucial

importance, and we here propose an approach in which the one-dimensional (1D)

Navier–Stokes and scalar transport equations are solved for geometries of variable

cross-section. The focus is on attached flames, and for this purpose a new phenomen-

ological model for the unsteady heat release from a flame front is introduced. In the

attached flame method (AFM) the heat release occurs over the full length of the flame.

The nonlinear code with the use of the AFM approach is validated against analytical

results and against an experimental study of thermoacoustic instabilities in oxy-fuel

flames by Ditaranto and Hals [Combustion and Flame 146 (2006) 493–512]. The

numerical simulations are in accordance with the experimental measurements and

the analytical results and both the frequencies and the amplitudes of the resonant

acoustic pressure modes are reproduced with good accuracy.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

New and stricter emission regulations, particularly on nitrogen oxides, have led to the adoption of lean premixed
combustion as the primary technology for low-emission power generation from gaseous fuels in stationary gas turbines.
Homogeneous premixing of the fuel and the oxidizer, combined with an ultra-lean operation mode, provide for lower
combustion temperatures and a drastic reduction in NOx formation, accompanied by lower emission of soot and CO.
Experience has shown, however, that lean premixed combustion systems are more susceptible to combustion instabilities
than non-premixed systems. The coupling between unsteady heat release and acoustic pressure oscillations can lead to
self-excited oscillations that cause unacceptable levels of noise and moreover tend to reduce combustion efficiency. These
thermoacoustic oscillations also have a detrimental effect on the combustor equipment that limits the component lifetime
and, in the worst case, can result in system failure due to structural damage.

The thermoacoustic instabilities involve a feedback cycle in which the heat release rate and acoustic pressure
fluctuations are coupled. A stability criterion was deduced by Lord Rayleigh [1], which states that the pressure wave will
be amplified and develop an instability if the heat release fluctuations are in phase with the acoustic pressure oscillations.
Oppositely, the system is stable if the heat release rate and acoustic pressure fluctuations are out of phase. In general, there
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are various types of combustion instabilities due to the different physical mechanisms that can drive the instability. The
underlying driving mechanism depends on the combustor geometry, the burner and flame types, and the set-up of the fuel
and oxidizer feed lines. Thus, an instability due to variation in the equivalence ratio may arise if the acoustics is able to
interact with the upstream flow all the way to the individual feed lines. Another type of instability occurs if the acoustic
pressure oscillations affect the incoming velocity of the fuel-oxidizer mixture into the flame front. Reviews of the
acoustically coupled combustion instabilities, as well as other instability mechanisms that do not couple directly to the
system acoustics, are given by Candel [2] and McManus et al. [3].

Combustion instabilities and the interactions between several different physical phenomena such as variations in the
flow velocities, acoustic pressure fluctuations, and heat release are inherently complex by nature. Traditionally,
combustion system designers have relied on experiments in order to obtain vital information for the design of combustors,
where instabilities can be avoided or controlled. However, performing a series of large-scale experiments, in some cases
under high pressure to create gas turbine operating conditions, is very costly. For this reason the development of
numerical design tools based on computational fluid dynamics (CFD) has become an important endeavor in recent years in
order to complement experiments in the design process. The complexity of the instability mechanisms and their
interactions, however, places severe demands on both the physical modeling and the numerical analysis of current CFD
techniques. Hence, the development of CFD as a reliable design and analysis tool with sufficiently high prediction accuracy
with regard to combustion instabilities is an extremely challenging task.

The most accurate method to study turbulent combusting flows numerically is by direct numerical simulation (DNS),
where the flow field is solved directly from the Navier–Stokes equations [4]. Due to the huge computational cost, however,
the use of DNS is restricted to simplified problems and turbulent flows with relatively low Reynolds number. For high
Reynolds number flows in complex geometries, as often encountered in industrial applications, DNS is therefore
prohibitively expensive and is likely to be beyond reach for quite some time. A computationally less demanding approach
is large eddy simulation (LES), in which the large turbulent eddies of the flow are computed explicitly, while the smaller
eddies are not resolved but modeled using a subgrid scale model. LES is well suited to the description of unsteady
dynamical phenomena, and there has been a growing interest in LES in recent years [5]. But even LES is limited due to
expensive computational costs, and thus 3D LES calculations are non-practical for use on an everyday basis in industrial
applications.

As a consequence of the complexity of instability mechanisms, much of the modeling work on combustion instabilities
has focused on simplified models to make problems tractable. The development of linear models, in which the Navier–
Stokes equations and scalar transport equations are linearized, has been a very useful approach capable of predicting
combustion instabilities at a qualitative level [3]. Thus linear acoustic models can predict, at least to some extent, the
frequencies of resonant modes and their growth rate during a phase of exponential growth. A current practice in the
modeling of unstable combustion systems is to apply a network model, where the geometry of the combustor is modeled
by a network of acoustic elements and a simplified form of the pressure equation is solved. The acoustic elements of a
network model, also called multiports, correspond to various components of the system, e.g., the air or fuel supply, the
transition between two regions of different cross-section, the outlet of the combustor, or the flame itself [6–10].
Mathematically, each multiport in the system is represented by a transfer function.

Although the predictive scope of linear models is limited, the use of linear models for active control of combustion
instabilities has been widespread [3,11]. However, linear models are not able to predict the amplitudes of the resonant
modes of the statistically stationary state, and hence the dominating instabilities of the system cannot be distinguished
from the less significant ones. Also, the couplings between the instability mechanisms may not be accurately represented
in linear models and there has therefore been a growing interest in active control based on nonlinear models [12]. When
the nonlinear Navier–Stokes and scalar transport equations are solved, it is possible to predict the shape and the level of
the acoustic frequency spectrum both during the exponential growth phase and for the statistically stationary state. This
should make for a more accurate and efficient active control of the combustion instabilities. In a nonlinear real-space
description it is furthermore possible to apply more reliable models for the heat release, as discussed in Section 4.2. An
alternative approach to solving the nonlinear real space equations is to solve a nonlinear wave equation in the frequency
domain [13,14].

In this paper we have chosen an approach where the nonlinear Navier–Stokes and scalar transport equations are solved
for a combusting flow in real space and time, as in a DNS or an LES, but in a reduced 1D description. Previous work on real-
space 1D nonlinear CFD simulations of combustion instabilities includes the work of Polifke et al. [10] and Rook [15].
Polifke et al. [10] considered thermoacoustic oscillations in a straight duct by introducing a 1D heat release model for a
heat source placed in the duct. From time-dependent simulations of the dynamical behavior of the heat source, the authors
were able to obtain the transfer matrix of the heat source which again could be investigated in a linear network model.
Rook [15] applied 1D CFD to study the acoustical behavior of a burner-stabilized flame using a pressure correction method
to simulate the flame on a ceramic foam burner. We here follow the approach of variable cross-section area introduced by
Cohen et al. [16], and also used by Prasad and Feng [17,18], where the 1D equations are written for variable-area
geometries in order to simulate 3D geometries. The reduction of the governing equations to 1D is valid for relatively
simple geometries for which the flow can be assumed to be quasi-1D, and where the wavelengths are sufficiently large, so
that the wave motion is well approximated by a plane wave. In this framework we propose a new phenomenological
model for the unsteady heat release from a flame front. The flame model, here termed as the attached flame method
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(AFM), gives a 1D realization of the flame front. Using AFM it is demonstrated that the 1D simulations capture both the
exponential growth and the nonlinear statistically stationary state of the acoustic oscillations at a computational cost far
below that of a corresponding DNS or an LES.

In Section 2, we present the governing equations, and make them 1D by introducing a variable cross-section. Boundary
conditions is discussed in Section 3, while the new flame model is described in Section 4. Finally, the code is verified in
Section 5 by comparing the simulation results with experimental results from a study of combustion instabilities in oxy-
fuel flames by Ditaranto and Hals [19].

2. The governing equations

The governing equations for a turbulent combusting flow are based on the conservation of mass, momentum and
energy, and the transport equations for species mass fractions. The conservation of mass is represented by the continuity
equation

qr
qt
þr � ru¼ 0, (1)

while the conservation of momentum gives the Navier–Stokes equations

r qu

qt
þru � ru¼�rpþr � s, (2)

where r is the density, u is the velocity vector, p is the pressure, and s is the viscous stress tensor. For a Newtonian fluid
the stress tensor is given by s¼ 2mS, where m is the dynamic viscosity, and S is the traceless strain tensor with
components1

Sij ¼
1

2

qui

qxj
þ

quj

qxi
�

2

3
dij

quk

qxk

� �
, (3)

when we use the Einstein summing convention. The conservation equation for the energy can be rewritten in terms of the
temperature equation

r qT

qt
þru � rT ¼

1

cv
ð�pr � uþr � ðlrTÞþ _qvþ _qcÞ, (4)

where T is the temperature, cv is the specific heat at constant volume, l is the thermal conductivity, _qv ¼ 2mS2 is the
viscous heating source term, and _qc is the heat release rate from combustion. The equations for the mass fractions Yk of the
species k can be written as

r qYk

qt
þru � rYk ¼r � ðrDrYkÞþrok, k¼ 1, . . . ,NS, (5)

where D is the mass diffusivity, ok is the chemical reaction rate of species k, and NS is the number of species. The above set
of equations are closed via the ideal gas equation of state

p¼ rrT , (6)

where r is the gas constant of the mixture. The mixture gas constant is given by r¼ R=m, where R¼8.31 kJ/(kmol K) is the
universal gas constant, and m is the mean molar mass. The speed of sound in the gas mixture is

c0 ¼
ffiffiffiffiffiffiffiffi
grT

p
, (7)

where g¼ cp=cv is the specific heat ratio, with cp the specific heat constant pressure.

2.1. The variable cross-section 1D approximation

In a variable cross-section geometry the combusting flow can be solved by a quasi-1D treatment. The reduced
governing equations in 1D are presented here. In a quasi-1D description the traceless strain tensor is reduced to

S¼ diag
2

3
,�

1

3
,�

1

3

� �
qu

qx
: (8)

From this it follows that the viscous force is

r � t¼r � ð2nrSÞ ¼ 4

3
m q2u

qx2
þ

qu

qx

q ln r
qx

 !
, (9)

1 The bulk viscosity has been set to zero by Stokes’ hypothesis.
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where m is the dynamic viscosity. Furthermore, the viscous heating reduces to

_qv ¼ 2mS2
¼

4

3
m qu

qx

� �2

: (10)

It should be noted that the factor 4/3 in the above equations is due to the 1D approximation.
The quasi-1D continuity equation for a variable cross-section geometry can be written as

qr
qt
¼�

1

A

qrAu

qx
, (11)

where A is the cross-sectional area. It follows that the 1D equations for the momentum, the temperature and the species
mass fractions are given by

qu

qt
¼�u

qu

qx
�

1

r
qp

qx
þ

4

3
n q2u

qx2
þ

1

r
qu

qx

qr
qx

 !
þ

Ff ,w

r
, (12)

qT

qt
¼�u

qT

qx
þ

1

rcv
�

p

A

quA

qx
þ

q
qx

l
qT

qx

� �
þ _qvþ _qcþ _qv,w

� �
(13)

and

qYk

qt
¼�u

qYk

qx
þ

1

r
q
qx

rD
qYk

qx

� �
þok, (14)

where Ff ,w represents the viscous force from the walls, and _qv,w is the corresponding viscous heating. These terms are
added to the system since the viscous force in Eq. (9) contributes to damping in the streamwise direction only, i.e., wall
effects do not naturally appear in the 1D equations. For more information on the viscous force Ff ,w, see Appendix A. If the
viscous wall effects are negligible, Ff ,w and _qv,w in Eqs. (12) and (13) can be set to zero.

Numerically, the set of equations (11)–(14) are solved using an explicit solver. The spatial discretization is sixth-order
finite difference, while third-order Runge–Kutta is used for the time stepping.

3. Boundary conditions

3.1. Open boundaries

We assume that the time varying pressure and velocity field in the system can be decomposed as

p¼ p0þp0,

u¼ u0þu0, (15)

where subscript 0 denotes the mean part while prime denotes the fluctuating part. In addition, the density fluctuations r0
are given by

r¼ r0þr
0, (16)

where r0 is the average density. The acoustic pressure fluctuations are described by plane harmonic waves given by

p0 ¼ p̂e�iot ¼ ðAþ eikxþA�e�ikxÞe�iot , (17)

where k¼ 2p=l is the wavenumber, o is the angular frequency, and Aþ and A� denote the amplitudes of the right-moving
and left-moving pressure waves, respectively. Similarly, the velocity fluctuations are given by

u0 ¼ ûe�iot ¼
1

r0c0
ðAþ eikx�A�e�ikxÞe�iot : (18)

In a long duct with an open exit at x¼0, the impedance at the exit is

Z ¼
p̂

û
¼ r0c0

Aþ þA�

Aþ�A�

� �
¼ r0c0

1�R

1þR

� �
, (19)

where the reflection coefficient R is defined by R¼�A�=Aþ . Rearranging the above equation we get

R¼
r0c0�Z

r0c0þZ
: (20)

We notice that if Z¼0 there is perfect reflection and R¼1. If Z ¼ r0c0, corresponding to the characteristic impedance of the
medium, R¼0 and there is no reflection at the exit. Since p0=u0 ¼ p̂=û ¼ Z, we may use the equation of state (6), together
with Eq. (19), to write

p0 ¼ rrT�p0 ¼ Zu0 ¼ r0c0
1�R

1þR

� �
ðu�uÞ: (21)
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Solving this equation with respect to the temperature, we obtain

T ¼
1

rr
p0þr0c0ðu�uÞ

1�R

1þR

� �� �
: (22)

Thus, at an open boundary the temperature is determined by the expression (22).

3.1.1. Reflection coefficients at open boundaries

We consider acoustic oscillations in long ducts. If the duct is a circular pipe, the characteristic Helmholtz number is
defined as Hn ¼ ka, where a is the radius of the pipe. Thus, the Helmholtz number is small if the pipe radius is small
compared to the acoustic wavelength. It is known that for low Helmholtz numbers the dominating acoustic modes within
a pipe will be reflected from an open end, i.e., most of the acoustic energy will not leave the pipe [20]. This is normally also
the condition for combustion instabilities to appear. By assuming that Hn51 and applying conservation of mass, it has
been shown that the absolute value of the reflection coefficient at the open end of an unflanged pipe is [21]

jRj ¼ 1�1
2ðkaÞ2, kao0:2: (23)

For large acoustic velocities û, nonlinear effects at the exit will no longer be negligible. The dominating nonlinearity
being the vortex shedding at the sharp bends of the exit. Peters et al. [21] find the acoustic power absorbed by vortex
shedding, and non-dimensionalized by Pnorm ¼

1
2rû

3pa2, to be

Pn

vortex ¼
Pvortex

Pnorm
¼ bSr1=3

ac , (24)

for the acoustic Strouhal number Srac ¼oa=ûb1, and

Pn

vortex ¼
2cd

3p , (25)

for Srac 51. In the above cd¼2 for an unflanged pipe and we have set b¼ 0:5 in the simulations.
If ReðZÞ is the real part of the impedance Z, the power lost at the outlet due to radiation from the pipe exit can be found

by using Eqs. (19) and (23) to be

Prad ¼ pa2I¼ pa21
2ReðZÞjûj2, (26)

where I is the intensity. This gives

Pn

rad ¼
Prad

1
2

rû
3pa2 ¼ 1

4kaSrac: (27)

Combining the above equations gives the following expression for the reflection coefficient as a function of the power loss

R¼
c0

û
�Pn

loss
c0

û
þPn

loss

, (28)

when Pn

loss ¼ Pn
vortexþPn

rad: is the sum of the acoustic losses through radiation and vortex shedding.

3.2. Closed boundaries

Closed boundaries are understood as acoustically closed boundaries that reflect acoustic waves. Thus, closed
boundaries can either be closed or open with respect to the mass flow. If there is no inflow (mass flow) across the
acoustically closed boundary the velocity u, together with the derivatives qr=qx and qT=qx, are set to zero. On the other
hand, if there is inflow across the acoustically closed boundary, the mass flow is given a constant value (the velocity u has a
non-zero constant value).

An acoustically closed boundary with inflow can be thought of as wall with several small holes, e.g., a porous plate. The
holes are so small that they do not affect the reflecting abilities of the wall. However, they are large enough, so that the
mass flow entering the domain is significant and is allowed to cross the boundary.

By setting qT=qx¼ 0, the closed boundary is adiabatic. This is not necessarily precisely correct but the error introduced
by this assumption is expected to be of minor importance.

4. The flame model

In this section we obtain an expression for the combustion heat release term _qc in Eq. (13). We begin by describing the
well-known n�t formulation and show how it can be integrated into a Navier–Stokes solver. We then introduce a new
phenomenological flame model which we refer to as the attached flame method (AFM).
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4.1. The n�t model for unsteady heat release

As a first approximation we apply the n�t model, which provides a global description of the unsteady heat release rate
associated with combustion instabilities. The heat release rate (energy per unit time) in the n�t model is given by [3]

Q 0 ¼
Anrc2

0

g�1
uðx,t�tÞ, (29)

where A is the cross-section of the duct, n is the interaction index determining the coupling between the velocity and heat
release fluctuations, and t is the time lag between these fluctuations. The heat release rate per volume is

_qc
0
¼

Q 0

ALf
¼

nrcvgT

Lf
uðx,t�tÞ, (30)

where Lf is the flame length, and we have made use of the relation (7).
The n�t model was originally designed for linear wave-equation models for which the main focus has been on the heat

release fluctuations and their coupling to the flow-field perturbations. For an implementation of the n�t formulation in a
CFD code based on the Navier–Stokes equations, the mean part of the heat release needs to be included as well. Thus, the
total heat release rate per volume (the mean part plus the fluctuation) can be written as

_qc ¼ rcv hcþ
ngT

Lf
uðx,t�tÞ

� �
, (31)

where hc is a constant heat source. Both the constant hc and the unsteady heat release are in this approach non-zero only
within the flame.

4.2. The attached flame method (AFM)

The n�t formulation is primarily designed to be used with linear wave-equation models in the frequency domain.
Although generalizations to nonlinear applications have been made, the n�t model is not optimal for use in a nonlinear
Navier–Stokes solver where the governing equations are solved in real space and time. Thus, in the n�t model the heat
release is limited to a point source. In addition, the time lag t must be accounted for.

More detailed analysis of unsteady heat release from flame fronts have been based on studies of the dynamics and
shape of anchored premixed flames [22,23]. Fleifil et al. [24] used a kinematic model to calculate the transfer function in
the linear regime between heat release and upstream velocity oscillation of a premixed flame stabilized on the rim of a
tube. The kinematic approach was later extended by Schuller et al. [25] by including convective effects of the flow
modulations propagating upstream of the flame. In this paper we present a new phenomenological model for the unsteady
heat release from an attached flame. The model, denoted the attached flame method (AFM), is similar to the analytical
flame front model [24,25] in the sense that a real-time differential equation is solved to capture the kinematics of the
thermoacoustic instabilities. However, while the kinematic model is based on the G-equation approach to determine the
location of the flame front, in AFM the flame position is obtained directly from the equations for the species mass fractions.
The basic idea is here to project the flame, which is essentially 2D, into a 1D description.

One advantage of the AFM approach, compared to the n�t formulation, is that for laminar flames no free parameters
such as n and t need to be determined. In the AFM formulation, the full length Lf of the flame is defined as the distance
from the inlet, where the flame is anchored, to the point where all the fuel is burned. The flame length Lf is therefore a
dynamical variable that changes with time according to system oscillations.

The laminar flame speed is known to vary slightly with the position in a flame. Thus, the laminar flame speed will in
general be different at the base of the flame, in the flame tip, and in the main body of the flame. The spatial variations in
the flame speed are believed to have only minor effects on the flame front, however, and have been neglected in the
following. A known constant laminar flame speed has been assumed in the current formulation, although this can easily be
changed if the effects of a variable flame speed are expected to be significant.

For a combusting flow in a long duct we assume that the flame front can be represented by piecewise straight lines, as
shown in Fig. 1. The total flame surface DAi within a 1D grid cell is then given by

DAi ¼ 2DHid, (32)

where d is the depth of the 1D grid cell, i.e., the size of the grid cell in the direction perpendicular to the paper plane. The
flame front is here the interface between the fresh and the burned gas within a given 1D grid cell. Since the approach is 1D
only, the flame front is not resolved by the 1D code but it is evident that the distance from the centerline to the flame front,
denoted hi, is proportional to the mean mass fraction Yfuel of the fuel in the 1D grid cell. This can be written as

hi

h
¼

Yfuel

Yfuel,inlet
, (33)

where Yfuel,inlet is the mass fraction of the fuel at the inlet. We note that the limiting cases of hi ¼ h upstream of the flame
anchor at xf and hi¼0 downstream of the flame tip are recovered from the above equation. Differentiating Eq. (33) we
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obtain

dhi

dx
¼

dYfuel

dx

h

Yfuel,inlet
, (34)

which, when setting Dhi ¼Dxdhi=dx, gives

DHi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2þDh2

i

q
¼Dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

h

Yfuel,inlet

dYi
fuel

dx

 !2
vuut : (35)

In the above derivation we have used the fact that the mass fraction of the fuel outside the flame cone is zero (burned gas),
while the mass fraction of the fuel inside the flame cone equals the mass fraction of the fuel at the inlet (fresh gas).

Since the flame front is always moving into the fresh gas, the reaction rate of the fuel within the flame is given by

R¼
DAiYfuel,inletSLfT

DV
, (36)

where SL is the laminar flame speed, and DV is the volume of the grid cell. The reaction rate of the fuel is then given by

Rfuel ¼

0, xoxf ,

�
2SLYfuel,inletfT

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

h

Yfuel,inlet

dYfuel

dx

� �2
s

, xf rxrxf þLf ,

0, x4xf þLf ,

8>>>>><
>>>>>:

(37)

where fT Z1 is a constant accounting for the fact that the real flame speed might be larger than the laminar flame speed
due to turbulence. In fact, fT, quantifying the turbulence in the flame, is the only closure needed in the model. In the current
work the focus is on laminar problems, however, and the model is here validated for laminar or weakly turbulent cases
only, for which fT¼1.

By construction the AFM does not allow for more than two flame fronts for any given downstream position. That is, the
angle ai between a given flame front segment and the normal to the wall, as illustrated by a1 in Fig. 1, must satisfy the
condition 0oaio901. This means that the model will not be able to describe vortex roll-up for instance, and is therefore
mostly suited to compact flames. This is a natural consequence of the model being 1D.

For a chemical reacting system with NS species, the general equation for a chemical reaction can be written as

XNS

k ¼ 1

n0kAk-
XNS

k ¼ 1

n00kAk, (38)

where Ak symbolizes the chemical species k, and n0k and n00k are the stoichiometric coefficients of species k on the reactant
and product side, respectively. The chemical reaction rate ok for such a system may be expressed as

ok ¼ ðn00k�n
0
kÞRfuel

mk

mfuel
, (39)

where mk and mfuel is the molar mass of species k and of the fuel, respectively.
The energy release within a grid cell is determined by the reaction rate Rfuel and the lower heating value hL of the

unburned mixture. Thus, the heat release term _qc in Eq. (13) is defined by

_qc ¼ RfuelhLr: (40)

The expressions (39) and (40) are used to close the set of governing equations (11)–(14).

Δx

ΔH2

ΔH1

ΔH3

xf xf + Lf

2h

α1

Δh3

Fig. 1. In this duct of height 2h there is a flame holder at the position xf in the streamwise direction. The flame front is represented by piecewise straight

lines with total length H¼ 2
P

DHi , and the length of the flame is Lf . Every 1D grid cell has length Dx.
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4.3. The secondary grid

In many applications of premixed combustion the geometry is such that a narrow slot leads into a wider combustion chamber.
This is visualized in Fig. 2 where a slot of height hslot leads into a combustion chamber of height hcomb. In such a geometry it is no
longer correct to use the same convective velocity for the species convection in the jet as in the mean flow. The reason is that the
mean convective velocity of the flow within the combustion chamber is lower than the convective velocity of the fresh fuel/air jet
entering from the slot. Hence, we here solve the velocity evolution of the jet using a separate secondary subgrid. The jet entering
the combustion chamber is visualized by the thick dashed lines in Fig. 2, which then also represent the upper and lower
boundaries of the secondary grid within the chamber. Note, however, that since the simulation tool is formulated in 1D only, no
boundary conditions are required at the dashed lines. In the streamwise direction the secondary grid is bounded by the
coordinates xsec,1 and xsec,2, as shown in Fig. 2. In this subgrid domain the governing equations (11)–(14) are solved for a constant
cross-section A and with no reactions, i.e., ok and _qc are both zero. This gives the convective velocity uconv to be used in the
convective term of Eq. (12). The secondary grid is thus applied to only a small fraction of the entire computational domain
covered by the primary grid, which means that special care must be taken concerning boundary conditions. At the secondary
subgrid inlet xsec,1 the boundary values are chosen as the corresponding instantaneous values of the primary grid at the same
location. For the subgrid outlet at xsec,2 the non-reflecting boundary condition given by R¼0 in Eq. (20) is used.

It should be pointed out that the matching of the secondary and the primary grid solutions in the above manner does
not have any significant impact on the final results as long as both the inlet and the outlet of the secondary grid are outside
the flame and a non-reflecting boundary condition is used at the secondary grid outlet.

5. Validation of the quasi-1D code

The nonlinear quasi-1D code is here validated against analytical, experimental and numerical results. We first compare
with analytical results obtained in a simplified set-up of a flame in a duct. Next, numerical results for the flame transfer
function obtained with AFM is compared with analytical results from a conical flame. Finally, the nonlinear code with the
use of AFM is validated against results from an oxy-fuel study in a lab-scale test rig, both for inert and reactive flows.

5.1. Straight duct

We here consider a simplified case of a flame in a straight duct for which an analytical solution is known when the
flame is described by the n�t model. The AFM model is not applied in this particular case since a direct comparison
between the AFM and n�t model is not straightforward, given that various choices of n and t may lead to very different
physical solutions. Thus, the quasi-1D numerical results are here compared with the analytical solution given by Poinsot
and Veynante [6], with the n�t model applied in both approaches.

The simulated duct is assumed to be a straight pipe of length 2a, where a¼0.5 m and with the flame located in the
center of the pipe. For the analytical treatment the heat source is a point source while for the nonlinear solver the flame
has a length of 8 cm in the pipe direction. The spatial extension of the flame is required since any gradient or object in
a spatial code must be resolved by at least a few grid points. The set-up is such that air enters at room temperature at the

ΔH2

Δ x

hcomb

xsec,1

xsec,2

hslot
Δx

α1

xf xf + Lf

Fig. 2. The thick solid lines represent the geometry of a slot leading into a combustion chamber. The thick dashed line corresponds to the upper and

lower boundary of the secondary grid within the chamber. The coordinates xsec,1 and xsec,2 define the boundaries of the secondary grid in the streamwise

direction.
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pipe inlet. The constant heat source hc given in Eq. (31) is chosen to be zero such that the mean temperature at the outlet
equals the inlet temperature. The interaction index n between the velocity and the heat release is set to n¼0.25.

First we will use the linear approximation, as described by Poinsot and Veynante [6], to find an analytical solution for
the unstable frequencies and their growth rates. We are here primarily interested in the imaginary part of the frequency,
which for this simplified case is given by

ImðojÞ ¼
ð�1Þjnc

8pa
sinðojtÞ, (41)

where c is the speed of sound, and

oj ¼ 2pfj ¼ ð1þ2jÞ
2pc

8a
: (42)

In the linear approach the amplitude of the resonant mode j with frequency oj is given by Aj ¼ Bjexpð�iojtÞ, such that the
amplitude Aj grows exponentially when the imaginary part of oj is positive. If the imaginary part of oj is negative, on the
other hand, the amplitude of this particular mode will decay exponentially.

When simulating the same set-up as described above with the nonlinear quasi-1D simulation tool together with an n�t
flame model, one must consider the acoustic power spectrum in order to be able to compare with the results from the
linear approach of Poinsot and Veynante [6]. These power spectra are represented by the solid lines in Fig. 3.

In Table 1, the imaginary parts of the first four oj’s, as found from Eq. (41), are listed for three different values of t. For
t¼ 6� 10�4 s it is evident that o1 ¼ 1639 Hz and o3 ¼ 3824 Hz are the unstable frequency modes. In the left plot of Fig. 3
the positions of these two modes are marked by large arrows, while the smaller arrows correspond to the decaying
resonant modes. The solid line shows the acoustic power spectrum obtained from the numerical quasi-1D simulation, and
it is seen that the excited modes agree well with the unstable modes as given by the analytical solution. In the last column
of Table 1 the simulated growth rate is also found to be in good agreement with the theoretical values. For t¼ 15� 10�4 s
we note that the unstable frequency modes are given by o1 ¼ 1639 Hz and o2 ¼ 2731 Hz. In the middle plot of Fig. 3 we
observe that the amplitude of o1 is much larger than the amplitude of o2, despite the fact that the imaginary part of o2 is
larger than that of o1. This is because the initial perturbations were such that B1bB2, and that the amplitude A2, while still
in the linear regime of the simulation, has not yet had enough time to catch up with A1. This is also reflected by the fact
that the simulated growth rate corresponds to the imaginary part of o1, implying that the dominating mode indeed is o1.
Finally, for t¼ 27� 10�4 s we find that there are no unstable frequency modes and that all the amplitudes are decaying.
The resonant modes are nevertheless recovered in the right plot of Fig. 3, but the amplitudes are very weak (note the scale
on the ordinate axis). For this case it should be noted that due to quite large uncertainties in the determination of the
decay rate, the growth rate presented in Table 1 has relatively large error bars.

5.2. Flame transfer function

In this section numerical results for the flame transfer function obtained with AFM is compared with analytical
results found by Schuller et al. [25]. The comparison is not expected to give an exact match as the current work
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Fig. 3. Power spectra for simulations with t¼ 6� 10�4 s (left), t¼ 15� 10�4 s (middle), and t¼ 27� 10�4 s (right). The solid line represents the

simulated results while the arrows correspond to the resonant modes as found from Eq. (42). The larger arrows point at the unstable modes, while the

smaller arrows give the decaying modes.

Table 1
Growth rate of unstable frequencies for different t’s. The angular frequencies are o0 ¼ 546 Hz, o1 ¼ 1639 Hz,

o2 ¼ 2731 Hz, and o3 ¼ 3824 Hz. The ImðoiÞ are found from Eq. (41).

t ð10�4 sÞ Imðo0Þ Imðo1Þ Imðo2Þ Imðo3Þ Simulated

growth rate

6 �2.2 5.8 �6.9 5.2 5.2

15 �5.1 4.4 5.7 �3.6 4.3

27 �6.9 �6.6 �6.2 �5.4 �5.6
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is for a slot burner, while Schuller et al. [25] considered a conical flame. The results should nevertheless be qualitatively
comparable.

Given a duct with cross-section 2h and a non-reflecting outlet on one side and an oscillating velocity inlet on the other
side the flame transfer function can be found. Here the set-up of Schuller et al. [25] is followed such that the non-
dimensional frequency is defined as

on ¼
4ho

SLð1�ðSL=uÞ2Þ1=2
, (43)

where u is the mean inlet velocity. Please note the term 4h in the above equation has replaced the radius R used by
Schuller et al. [25]. The flame transfer function is

F ¼
q0=q

_m 0= _m
, (44)

where q is the heat release, _m ¼ ru is the mass flow rate, and the prime denotes fluctuating values around the means,
represented by overbars. For weak acoustic waves r05r such that F � q0u=qu0. Using the latter version of the flame
transfer function for strong acoustic waves could cause the unphysical effect [29] of super unity gain for low frequencies, it
is therefore recommended to always try to use the flame transfer function based on the mass flow rate and not on the
velocity.

For a uniformly perturbed wave Schuller et al. [25] found the following analytical expression for the flame transfer
function:

F ¼
2

o2
n

½1�expðionÞþ ion�: (45)

In Fig. 4, the absolute value of the analytical expression of Eq. (45) and the results found from simulations using AFM are
compared. We note that the quasi-1D/AFM results presented in Fig. 4 are similar in appearance to what was found in the
experiments of [26].

5.3. Sudden expansion burner

In this section we validate the nonlinear quasi-1D code against experimental results from the oxy-fuel study of
Ditaranto and Hals [19]. A schematic view of the geometry of the lab-scale combustion rig is shown in Fig. 5. The set-up
consists of a 80 cm long premixing section, followed by a 4 cm long flame arrestor and a 10 cm long slot leading into the
47.9 cm long combustion chamber. The premixing and combustor sections are square channels with cross-section s� s,
where s¼5.4 cm is the inner width of the sections. For the flame arrestor and the slot the cross-sections are s� darr: and
s� dslot , respectively, where darr: ¼ 2 cm and dslot ¼ 0:5 cm.

5.3.1. The cold rig

In order to validate the non-reactive part of the nonlinear code, acoustic simulations were performed for the geometry
of the oxy-fuel rig described in [19], with no flame and only air present in the rig. Experimentally, in the cold rig case a
loudspeaker was placed at the upstream end of the premixer, i.e., at the inlet at the left-end side of the set-up shown
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Fig. 4. The gain of the flame transfer function as a function of the non-dimensional frequency. The ‘þ ’ signs represent the results found with the quasi-

1D solver, the solid line is given by Eq. (45), while the dashed line is the first-order filtered form given by f ¼ 1þ ion=3.
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in Fig. 5. The acoustic frequency response of the loudspeaker was measured with four microphones, and for this procedure
there was no flow in the system. The loudspeaker additionally produced white noise for which the spectral distribution is
not known. The numerical simulations can therefore not reproduce the amplitudes of the resonant modes, but merely aim
at reproducing the resonant frequencies.

The velocity spectrum corresponding to the statistically steady-state solution of the nonlinear code is plotted in Fig. 6.
Also shown in this figure are the experimentally measured values of the resonant frequencies, along with the resonant
frequencies obtained with the use of the linear code. We note that there is generally a good match between the measured
resonant modes and those obtained by the numerical simulations. The resonant peak at � 25 Hz corresponds to the low
frequency 1/4 mode of the entire system.

5.3.2. Oxy-fuel combustion

We here validate the full quasi-1D nonlinear code using the AFM formulation against an experimental study of
combustion instabilities in oxy-fuel flames in a sudden expansion test rig. In the oxy-fuel study of Ditaranto and Hals [19]
four different combustion instability regimes, referred to as regions, were distinguished. In Fig. 7, typical spectral
distributions obtained in the oxy-fuel experiment for two of these regions are shown. The shown pressure spectra were
recorded at microphone port 3 illustrated in Fig. 5. In what is referred to as Region 3 the flame front is attached to the slot
of the rig at all times. For Region 2 the oxy-fuel flame study exhibited two instability patterns; one for which the flame is
not attached to the slot but follows the formation of periodic large vortices, and another corresponding to a hysteresis
phenomenon for which there is a combination of an attached flame branch and vortex shedding.

We observe from the spectral distributions of Fig. 7 that the instability frequencies are quite different for the shown
cases. Thus, for the attached flame of Region 3 the 1/4 mode from the combustion chamber is at a significantly lower
frequency ð � 230 HzÞ than the corresponding modes ð � 300 HzÞ for the cases in Region 2. According to Ditaranto and Hals
[19], the instability frequency for the attached flame case is in fact a combination of the premixer 1/2 mode and the
combustion chamber 1/4 mode. The premixer 1/2 modes for the cases of Region 2 both have frequencies at � 200 Hz,
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Fig. 6. The cold flow velocity spectrum from microphone port 3 of the rig illustrated in Fig. 5. The solid curve shows the spectrum obtained from the

nonlinear code. The upper arrows indicate the measured resonant frequencies, while the lower (smaller) arrows indicate the resonances obtained from

the linear code.

Fig. 5. Schematic view of the geometry of the oxy-fuel combustion rig used in the experimental study of Ditaranto and Hals [19].
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although the mode corresponding to the hysteresis case is not dominant and difficult to observe in Fig. 7. Similarly, the
premixer 1/1 modes for the cases of Region 2 have frequencies at � 400 Hz, while the corresponding mode of the attached
flame case is at � 460 Hz. The main difference between the two instability cases of Region 2 is that the premixer 1/2 mode
is most amplified when the flame follows the shedded vortices entirely, while the combustor 1/4 mode is dominant when
the flame is partially attached to the slot.

The combustion chamber temperature was not measured by Ditaranto and Hals [19] and we therefore use the
frequency peak of the ground mode of the combustor to estimate the average temperature. From Fig. 7 we note that the
1/4 mode of the combustion chamber is at a frequency f0 � 230 Hz for the attached flame. We first compute the speed of
sound and recall that the combustor has length 47.9 cm. For a duct with an open end we also know that the acoustics
depends on an end correction to the duct length. For an open end unflanged pipe, Davies et al. [30] have obtained an
empirical fit to the end correction given by

l=a¼ 0:6133�0:1168ðkaÞ2, kao0:5, (46)

where a is the radius of the pipe. For the square combustion duct we set a¼ s=
ffiffiffiffi
p
p
¼ 3:0 cm, corresponding to a pipe of

equal cross-section as the duct. This gives a length correction of l� 1:8 cm for the ground mode. Adding this to the
combustor length, we find the acoustic length of the combustor to be lacoustic ¼ ð0:479þ0:018Þm¼ 0:497 m. With f0 ¼ c0=l
and l¼ 4lacoustic for the 1/4 wave mode, this gives the average speed of sound in the combustion chamber

c0 ¼ 4f0lacoustic ¼ 458 m=s: (47)

Using Eq. (7), the average temperature in the combustion chamber then becomes

T ¼
c2

0

gr
¼ 720 K, (48)

where g¼ 1:24 and r¼235 J/(kg K) for the given gas mixture. The average temperature is thus much lower than the
adiabatic flame temperature at about 2400 K (when assuming a combustor inlet temperature of 400 K). In the following,
we therefore allow for sufficient cooling in the combustion chamber such that the mean temperature downstream of the
flame is 720 K.

As discussed in Section 4.2 the AFM model is not able to describe vortex roll-up but is designed to describe attached
compact flames. For the validation of the quasi-1D code a numerical simulation of the case for which the flame was
attached to the slot has therefore been performed. The case is typical of the instability regime of Region 3, and defined by a
Reynolds number R¼ 2000, an equivalence ratio F¼ 0:9, and a volume fraction of 42 percent O2 in the O2=CO2 oxidant.
The corresponding pressure spectrum is shown in Fig. 7. In Ditaranto and Hals [19] the spectral distribution of the pressure
oscillations is shown in Fig. 7c. From Fig. 1 in [19] the laminar flame speed is SL¼0.47 m/s in the case of 42 percent O2 in
the oxidant.

In the experimental study the flow rate of fuel and oxidant in the attached flame case was 1:3� 10�4 and
1:65� 10�3 kg=s, respectively, corresponding to a mean flow velocity in the premixer of 0.42 m/s. With R¼ 2000 the
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attached flame is in the laminar flame regime. Hence, the parameter fT in Eq. (37) is set to fT¼1, i.e., the flame speed is
equal to the laminar flame speed.

The observed thermoacoustic instabilities in the flame experiments are governed by statistically stationary limit cycles
in which acoustic pressure variations lead to fluctuations in the flow velocity and heat release. The heat release
fluctuations, on the other hand, feed back to the acoustic modes at the same frequency. For the oxy-fuel study the limit
cycles are controlled by a saturation in the heat release caused by acoustic losses at the outlet. This can be observed in the
left graph of Fig. 8, where the envelope of the pressure amplitudes at microphone port 3 of the rig is shown as a function of
time for various simulations. We note that when there are no acoustic losses, i.e., when the reflection coefficient R¼1, the
instability grows to infinity. Taking linear acoustic effects into account, we obtain from Eqs. (23) and (47) a reflection
coefficient of R¼0.995 at the dominating frequency f0 ¼ 230 Hz. The corresponding instability growth is shown by the
thick dashed curve in Fig. 8 and displays a slightly smaller growth rate than for the R¼1 case. By including both nonlinear
and radiative losses, the reflection coefficient can be calculated dynamically from Eq. (28). The resulting instability growth
is shown by the solid curve denoted ‘‘nonlinear’’ in Fig. 8. If, in addition, viscous damping from the walls of the flame
arrestor is taken into account, i.e., the term Ff ,w in Eq. (12) is non-zero, the growth rate is given by the fairly similar dashed
curve denoted ‘‘Damp.þnonlin.’’. (For more details on Ff ,w, see Appendix A). Finally, the dashed-dotted curve in Fig. 8
shows the pressure envelope for a simulation for which R¼0.96.

From the right graph of Fig. 8 we observe that the thick dashed curve and the solid (thin) curve have very similar slopes
for small pressure variations, while for larger pressure amplitudes the nonlinear losses become more and more important
and the corresponding solid curve levels out at a much smaller amplitude than the dashed curve. Comparing the
simulation results when viscous damping effects were taken into account (dashed curve) with no damping effects
implemented (solid curve), we observe that the viscous damping only has little effect on the pressure envelope except for a
smaller growth rate initially. The simulation using a reflection coefficient of R¼0.96 was done as a comparison case and
produced a slightly larger pressure amplitude than those indicated for the solid and dashed curves. But the initial growth
rate produced by the simpler model produced an initial growth rate that was smaller. From these observations we
conclude that it is of crucial importance to the numerical simulations that nonlinear damping through vortex shedding
at the combustor outlet is included. The viscous damping at the walls turns out to be of less importance for this specific
set-up. One issue to be kept in mind, however, is that the Eqs. (24) and (27) for nonlinear and radiative losses, respectively,
were deduced for an open end circular pipe. For the application of a square duct considered here, additional losses due,
e.g., to the duct corners might therefore have an impact.

In Fig. 9, the pressure spectra obtained experimentally (thick solid curve) and by numerical simulations (thin dashed
and solid curves) are shown. We observe that all the main resonant frequencies of the experiment are well matched by the
simulations. In addition, there is a fairly good agreement between the experimental and numerical values of the levels of
the resonant peaks of the pressure spectra. However, the levels of the curves in between the resonant modes are lower for
the numerical simulations than what was obtained in the experiment. This may be explained by the fact that experimental
peaks are generally broader than their numerical counterparts, but the possibility that the difference is due to the 1D
approximation cannot be entirely excluded. It is also interesting to note that the peaks of the two numerical pressure
spectra are well aligned, except for a small difference for the higher frequency modes.

A final note on the nonlinearities of the quasi-1D model is that by post-processing of the limit cycle behavior it is found
that the acoustics is essentially linear, i.e., clear signs of wave steepening are not seen. From Section 3.1.1, it is clearly seen
that the reflection coefficients are nonlinear though. Furthermore, during the limit-cycle the flame reaches the level where
the strong velocity oscillations bring the flame tip upstream of the sudden expansion and into the slot. As the flame is
quenched inside the slot it is indeed the case that the flame does reach nonlinearity. But even before the limit cycle sets in
the flame is weakly nonlinear due to flame wrinkling.
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6. Conclusion

In this paper we first present the quasi-1D Navier–Stokes and scalar transport equations for a variable cross-section
duct. The temperature and species mass equations are closed by expressions for the heat release and the reaction rates
obtained from the AFM formulation. The AFM approach has been introduced as a new phenomenological flame model in
real space and time for describing attached flames in a 1D geometry of variable cross-section. With the use of the
secondary subgrid it is shown that two-dimensional features of a jet entering the combustion chamber is accounted for.

The quasi-1D code is nonlinear and gives the time evolution of real-space quantities. This is in contrast to conventional
linear wave-equation models that only give the growth rate of the unstable resonant frequencies, and under the
assumption that a linear representation is adequate. Thus, the quasi-1D code is capable of reproducing the nonlinear
saturation of the acoustic oscillations, the so-called limit cycle. In order to achieve the correct magnitude of the limit-cycle
oscillations, it is crucial to account for the acoustic losses at the open end(s) of a duct. This is done by including the
nonlinear effects due to vortex shedding at the sharp bends at the duct exit, in addition to the losses due to acoustic
radiation from the open end exit.

The nonlinear code has been validated by first comparing results from using the simplified n�t heat release model with
corresponding analytical results. The AFM flame model has been validated by producing flame transfer functions and
comparing the results with analytical results available in the literature. Finally, the entire code was validated against the
oxy-fuel study of Ditaranto and Hals [19] in a sudden expansion burner. With the application of the AFM heat release
formulation the numerical simulations were able to reproduce the resonant frequencies of the acoustic pressure spectrum
of an oscillating attached flame with high accuracy. In addition, the levels of the resonant peaks were reproduced quite
well. From these findings we conclude that the quasi-1D nonlinear Navier–Stokes solver with the AFM formulation is a
promising tool for further studies of combustion instabilities in a variety of cases, including jets in variable cross-section
ducts or in co-flows.

Acknowledgments

This publication forms a part of the BIGCO2 project, performed under the strategic Norwegian research program
Climit. The authors acknowledge the partners: StatoilHydro, GE Global Research, Statkraft, Aker Kværner, Shell, TOTAL,
ConocoPhillips, ALSTOM, the Research Council of Norway (178004/I30 and 176059/I30) and Gassnova (182070) for their
support.

Appendix A. Viscous damping

The acoustic Strouhal number is defined by Srac ¼oa=û, where o is the angular frequency of the acoustic oscillations,
a is the radius of the pipe, and û is the amplitude of the acoustic velocity oscillations. If the acoustic Strouhal number is
very small, the boundary layer develops in a time much smaller than the acoustic period. In that case it is a good
approximation to assume that the boundary layer is always developed. Following White [31], the viscous force from the
walls Ff ,w then is

Ff ,w ¼�twSPDx, (A.1)
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where tw is the wall shear stress, SP is the duct perimeter, and Dx is the length of a grid cell. The wall shear stress can be
expressed as [31]

tw ¼
1
8fDru2, (A.2)

where fD is the Darcy friction factor. The Darcy friction factor can be approximated with the expression

fD ¼
64fprof ,1

RDh

, (A.3)

for laminar flows. For turbulent flows fD can be obtained from the relation

1ffiffiffiffiffi
fD

p ¼ 2:0logðfprof ,2RDh

ffiffiffiffiffi
fD

p
Þ�0:8: (A.4)

The Reynolds number is based on the hydraulic diameter Dh ¼ 4A=SP , where A is the cross-section of the duct, such that
RDh
¼ uDh=n. In the above equations, fprof ,1 and fprof ,2 are factors whose values are determined by the shape of the duct.

Thus, for a flow in a circular pipe fprof ,1 ¼ fprof ,2 ¼ 1. For a flow between two parallel plates we have fprof ,1 ¼ 3=2 and
fprof ,2 ¼ 0:64.

It should be noted that the expression (A.2) is valid only for fully developed flows, see for instance the work by Allam
and Åbom [32] for further details. This limitation is most prominent for pipes with large cross-sections, i.e., when the
Strouhal number Srac is not much smaller than 1. In a flame trap where the viscous damping in general is the largest,
however, the given expressions should be relatively good due to the very small cross-sections of the holes. For a more
applicable expression for acoustic losses in pipe flows, see the paper by Disselhorst and Wijngaarden [33].

Following Peters et al. [21], for small Helmholtz numbers ka and large shear numbers the damping coefficient due to
the viscous boundary layer is given by

a¼ o
c0

1ffiffiffi
2
p

Sh
1þ

g�1ffiffiffiffiffi
Pr
p

� �
þ

1

Sh2
1þ

g�1ffiffiffiffiffi
Pr
p �

gðg�1Þ

2Pr

� �� �
, (A.5)

where Sh¼ a
ffiffiffiffiffiffiffiffiffi
o=n

p
is the shear number and Pr is the Prandtl number. The above expression for a has been established

under the assumption of no mean flow in the system. This gives a viscous damping defined as

DP0 � expð�axÞ, (A.6)

where DP0 is the decrease in the acoustic pressure fluctuations, and x is the distance traveled by the acoustic waves.
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