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The effect of turbulence on the mass transfer between a fluid and embedded small
heavy inertial particles that experience surface reactions is studied. For simplicity, the
surface reaction, which takes place when a gas phase reactant is converted to a gas
phase product at the external surface of the particles, is unimolar and isothermal. Two
effects are identified. The first effect is due to the relative velocity between the fluid
and the particles, and a model for the relative velocity is presented. The second effect
is due to the clustering of particles, where the mass transfer rate is inhibited due to
the rapid depletion of the consumed species inside the dense particle clusters. This
last effect is relevant for large Damköhler numbers, where the Damköhler number
is defined as the ratio of the turbulent and chemical time scales, and it may totally
control the mass transfer rate for Damköhler numbers larger than unity. A model that
describes how this effect should be incorporated into existing simulation tools that
utilize the Reynolds averaged Navier–Stokes approach is presented.

Key words: isotropic turbulence, multiphase and particle-laden flows, turbulent reacting flows

1. Introduction

Both in nature and in industrial applications, one regularly finds small inertial
particles embedded in turbulent flows. By small inertial particles, we mean particles
that are smaller than the smallest scales of the turbulence and have significantly higher
material density than the fluid. For such particles, there will be momentum exchange
between the particles and the turbulent fluid, and, depending on the conditions, there
may also be heat and mass transfer. This is particularly so for chemically reacting
particles, but there are also a large number of other applications where heat and mass
transfer between particles and fluid are important. Here, the main focus will be on
reacting particles that consume one or more of the species in the embedding gas
through surface reactions. Relevant examples are chemical reactions on the surface of

† Email address for correspondence: nils.e.haugen@sintef.no
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Turbulence and mass transfer of particles with surface reactions 933

a catalytic particle, fuel oxidation on the surface of an oxygen carrying particle in a
chemical looping combustion reactor, condensation of water vapour on cloud droplets
and combustion or gasification of char.

The presence of turbulence in a fluid will enhance the transport properties of the
flow. This means that the mean-field viscosity, diffusivity and conductivity may be
drastically increased from their laminar values. This effect has been studied for many
years, and a large number of different models exist in the literature, such as the k-ε
model (Jones & Launder 1972) and different versions of the Reynolds stress models
(e.g. Pope 2003). Turbulence may also modify gas phase combustion, and even
though this is somewhat more complicated, a significant number of models have been
developed during the last decades. Some examples are the eddy dissipation model
(Magnussen & Hjertager 1976), the eddy dissipation concept (Ertesvåg & Magnussen
2000) and variations of probability density function (e.g. Dopazo 1994) models.

With the above knowledge in mind, it is interesting to realize that, except for the
recent work of Kruger et al. (2017), there is currently no model describing the effect
of turbulence on the heat and mass transfer of small inertial particles. When a reacting
particle is embedded in a turbulent flow, the turbulence can potentially influence the
mass transfer, and hence the surface reaction rates in two ways. The first way is
through particle clustering, where particles form dense clusters due to turbulence, and
where the gas phase reactants within the cluster are quickly consumed while there are
no particles that can consume the reactants in the particle voids outside the clusters.
The main effect of the clustering is to decrease the overall mass transfer rate. The
second way turbulence influences the mass transfer rate is by increasing the mean
velocity difference between the particle and the gas. This effect will increase the mass
transfer rate.

The same two effects are also active for the heat transfer. The similarity between
heat and mass transfer can be seen by considering the expressions for the transfer
coefficients of mass,

κ =
ShD
dp

, (1.1)

and heat,

κth =
NuDth

dp
, (1.2)

where dp is the particle diameter, Sh and Nu are the Sherwood and Nusselt numbers
and D and Dth are the mass and thermal diffusivities. For single spherical particles
in flows with low and medium particle Reynolds numbers, where the particle
Reynolds number Rep is given by (2.11), the Sherwood and Nusselt numbers can be
approximated by the empirical expressions of Ranz & Marshall (1952):

Sh= 2+ 0.69Re1/2
p Sc1/3,

Nu= 2+ 0.69Re1/2
p Pr1/3,

}
(1.3)

where

Sc= ν/D (1.4)
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is the Schmidt number and

Pr= ν/α (1.5)

is the Prandtl number, while ν is the viscosity and D and α are the mass and thermal
diffusivities, respectively.

A well-known example where reacting particles are consumed in a turbulent fluid
is the case of pulverized coal combustion, where turbulence influences the process in
several ways that are understood to varying degrees. The combustion of coal can be
divided into four separate processes: (i) drying, (ii) devolatilization, (iii) combustion
of volatiles and (iv) burnout of the remaining char. Processes (i) and (ii) involve
the evaporation of fluids and thermal cracking of hydrocarbons, while process (iii)
involves homogeneous reactions. In process (iv), gas phase species diffuse to the
particle surface and react with the solid carbon. This happens via adsorption of e.g.
an oxygen radical to a carbon site on the particle surface and a subsequent desorption
of carbon monoxide into the gas phase. This makes process (iv) dominated by
heterogeneous chemical reactions. Many published studies utilize Reynolds averaged
Navier–Stokes (RANS) based simulation tools that describe simulations of pulverized
coal conversion in the form of combustion or gasification with an Eulerian–Eulerian
approach (Gao et al. 2004; Zhang et al. 2005) or a Lagrangian–Eulerian approach
(Silaen & Wang 2010; Chen et al. 2012, 2000; Vascellari et al. 2014, 2015; Klimanek
et al. 2015). However, none of these papers take into account the effect of turbulence
on the heterogeneous char reactions. To the knowledge of the authors, the only
studies that take account of this effect are the papers of Luo et al. (2012), Brosh
& Chakraborty (2014), Brosh et al. (2015) and Hara et al. (2015) where the direct
numerical simulation (DNS) approach is used. In a DNS, all turbulence scales are
explicitly resolved on the computational grid, such that the effect of turbulence is
implicitly accounted for. However, the DNS approach is extremely costly and can
therefore only be used for small simulation domains. For simulations of large scale
applications, the RANS or LES (large eddy simulation) based simulation tools will
therefore be the only applicable tools for the foreseeable future.

In the current paper, the same framework developed by Kruger et al. (2017) has
been used and extended. The aim of the paper is to identify the effect of turbulence
on the mass and heat transfer of solid particles, and to develop models that describe
this effect for all Damköhler numbers. Here, the Damköhler number is defined as the
ratio between the integral time scale of the turbulence and the characteristic time scale
of the chemical reactions.

2. Mathematical model and implementation
In the current work, the so called point-particle direct numerical simulation

(PP-DNS) approach is used. Here, the turbulent fluid itself is solved with the DNS
methodology, where all turbulent scales are resolved and no modelling is needed.
The particles are however not resolved, but rather treated as point particles where the
fluid–particle momentum, mass and heat interactions are modelled. The point-particle
approach is a simplification that relies heavily on the quality of the models. The
alternative approach, which is to resolve the particles and their boundary layer, is
extremely computationally intensive and can currently not be done for more than a
few hundred particles, even on the largest computers (Deen & Kuipers 2014).

In this work we use the Pencil Code (The Pencil Code 2009), which is a high-
order finite-difference code for compressible hydrodynamic flows on a Cartesian mesh.
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Turbulence and mass transfer of particles with surface reactions 935

It is highly modular and can easily be adapted to different types of problems. The
code runs efficiently under the Message Passing Interface (MPI) library on massively
parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. In
the Pencil Code, the fluid flow is described by the Eulerian formalism, while the
Lagrangian formalism is used for the particle transport. Using the Eulerian formalism
for the fluid flow is a valid approximation as long as the fluid can be assumed to
be a continuum and as long as the diameter of each Lagrangian particle is not much
smaller than the mean free path of a typical fluid molecule.

A number of simplifications are made in this paper. This has been done in order
to make the simulations less computationally intensive, and, even more importantly,
to isolate the dominating physical mechanisms. The particles are considered to be
everlasting, i.e. they are not consumed. This has been done in order to get more
accurate statistics for the model development, but has no effect on the results as such.
The results obtained with everlasting particles are equally valid also for particles with
variable radii. The reaction on the particle surface converts reactant A to product B:

A→ B (2.1)

isothermally, i.e. there is no production or consumption of heat, such that only the
mass transfer effect is considered. As explained in the Introduction, the effect on
the heat transfer rate will be similar to the effect on the mass transfer rate. As
reactant A is converted to product B, the thermodynamical and transport properties
are not changed. The fact that the reactions are isothermal, and that the products do
not influence the thermodynamical or transport properties of the gas phase in our
simulations, will obviously have an influence on the results of individual runs, but it
will not, however, influence the resulting model that is built in this paper. The model
is made generic and independent of these kinds of application dependent properties.
The reason for this is that the model, which will be used in RANS simulations of
some application with particles that experience surface reactions at their solid surface,
will always use the real instantaneous temperature and composition field from the
RANS simulation. Furthermore, the reactions are assumed to be diffusion controlled,
i.e. the chemical kinetics are infinitely fast. This has been done in order to identify
the interesting effects. Note that the effects we are considering here are only affecting
the transfer rates to the particles, not the chemical kinetics. This means that if the
reactions were kinetics controlled, there would be no effect of the turbulence. Finally,
particle collisions are ignored since, even in the densest clusters, the volume fraction
of the particles is relatively small. Additionally, since particles that do collide will
typically continue to stay within the cluster, allowing for particles to collide will not
have an effect on the results as long as they do not agglomerate.

2.1. Fluid equations
The equations determining the motion of the carrier fluid are given by the continuity
equation

∂ρ

∂t
+∇ · (ρu)= 0, (2.2)

and the Navier–Stokes equation

ρ
Du
Dt
=−∇P+∇ · (2µS)+ ρf +F. (2.3)
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936 N. E. L. Haugen, J. Krüger, D. Mitra and T. Løvås

Here, ρ, u, µ = ρν and ν are the density, velocity and dynamic and kinematic
viscosities of the carrier fluid, respectively. The pressure P and the density ρ are
related by the isothermal sound speed cs, i.e.

P= c2
sρ, (2.4)

while the traceless rate of strain tensor is given by

S = 1
2(∇u+ (∇u)T)− 1

3∇ · u. (2.5)

Kinetic energy is injected into the simulation box through the forcing function f ,
which is solenoidal and non-helical and injects energy and momentum perpendicular
to a random wave vector whose direction changes every time step (Haugen &
Brandenburg 2006; Haugen et al. 2012). Similar kinds of forcing have also previously
been used for particle laden flows by other groups (Bec et al. 2007). The energy
injection rate is maintained at a level such that the maximum Mach number is
always below 0.5. The domain is cubic with periodic boundaries in all directions.
The momentum exchange term, F, is chosen to conserve momentum between the
fluid and the solid particles, i.e.

F=−
1

Vcell

∑
k

mkak, (2.6)

where Vcell is the volume of the grid cell of interest and mk and ak are the mass and
acceleration (due to fluid drag) of the kth particle within the grid cell.

The equation of motion of the reactant has the well-known advection–reaction–
diffusion form

∂X
∂t
+ u · ∇X =D∇2X + R̃, (2.7)

where X, M̄c and D are the mole fraction, the mean molar mass and the diffusivity
of the reactant, respectively. The last term in (2.7), R̃, is the sink term due to the
gas–solid reactions on the surface of the solid particles.

2.2. Particle equations
The Np particles that are embedded in the flow are treated as point particles, which
means that they are assumed to be significantly smaller than the viscous scale of the
fluid and the diffusive scale of the reactant. The motion of the kth particle is described
by the equations for position,

drk

dt
=Vk, (2.8)

and velocity,

dVk

dt
= ak, (2.9)

where the particle acceleration due to fluid drag is given by ak
=[u(rk)−Vk

]/τ k. Note
that gravity is neglected in this work. The particle response time is given by (Schiller
& Naumann 1933)

τ k
=

τSt

1+ f k
c

, (2.10)
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Turbulence and mass transfer of particles with surface reactions 937

where τSt = Sd2
p/18ν is the Stokes time, f k

c = 0.15(Rek
p)

0.687 is a Reynolds number
correction term to the classical Stokes time, S = ρp/ρ is the density ratio, ρp is the
material density of the particles,

Rek
p =
|u(rk)−Vk

|dp

ν
=

uk
reldp

ν
(2.11)

is the particle Reynolds number of particle k, and dp is the particle diameter.

2.3. Surface reactions
Let us now model the reactive term. We assume that the reactions are limited to the
surface of the particles and that the reactions are diffusion controlled, i.e. that all
reactant that reaches the particle surface is consumed immediately. (It is possible to
relax the assumption of diffusion controlled reactions by also accounting for chemical
kinetics at the particle surface: see Kruger et al. (2017).) The reactive term can then
be written as

R̃=
1

Vcell

∑
k

Ak
pκXk

∞
, (2.12)

where Ap=πd2
p is the external surface area of the particle, the mass transfer coefficient

is given by (1.1) and Sh is the Sherwood number.
To couple the reactive particle with the continuum equations we use the following

prescription: for the kth particle, which is at position rk, we set

Xk
∞
= X(rk), (2.13)

i.e. the far field reactant mole fraction is set equal to the reactant mole fraction
of the fluid cell where the particle is. In the current work, the particle Sherwood
number is determined by the expression of Ranz & Marshall (1952) (see (1.3) in
the Introduction), which is in contrast to the work of Kruger et al. (2017) where
the Sherwood number was set to a constant value of 2, which corresponds to the
Sherwood number in a quiescent flow (see (1.3)).

2.4. The reactant consumption rate
It is useful to define a reactant consumption rate as

α =−

(
R̃

X∞

)
= npApκ, (2.14)

where O represents the volume average of flow property O and np is the particle
number density. If everything is assumed to be homogeneously distributed over the
volume, the reactant consumption rate is given by

αhom = npApκ = npAp
ShD
dp

(2.15)

for a given diffusivity, particle size and number density. The mass transfer coefficient
and Sherwood number averaged over all particles are given by κ and Sh, respectively.
The averaging should be made over the scale of the unresolved turbulent eddies.
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In many RANS based simulation tools, where the local fluid velocity is not resolved,
it is common to neglect the relative velocity difference between the turbulent eddies
and the particles. From (1.3) it is clear that neglecting the relative velocity, which
means that Rep = 0, yields that Sh= 2. Since the effect of particle clustering is also
neglected in such models, the modelled reactant consumption rate becomes

αSh,Da = lim
Sh→2,Da→0

α = npAp
2D
dp
. (2.16)

In the following, αSh,Da will be used for normalization, such that the normalized decay
rate is given by

α̃ =
α

αSh,Da
. (2.17)

It is useful to define the Damköhler number, which is the ratio of the typical
turbulent and chemical time scales, as

Da=
τL

τc
, (2.18)

where τL=L/urms is the integral time scale of the turbulence, L is the turbulent forcing
scale, urms is the root-mean-square turbulent velocity and the chemical time scale is

τc = 1/αSh,Da. (2.19)

Particles in a turbulent flow field will tend to form clusters with higher particle
number density than the average (Squires & Eaton 1991; Eaton & Fessler 1994; Wood
et al. 2005; Toschi & Bodenschatz 2009). If the chemical time scale is short compared
to the lifetime of the clusters, the reactant concentration within the clusters will be
much lower than that outside the clusters. On the other hand, if the particle number
density is low, the particle clusters will not have enough time to consume a significant
fraction of the reactant during the lifetime of the cluster, and hence, the reactant
concentration will be roughly the same inside as it is outside the clusters. By assuming
that the lifetime of the clusters is of the order of the turbulent time scale, it is clear
that the reactant concentration of particle flows with low Damköhler number will
behave as if the particles were homogeneously distributed over the volume, i.e. for
small Damköhler numbers there is no effect of particle clustering on the reactant
consumption.

From (2.15)–(2.19) it can be deduced that for the homogeneous case, and then also
for all cases with low Damköhler numbers, the reactant consumption rate will scale
linearly with the Damköhler number for a given turbulent flow field, such that

αhom =
Da
τL

Sh
2
. (2.20)

When relaxing the restriction to small Damköhler numbers, the effect of particle
clustering eventually comes into play. Kruger et al. (2017) have shown that the
reactant consumption rate is given by

α =
αcαhom

αc + αhom
, (2.21)
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Turbulence and mass transfer of particles with surface reactions 939

where αc is a cluster dependent decay rate. (Note that since Kruger et al. assumed the
Sherwood number to be 2, their αhom equals our αSh,Da=Da/τL.) From this expression,
the following normalized reactant consumption rate is found to be

α̃ =
α

αSh,Da
=

αcτL

αcτL +DaSh/2
Sh
2
, (2.22)

where Sh is given by (1.3) and the corresponding relative velocity between the particle
and the fluid is determined by a model (which will be obtained in the next subsection).
For diffusion controlled reactions, the modified reactant decay rate, as given by (2.22),
is a measure of the relative modification to the mass transfer rate due to the effect of
turbulence. This means that a modified Sherwood number can now be defined that
accounts for the effect of turbulence:

Shmod = 2α̃ = Sh
αcτL

αcτL +DaSh/2
. (2.23)

In the limit of small Damköhler numbers, this expression reduces to Shmod = Sh, as
expected.

By employing the modified Sherwood number given by (2.23), one can now use
the common expression for the reactant consumption rate, as given by (2.15), to find
the real reactant consumption rate. In most cases, however, one needs the particle
conversion rate ṅreac for individual particles, which is closely connected to the reactant
decay rate. For diffusion controlled reactions, the particle conversion rate is given by
ṅreac = −κX∞Cg, where Cg is the molar concentration of the gas phase. The mass
transfer coefficient is now obtained by using the modified Sherwood number in (1.1),
such that

κ =
DShmod

dp
. (2.24)

In many applications, the reaction rate is not purely diffusion controlled. This can be
accounted for by including the effect of reaction kinetics at the particle surface. The
corresponding particle conversion rate can then be expressed as (Kruger et al. 2017)

ṅreac =−
λκ

λ+ κ
X∞Cg, (2.25)

where λ is the surface specific molar conversion rate. Since the reaction kinetics is
only dependent on the conditions at the particle surface, the surface specific molar
conversion rate is not affected by the turbulence. This is, as we have already seen,
not the case for the mass transfer coefficient, which is now given by (2.24).

The main conclusion of this paper is that particles with surface reactions must
account for the effect of turbulence on the mass transport to the particles. This is
done by using the modified Sherwood number, as defined in (2.23). In this way, all
the common machinery for calculating particle reaction rates can still be used since
the effects of the turbulence are incorporated into the modified Sherwood number.
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Label L Ngrid dp ρp Re Reλ Sh St τL αc

1A π/2 643 3.4× 10−3 500 80 50 2.32 1.0 1.6 0.9
2A 2π 1283 19× 10−3 50 400 120 2.83 1.0 5 0.23
3A 8π 2563 11× 10−3 500 2200 350 2.74 1.0 15 0.07

2AB 2π 1283 19× 10−3 25 400 120 2.69 0.5 5 0.26
3AB 8π 2563 11× 10−3 250 2200 350 2.64 0.5 15 0.09

2B 2π 1283 11× 10−3 50 400 120 2.45 0.3 5 0.21
2B* 2π 1283 19× 10−3 17 400 120 2.58 0.3 5 0.21
3B 8π 2563 11× 10−3 150 2200 350 2.57 0.3 15 0.09

2C 2π 1283 19× 10−3 5 400 120 2.45 0.1 5 0.55
3C 8π 2563 11× 10−3 50 2200 350 2.43 0.1 15 0.20

2D 2π 1283 19× 10−3 1.5 400 120 2.32 0.03 5 1.20
3D 8π 2563 11× 10−3 16 2200 350 2.31 0.03 15 0.45

2E 2π 1283 19× 10−3 0.5 400 120 2.22 0.01 5 4.10

TABLE 1. Summary of the different groups of simulations. For every row in the table,
a range of simulations with different Damköhler numbers have been performed. This
means that each row in the table corresponds to a given line in figures 5 and 6, while
individual points in the same figures correspond to individual simulations. The fluid density
is unity while the Schmidt number is 0.2 and the viscosity is 2 × 10−4 m2 s−1 for all
simulations. The Taylor micro-scale Reynolds number is given by Reλ = u′2[15/νε]1/2

where u′ = urms/
√

3. Columns 2–5 list input parameters, while the last six columns give
output from the simulations. The averaged Sherwood number for all particles is given by
Sh. The cluster decay rate, which is defined in (3.15), is given by αc.

3. Results
In all of the following, statistically stationary homogeneous and isotropic turbulence

is considered. The Reynolds number is varied by changing the domain size while
maintaining constant viscosity and turbulence intensity. The Damköhler number is
varied by changing the number of particles, while keeping everything else the same.
For the simulations in this work, up to 12.8 × 106 particles have been used. The
accuracy of the simulations have been assessed by performing grid independence
studies to verify that the turbulence is properly resolved. In addition, the number
of particles has been increased to check that the results are independent of this
parameter. When increasing the number of particles, the size and material density
of the particles had to be augmented in order to maintain constant Damköhler and
Stokes numbers. All relevant simulations are listed in table 1.

3.1. The mean relative particle velocity
In order to predict a representative value of the particle Sherwood number from (1.3),
the particle Reynolds number Rep is required. From (2.11) it is clear that this also
requires the relative particle velocity urel, which will be found in this subsection.

Given a particle with a response time that equals the Stokes time,

τp =
Sd2

p

18ν
, (3.1)
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such that τk < τp < τL, where τk is the Kolmogorov time scale and τL is the integral
time scale. With respect to the particle–turbulence interactions, the turbulent power
spectrum may be divided into three distinct regimes, based on the relation between
the particle response time and the turbulent eddy turnover time τeddy. The first regime
is defined as the section of the turbulent power spectrum where the turbulent eddies
have turnover times that are much larger than the response time of the particles, i.e.
where τeddy � τp. All the turbulent eddies in this regime will see the particles as
passive tracers, which follow the fluid perfectly. i.e. there will be no relative velocity
between the particles and the eddies. The third regime is defined as the part of the
power spectrum where the turbulent eddies have much shorter time scales than the
particles, i.e. where τeddy � τp. The eddies in regime three will see the particles as
‘heavy bullets’ that move in straight lines, without being affected by the motion of the
eddies. Hence, the velocity of these eddies will contribute to the relative particle–fluid
velocity. The second regime is now defined as the relatively thin band in between
regimes one and three, where τeddy≈ τp. These are the eddies that are responsible for
particle clustering, since they are able to accelerate the particles to a level where they
are thrown out of the eddy due to their inertia. In the following, we will refer to a
typical eddy in regime two as a resonant eddy, and we define the scale of this eddy
as `. The resonant eddies are identified by their time scale, τ`, which is of the order
of the particle response time, τp. For convenience, we set the two time scales equal,
such that

τ` = τp. (3.2)

Based on the definitions above, it is clear that the largest turbulent eddies that yield
a relative velocity between the fluid and the particles are the resonant eddies. By
assuming Kolmogorov scaling, the velocity of the resonant eddies is known to be
u`=urms(`/L)1/3, which can be combined with the above expression for the time scales
to yield

k` = kLSt−3/2, (3.3)

where the particle Stokes number is defined as

St=
τp

τL
(3.4)

and k` = 2π/` and kL = 2π/L are the wavenumbers of the resonant eddies and the
integral scale, respectively. In obtaining (3.3), the turnover time of the resonant eddies
is τ` = `/u` has also been used, while that of the integral scale eddies is τL = L/urms.

Since all scales smaller than ` will induce a relative velocity between the particles
and the fluid, it is reasonable to assume that the mean relative velocity between the
fluid and the particles will be a certain fraction β of the integrated turbulent velocity
ũ` of all scales smaller than `, such that

urel = βũ`, (3.5)

where ũ` is defined as

1
2

ũ2
` =

∫ kη

k`

E(k) dk (3.6)
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FIGURE 1. (Colour online) The parameter β, relating the relative particle velocity to the
sub-scale velocity as defined in (3.9), is shown for a number of different DNS simulations
as a function of Stokes number.

and kη = 2π/η is the wavenumber of the Kolmogorov scale (η= (ν3/ε)1/4), where ε
is the dissipation rate of turbulent kinetic energy. Integration of (3.6) yields

ũ` = urms

√
k−2/3
` − k−2/3

η

k−2/3
L − k−2/3

η

(3.7)

for E(k) = cε2/3k−5/3 where we have used that the total turbulent kinetic energy is
given by

1
2

u2
rms =

∫ kη

k1

E(k) dk, (3.8)

where k1 is the wavenumber of the largest scale in the simulation. Combining (3.3)
and (3.7) with (3.5) finally yields

urel = βurms

√
Stk−2/3

L − k−2/3
η

k−2/3
L − k−2/3

η

. (3.9)

The unknown constant in this equation, β, can be determined numerically from (3.5),
i.e. β = urel/ũ`. Here, the mean relative particle velocity urel is found directly from
DNS simulations, while ũ` is calculated from (3.7). It is seen from figure 1 that β is
close to 0.41 for most Stokes and Reynolds numbers. The main exception is for low
Reynolds and Stokes numbers, where β is significantly larger. This can be understood
by inspecting figure 2(a), where it is seen that for Re = 180 and St < 0.1, we are
already far into the dissipative sub-range, where our model is not expected to be
correct since it relies on a Kolmogorov scaling.

It is surprising to see that (3.9) reproduces the relative particle velocity for such
low Stokes numbers, even for the smaller Reynolds numbers. This may be explained
by reconsidering (3.2), where we assumed that the resonant eddies correspond to the
eddies that have exactly the same turnover time as the response time of the particles.
This is just an order of magnitude estimate, and a more correct expression would
probably be

τ` = γ τp, (3.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

82
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

or
. U

ni
. o

f S
ci

en
ce

 a
nd

 T
ec

hn
ol

og
y,

 o
n 

20
 D

ec
 2

01
7 

at
 1

1:
44

:0
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2017.820
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Turbulence and mass transfer of particles with surface reactions 943
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FIGURE 2. (Colour online) (a) Kinetic energy spectrum for DNS simulations with
different Reynolds numbers. (b) Relative particle velocity as a function of Stokes number.
In (b), symbols represent simulation results, while lines correspond to the model given by
(3.9) where the value of β has been chosen to be 0.41.

where γ is of the order of unity. More work should, however, be devoted to
understanding the coupling between the particles and the turbulent eddies. In particular,
a more exact definition of the resonant eddies is needed. We nevertheless believe
that β is a universal property of the heavy inertial particles approximation and the
Navier–Stokes equations that will have a constant value for all Re and St as long as
the resonant eddies are within the inertial range.

In figure 2(b), the average relative particle velocity, as found from the DNS
simulations (symbols), is compared with the predicted values from (3.9) (solid lines).
It is seen that the fit is rather good for most Reynolds and Stokes numbers. This
supports the use of (3.9) for predicting the relative particle velocity.

3.2. The cluster size
The typical size of the clusters ` is assumed to be the size of the resonant eddies.
From (3.3) this yields a cluster size of

`= LSt3/2. (3.11)

It can be seen from figure 3 that the distribution of the particle number density,
which is defined as the number of particles per unit volume, does indeed show more
small scale variation for the smaller Stokes numbers. This has been quantified in
figure 4 where the power spectrum of the particle number density is shown. Here we
see that the spectrum peaks at large scales for St = 1 while the peak is located at
much smaller scales for smaller Stokes numbers. The peak in the spectrum does not,
however, follow (3.11) as accurately as expected. The reason for this is most likely
that power spectra are not the right diagnostics to study the size of particle clusters.
Alternatively, the constant in the definition of the resonant eddies may not be unity
(see e.g. (3.10)). Another possible reason for the discrepancy may be finite Reynolds
number effects, which means that the clustering eddies are outside, or close to being
outside, the inertial range. Since (3.11) is based on Kolmogorov statistics, this would
give simulation results that violate (3.11). Finally, even poor statistics due to too few
particles relative to the number of clustering eddies, which means that the clusters are
not populated with enough particles, may also yield results that do not follow (3.11).
This can be understood by assuming a case with only two particles and a thousand
clustering eddies. By visualizing a snapshot of the particle positions, it would not
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FIGURE 3. (Colour online) Particle number density for St = 1 (a), St = 0.3 (b), St = 0.1
(c) and St= 0.03 (d) (runs 3A, 3B, 3C and 3D in table 1). It is only the Stokes number
that differs between the four simulations; all other parameters, including the total number
of particles, are the same.

be possible to identify any particle cluster, because the two particles would seem to
be randomly distributed. If, on the other hand, there were a thousand particles and
only two turbulent eddies, it would be straightforward to see that the particles tend
to cluster outside the eddies.

The power spectrum P can be integrated to yield a measure of the strength in the
particle number density fluctuations, given by the root-mean-square (r.m.s.) particle
number density:

nrms =

∫
P dk. (3.12)

It is found that the r.m.s. particle number density is decreasing with Stokes number.
More specifically, nrms is 1.6, 1.5, 1.2 and 0.8 for Stokes numbers of 1, 0.3, 0.1
and 0.03, respectively. This means that the high density regimes have higher particle
number densities for larger Stokes numbers.

3.3. Reactant consumption rate
The normalized reactant consumption rate is shown in figure 5. The symbols
correspond to the results from the DNS simulations, as given by (2.17), where
α is found from (2.14), while the solid lines are given by (2.22). Here, the Stokes
number is found by using the model for the relative velocity, as given by (3.9), in
the expression for the Sherwood number (1.3). The value of the cluster decay rate,
αc, is the only free parameter and it is chosen by a best fit approach between the
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FIGURE 4. Power spectrum of particle number density for runs 3A, 3B, 3C and 3D
in table 1.

DNS results (2.14) and the model results (2.21) for α. The values of αc are found in
table 1.

The value of α̃ for small Damköhler numbers equals the Sherwood number divided
by two, while the Damköhler number for which α̃ starts to decrease is determined
by the cluster decay rate αc. Overall, the model seems to follow the results from the
DNS simulations rather well.

From figure 5 it can be seen that for large Stokes numbers, the curves for the
normalized decay rates of a given Stokes number overlap for different Reynolds
numbers if the Reynolds number is high enough. This is because the resonant eddies
are at scales larger than the dissipative sub-range. So increasing the Reynolds number,
which may be considered a shift of the dissipative sub-range to smaller scales, does
not affect the resonant eddies, and hence also the clustering is unaffected. If, however,
the Reynolds or the Stokes number is small, such that the resonant eddies are in
the dissipative sub-range, a change in Reynolds number will have an effect on the
normalized decay rate (α̃). The line labelled ‘Kruger’ represents the results presented
in Kruger et al. (2017), where Re = 250 and the Sherwood number was set to 2,
while the Stokes number was unity. Except from a downwards shift, the results from
Kruger et al. (2017) follow the same trends as obtained with Sh > 2. The reason
for the downward shift can be seen from (2.22), where it is shown that for small
Damköhler numbers the value of α̃ scales linearly with the mean Sherwood number,
hence, the smaller Sherwood number of Kruger et al. (2017) leads to smaller values
of α̃.

Figure 6 shows that by decreasing the Stokes number, the normalized reactant decay
rate stays unchanged up to larger Damköhler numbers. This means that the effect of
particle clustering is weaker for smaller Stokes numbers. This is expected since the
limit of very small clusters corresponds to individual particles, where α̃ is independent
of Da.

If the turbulence is unchanged, a reduction in the Stokes number will, as is apparent
from (3.9), yield a reduced relative velocity between the particles and the fluid. Based
on (1.3), it is clear that this results in a decreased Sherwood number as long as the
particle diameter is not changed while changing the Stokes number. This effect is
identified in figure 6(b), where it is observed that the normalized reactant decay rate
is monotonically decreasing with the Stokes number for small Damköhler numbers.
(Please note that for small Damköhler numbers, the normalized reactant decay rate
equals half of the Sherwood number.) The same monotonic decrease is, however, not
observed for the cases with Re = 400, which is visualized in figure 6(a). This is
because, as can be seen from table 1, for the Re = 400 cases the particle diameter
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0.1
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10010–110–2

Da

FIGURE 5. (Colour online) Normalized decay rate as a function of Damköhler number for
Stokes number of unity (runs 1A–3A). Symbols represent simulation results, while lines
correspond to the model given by (2.22). The values of αc, which are used in (2.22), can
be found from table 1. The line labelled ‘Kruger’ corresponds to the results shown in
Kruger et al. (2017), where the Sherwood number was set to 2. The Reynolds number
for this case was 250, while the Stokes number was unity.

DNS
Model

DNS
Model

0.1

1.0

10010–110–2

Da

0.1

1.0

10010–110–2

Da

(b)(a)

FIGURE 6. (Colour online) Normalized decay rate as a function of Damköhler number
for different Stokes numbers. (a) The results for Re = 400 (runs 2A–C), (b) Re = 2200
(runs 3A–3D). Symbols represent simulation results, while lines correspond to the model
given by (2.22). The values of αc, which are used in (2.22), can be found from table 1.

is smaller for St= 0.3 than for St= 0.1, which happens to yield the same Sherwood
number for St= 0.1 and St= 0.3, and hence, the normalized reactant decay rates for
small Damköhler numbers are equal.

Particle size is important, and in the following it is considered by the effects it has
on the Sherwood number. From (2.23), it is clear that

α̃ = Sh/2 (3.13)

for Da→ 0. By inserting (2.11) and (3.9) into (1.3), the following expression for the
mean particle Sherwood number is obtained:

Sh= 2+ 0.69Sc1/3

√
urmsβdp

ν

[
Stk−2/3

L − k−2/3
η

k1/3
L − k−2/3

η

]1/4

. (3.14)
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FIGURE 7. (Colour online) Sherwood number as a function of Stokes number for Re=400
and Da= 0.01. Solid lines correspond to modelled results while symbols represent results
from individual simulations.

By combining the two equations above, one can now plot α̃ as a function of Stokes
number for different particle diameters. This is done in figure 7, where the solid lines
correspond to the expression discussed above and the symbols represent data from
individual simulations with Da= 0.01. One can see from the figure that, except from
a small downward shift, the simulation results follow the predictions. The reason for
the downward shift is that the Damköhler number for the simulations is not infinitely
small in reality, and hence the normalized decay rate is slightly smaller than it would
have been for Da→ 0.

3.4. The cluster decay rate
If the chemical time scale is much shorter than the lifetime of the particle clusters, the
interior of the clusters will quickly be void of reactants. This means that the reactant
consumption rate is controlled by the flux of reactant to the surface of the clusters,
where the reactant will be consumed at the exterior of the cluster. Based on this, it
is clear that for large Da (small τc), the clusters behave as large solid particles, or
super-particles. Following Kruger et al. (2017), the reactant decay rate is then given
by the so-called cluster decay rate:

αc = ncκcAc, (3.15)

where nc=A1`
−3 is the number density of clusters (or super-particles), κc=DtSh/` is

the reactant diffusion rate to the super-particles, Ac = A2`
2 is the surface area of the

clusters, Dt is the turbulent diffusivity that carries the reactant from the surrounding
fluid to the surface of the clusters and A1 and A2 are constants that depend on the
dimensionality of the clusters. It is clear that turbulent eddies larger than `, as given
by (3.11), cannot participate in the turbulent transport of reactants to the clusters,
while eddies slightly smaller than ` will participate. A first approximation of the
turbulent diffusivity to the surface of the clusters is therefore given by

Dt = u``= uLLSt2. (3.16)

By combining the above, taking into account (3.11), it is found that

αcτLSt
Sh
= A1A2, (3.17)
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Kruger et al. (2017)

FIGURE 8. (Colour online) The product αcτLSt as a function of St for runs with
resonant eddies in the inertial range. Symbols represent simulation results, while the line
corresponds to the model given by (3.18). The points labelled ‘Kruger’ correspond to
results obtained from data found in Kruger et al. (2017), where the Sherwood number
was set to 2 and the Reynolds number was 250.

where the right-hand side should be constant for resonant eddies well inside the
inertial range. From figure 8, it can be seen that the right-hand side of the above
equation is constant only for Stokes numbers smaller than ∼0.3. The values of the
variables on the left-hand side of (3.17) are all found in table 1. Since the value of
the right-hand side starts to increase already for St= 0.3, this may once again indicate
that γ from (3.10) is different from unity. The discrepancy may also be due to the
fact that when it comes to the shape of the particle clusters, a large scale strain may
stretch them. For St ∼ 1, there are no vortices that are larger than the clusters, and
hence the dimensionality of the clusters becomes different. This will inevitably yield
different values of A1A2. The value of the geometric coefficients can be fitted by

A1A2 = 0.08+ St/3, (3.18)

but this is just an empirical fit and more work is required in order to understand the
fundamentals behind the shape and size of the particle clusters.

In figure 8, it can be seen that the two points for St = 0.3 and Re = 400 are
very close together. Since these two simulations had different particle sizes, the fact
that they yield essentially the same value of A1A2 supports the assumption that the
expression for A1A2, as shown in (3.18), is independent on particle size.

4. Conclusion
In this work, the effect of turbulence on the mass (and heat) transfer between

inertial particles and the embedding fluid is studied. The turbulence is shown to have
two effects on the mass transfer. The first effect is active for all Damköhler numbers,
and here the turbulence increases the mass transfer rate due to the relative velocity
between the particles and the fluid. A corresponding model for the relative velocity
between the fluid and the particles is given by (3.9), which uses basic variables of
the flow. This model is the first main result of this paper. With this, adding effects
of relative velocity into RANS based simulations is straightforward.

The second effect with which turbulence influences the mass transfer rate is through
the clustering of particles. It is shown in §§ 3.2 and 3.3 that the size of the particle
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clusters increases with the particle Stokes number, and that the clustering decreases
the overall mass transfer rate between the particles and the fluid. It is also clear that
the effect of clustering is strong, and a reduction in reactant decay by a factor of 10
is seen already for Damköhler numbers of the order of 10. This is a confirmation of
the findings of Kruger et al. (2017). For many applications, it may therefore lead to
critically large errors if the effect turbulent clustering of particles has on the reaction
rate is neglected. In the current work, a model has been developed that takes this
effect into account and incorporates it into a modified Sherwood number. This is done
by combining (2.22) and (2.23) with (3.17), such that the modified Sherwood number
becomes

Shmod = Sh
A1A2

A1A2 +DaSt/2
, (4.1)

where A1A2 is given by (3.18). The above equation should be used, together with e.g.
(2.24) and (2.25), to obtain the correct mass transfer rate to the particles in standard
RANS simulation tools. This is the second main result of this paper.

More work is still required in order to fully understand the size and dimensionality
of the particle clusters. As of now, a unique way of characterizing particle clusters
does not exist, and very little work has actually been put into the study of large scale
clustering of particles.

The work presented here is related to mono-disperse particles. Since particles of
different Stokes numbers will cluster in different regions of the flow, one may expect
that the effect of particle clustering on the reactant decay rate is reduced for very
broad particle size distributions. This should be studied in future work.
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