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In this paper we describe the implementation of a ghost-cell immersed boundary method for compress-
ible flow with Dirichlet, Neumann and Robin boundary conditions. A general second-order reconstruction
scheme is proposed to enforce the boundary conditions via ghost points. The convergence test shows that
the present method has a second-order accuracy for three types of boundary conditions. Laminar flow
heat transfer problems are used to test the capability of the present method to handle different boundary
conditions with stationary and moving boundaries. The compressible effect on the heat transfer process
is then studied to illustrate the advantage and necessity of combining IB methods with a compressible
flow solver.
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1. Introduction

The development of accurate and efficient methods for arbitrar-
ily complex geometries and multiple boundary conditions has
been one of the main issues in computational fluid dynamics.
The immersed boundary (IB) method has been demonstrated to
have the capability of handling complex fluid–structure interaction
problems with high efficiency. The advantages of the IB method,
such as simplicity in grid generation, savings in computer
resources and straightforward parallelization, have expanded its
applications in multiphase flow simulations.

The immersed boundary method was first introduced by Peskin
to simulate the blood flow around a human heart valve [1]. The
main idea of this method is to use a Cartesian grid for fluid flow
simulation together with a Lagrangian representation of the
immersed boundary. A forcing term is introduced to represent
the interaction between the immersed boundary and the fluid,
and a discrete Dirac-delta function is used to smooth this singular
force on the Euler grid [2]. Since then, numerous modifications and
improvements have been made, which are well discussed and
categorized in [3–5].

The idea of the ghost cell immersed boundary (GCIB) method is
based on the work of Mohd-Yusof [6] and Fadlun et al. [7]. The
GCIB method treats the immersed boundary as a sharp interface,
and does not require the explicit addition of discrete forces in
the governing equations, thus it can be easily combined with the
existing solvers. The boundary condition on the IB is enforced
through the ‘‘ghost cells’’. The variable values of the ghost cells
are calculated with the IB boundary conditions and the fluid vari-
ables near the boundary. The flow solver senses the presence of
the immersed boundary through the extrapolated values at the
ghost points [8]. In order to avoid numerical instability caused by
the large, negative weighting coefficients in the extrapolation
formula, the concept of mirror points lying inside the flow domain
is adopted to ensure suitable weighting coefficients in the
reconstruction formula. Different interpolation procedures for the
mirror point [9] and extrapolation procedures for the ghost point
[10,11] can be utilized to obtain a second or even higher order
accuracy [12–14]. The GCIB method has shown large potential to
handle different fluid–solid interaction problems, including
those involving highly complex geometries [15–17] and moving/
deforming objects [18–20].

Extension of the immersed boundary method to heat transfer
problems has gained its popularity since Kim and Choi [21]. Many
efforts have been made to improve the accuracy of thermal bound-
ary condition enforcement and broaden its application. Dirichlet
and Neumann type boundary conditions for IB methods have been
studied by many researchers [21–26]. While for more complicated
boundary conditions, such as Robin and conjugate boundary
conditions, the number of available studies are still limited
[27–29]. The Robin boundary condition, also known as the mixed
Dirichlet–Neumann boundary condition, is important in heat and
mass diffusion processes coupled with convection and has been

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2015.09.024&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.09.024
mailto:fanjr@zju.edu.cn
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.09.024
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Fig. 1. 2D schematic diagram for the GCIB method, ghost points ( ), mirror points
(s), boundary intersection (BI) points (d), fluid points (h) and solid points (j).
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used for prescribing thermal or mass fluxes and surface reactions
[30–33].

Many fluid dynamic problems of engineering interest involve
compressible flows with very different Mach numbers and com-
plex heat/mass transfer processes. There are plenty of parameters
that are strongly coupled to each other like density or temperature
in a compressible flow. The influence of temperature ratio and
Mach number on the flow region has been illustrated by Wang
et al. [34] and Sabanca et al. [35]. These results indicate that there
is a large difference in the heat transfer phenomena between the
compressible flow and the incompressible one, and show the
limitation of the incompressible solver for flows with large tem-
perature ratios and high Mach numbers. So far, only a few IB meth-
ods are designed for compressible flows [36,37]. Therefore, it is
desirable to develop an IB method based on a compressible solver
for heat transfer simulation with complex boundary conditions,
which is more practical and has a potential to solve chemical
reaction problems.

To this end, a general boundary condition treatment, using the
ghost-cell immersed boundary method for compressible flows, is
developed and validated in the present work. The interaction
between immersed bodies and the fluid is expressed by ghost
points inside the immersed bodies, and these ghost points ensure
that boundary conditions are satisfied precisely on the immersed
boundary. Different reconstruction stencils are carried out to
maintain the second-order accuracy of the method for different
boundary conditions.

The reminder of the present paper is organized as follows.
Sections 2 and 3 describe the numerical methodology including
the flow solver and the ghost-cell immersed boundary method.
In Section 4 the capability of the proposed methodology to handle
heat transfer problems with different boundary conditions in
compressible flows is verified and validated, including flows with
moving interface and medium Mach numbers. Section 5 is devoted
to summary and conclusions.

2. Governing equations

The Navier–Stokes equations for a compressible fluid are
introduced here. The continuity equation is solved in the form

@q
@t
þr � ðquÞ ¼ 0; ð1Þ

where q is the fluid density, u is the fluid velocity, t is time.
The momentum equation is written in the form

Du
Dt
¼ 1

q
ð�rpþ FvsÞ; ð2Þ

where p is the pressure, Fvs ¼ r � ð2qtSÞ is the viscous force, t is the
kinematic viscosity, Sij ¼ 1

2 ð@ui=@xj þ @uj=@xiÞ � 1
3 dijr � u is the

trace-less rate of strain tensor and D=Dt ¼ @=@t þ u � r is the
convective derivative.

The energy equation is

@ ln T
@t
¼ �u � r ln T þ 1

qcpT
ðr � ðkrTÞ þ 2qtS � SÞ; ð3Þ

where T is the temperature, cp is the specific heat at constant
pressure and k is the heat conductivity.

The ideal gas equation of state is given by

p ¼ qRT ð4Þ

and can be reduce to

p ¼ c2
s q: ð5Þ

for isothermal flow. Here cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@p=@q

p
is the speed of sound.
The solvers of the PENCIL CODE [38] are utilized for the present
study. The sixth-order centered finite-difference scheme for spatial
derivatives and third-order Runge–Kutta scheme for time advance-
ment are used to solve the above governing equations. In the sim-
ulations, the time step is specified as the Courant time step that is
calculated based on a number of constraints involving maximum
values of velocity, viscosity, and other quantities on the right hand
sides of the evolution equations.

3. Ghost-cell compressible immersed boundary (GCCIB) method

In order to impose the boundary condition in such a way that
ensures a sharp interface separating the compressible fluid and
the solid, a ghost-cell immersed boundary methodology is devel-
oped here. The advantage of easy implementation of this method
enables us to use the existing solver of the PENCIL CODE. The basic
idea of the GCCIB method developed here to handle different types
of boundary conditions is based on the work of Haugen et al. [39].

A schematic diagram of the present GCCIB method is shown in
Fig. 1. The domain in shadow denotes the solid domain and the rest
is the fluid domain. For the sixth-order finite central difference
scheme used here, three layers of ghost points (s) are needed to
complete the discretization stencils near the boundary. The other
grid points inside the solid domain are solid points (j) which are
not used in the calculation. At the beginning of the simulations, a
detection of the immersed boundary and assignments of ghost
points and fluid points are carried out. Then the wall normal direc-
tion from each ghost point can be determined. In this study, the
mirror points are defined as the points that are normal to the
immersed boundary, lying in the fluid domain and have the same
distance to the immersed boundary as their corresponding ghost
points.

In most situations, the mirror points do not coincide with the
grid points. Thus a bilinear interpolation for 2D cases (or
tri-linear interpolation for 3D cases) is used to calculate the fluid
properties at the mirror points. The bilinear interpolation for a mir-
ror point with four surrounding fluid points can be expressed as

/ðx; y; zÞ ¼ C1xyþ C2xþ C3yþ C4: ð6Þ

Here / denotes a generic variable at the mirror point. The four
unknown coefficients can be determined using the variable values
of the four surrounding points
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fCg ¼ ½V ��1f/g: ð7Þ

where

fCgT ¼ fC1;C2;C3;C4g ð8Þ

is the vector of the unknown coefficients and

f/gT ¼ f/1;/2;/3;/4g ð9Þ

is the vector of the values of the four surrounding grid points. The
matrix ½V � is expressed as

½V � ¼

x1y1 x1 y1 1
x2y2 x2 y2 1
x3y3 x3 y3 1
x4y4 x4 y4 1

0
BBB@

1
CCCA: ð10Þ

When a ghost point is close to the immersed interface, its mir-
ror point may not have four surrounding fluid points (see in Fig. 2).
For such mirror points, we use two fluid points and one boundary
intersection point to implement a three-point interpolation stencil
[39].

The values of the ghost points can be further calculated with the
aid of the mirror points and the given boundary conditions. In this
study, the general boundary condition treatment [27] is introduced
to represent different boundary conditions:

a
@u
@n

� �
þ bu ¼ G: ð11Þ

In Eq. (11), u can be any variable at the immersed interface
location, and G is the desired boundary value. The type of the
Fig. 2. Interpolation stencil when mirror points are close to the IB. Two fluid points
and one BI point are used.

Fig. 3. Extrapolation implementation for (a) Dirichlet boundary condition a
boundary condition is determined by choosing the coefficients
a and b. For a Dirichlet type boundary condition, the coefficients
of Eq. (11) are set to be a ¼ 0 and b ¼ 1; for a Neumann type
boundary condition, the coefficients are a ¼ 1 and b ¼ 0; and for
a Robin type boundary condition, both coefficients are non-zero.

3.1. Dirichlet boundary condition

Under the Dirichlet boundary condition, variable values at the
immersed boundary are known. A second-order accurate formula-
tion for the value of the variable at the ghost point can be obtained
by using the interpolated values at the mirror point together with
the given boundary condition at the boundary intersection (BI)
point (as shown in Fig. 3(a)), which can be written as

uG ¼ 2uBI �uM ð12Þ

The assumption in the above implementation is that a constant
gradient exists between the mirror point and the ghost point.

3.2. Neumann boundary condition

For a Neumann condition specification, the variable gradient at
the BI is known instead of the actual value. The most obvious
choice in such a case is to use the specified gradient value to
compute the value of ghost points as (shown in Fig. 3(a))

uG ¼ uM þ ðd1 þ d0Þ �
@u
@n

� �
BI

ð13Þ

However, if only one mirror point is used to perform this oper-
ation, the numerical accuracy is observed to drop to first order. In
order to preserve the second order accuracy, it is necessary to
define two probe points along the surface normal direction, as
shown in Fig. 3(b), to construct the extrapolation formulation for
the ghost point:

uG ¼
u1 þu2

2
� ðd0 þ d1Þ

2
@u
@n

� �
BI
þ d2 þ d0

2ðd2 � d1Þ
ðu1 �u2Þ: ð14Þ

The position of the probe points are chosen to be 0:7Dx before
and after the mirror point so that the two points are in different
grids. When the mirror point is close to the IB, the first probe point
may lie inside the solid domain. In this situation, the probe points
need to be relocated so that the first probe point is outside the solid
domain.

A Neumann boundary condition is often used for the pressure
calculation at the ghost location. The pressure gradient in the
vicinity of the immersed boundary needs to be zero to fulfill the
non-penetration condition and this is implemented through the
nd (b) Neumann or Robin boundary condition with two probe points.



Fig. 4. L2-norms computed at various grid levels for application of velocity, and
different boundary conditions at the immersed boundary.

K. Luo et al. / International Journal of Heat and Mass Transfer 92 (2016) 708–717 711
reconstruction of the density by applying the equation of state. The
density values at the ghost points can be obtained by a first-order
expression

qG ¼ qM ð15Þ

for isothermal cases and

qG ¼ qMTM=TG ð16Þ

for non-isothermal cases to ensure @P
@n

� �
BI
¼ 0. The second-order

formulation, as presented in Eq. (14), can also be used for the ghost
point density calculation as

qG ¼
q1 þ q2

2
þ d2 þ d0

2ðd2 � d1Þ
ðq1 � q1Þ ð17Þ

for isothermal cases and

qG ¼
q1T1 þ q2T2

2TG
þ d2 þ d0

2ðd2 � d1Þ
� q1T1 � q2T2

TG
ð18Þ

for non-isothermal cases.
Since the ghost points in the solid object are not obtained from

the continuity equation, the mass conservation in the fluid–solid
interface is not necessarily fulfilled. Thus, a sufficiently refined grid
is usually desired to make the mass conservation violation as low
as possible.

3.3. Robin boundary condition

The Robin boundary condition can be seen as a linear combina-
tion of the variable value and its gradient at the immersed
interface. Here, the value at the immersed interface is given by

uBI ¼
uG þuM

2
ð19Þ

while the gradient at the interface is expressed as

@u
@n

� �
BI
¼ 1

d0 þ d1
u1 þu2 � 2TG þ

d2 þ d0

d2 � d1
ðu1 �u2Þ

� �
ð20Þ

The values at the ghost points can now be calculated by insert-
ing the two equations with Eq. (11).

4. Numerical implementation

4.1. Accuracy examination

During the development of the present GCCIB method, care has
been taken to maintain a second-order spatial accuracy in the
imposition of boundary conditions on the immersed interface.
Thus, one expects that the method will exhibit second-order accu-
racy at the immersed boundary. The convergence test for flow past
a circular cylinder at Re = 20 and Pr = 0.7 in a domain size of
10D � 10D is carried out to examine the spatial accuracy of the
present method. Partially reflecting Navier–Stokes characteristic
boundary conditions (NSCBC) [40] are applied at both the inlet
and outlet in the streamwise direction, while periodic boundary
conditions are used in the spanwise direction. The Mach number
is chosen to be 0.01. The cylinder is placed in the center of the
domain with a uniform flow, and a solution based on potential flow
theory is used as initial condition. The same flow is computed on a
series of grids (200 � 200, 400 � 400 and 800 � 800). We chose a
relatively small time step of 3� 10�6 s and integrate the solution
for 105 time steps. For a Dirichlet boundary condition, the temper-
ature and the velocity around the cylinder are compared with the
desired values. For Neumann and Robin boundary conditions, the
results with a highly resolved grid of 1600 � 1600 are used as a
baseline.
Norms of relative errors of variable distributions are indicatives
of accuracy of the scheme when the grid size changes. Since we
mainly care about the accuracy in the vicinity of the IB, the temper-
ature and velocity around the cylinder are used for comparing the
results obtained with the different resolutions. Fig. 4 shows the
L2-norm errors of velocity and temperature at the immersed
boundary. The line of Slope 1 and Slope 2 correspond to first
and second order accuracy. It is observed that second order
convergence is achieved for the velocity and temperature under
all different boundary conditions.
4.2. Flow over fixed circular cylinder

In this section, the present ghost-cell compressible immersed
boundary method is first validated by simulating isothermal forced
convection over a stationary circular cylinder. The domain bound-
ary conditions are the same as those used in Section 4.1. The Mach
number is chosen to be 0.01 so that the compressible effect can be
neglected and the results can be compared with data from an
incompressible flow. A large domain of 20D � 20D is utilized to
minimize domain confinement effects and the grid resolution is
chosen to be h ¼ 1=70D.

Fig. 5(a) and (b) represents the computed streamline for Re = 20
and 40. The streamlines around the cylinder are smooth enough,
indicating that the present method has successfully captured the
flow around the immersed boundary. The surface pressure coeffi-
cient is defined as CP ¼ ðp�p1Þ

1=2qU2
1

, which is represented in Fig. 5(c)

and compared with the results in [41]. The density becomes largest
at the front stagnation point and is smallest at the separating
points, which corresponds to a variation in pressure coefficient
Cp around the cylinder surface. In general, the pressure coefficient
Cp at Re = 20 and 40 shows good agreement between the present
study and the reference data.

The drag and lift coefficients are defined as CD ¼ FD

1=2qU2
1D

and

CL ¼ FL

1=2qU2
1D

, respectively, where FD and FL are the drag and lift

forces. The total force on the cylinder is given by the sum of the
pressure and viscous force integrated over the cylinder surface A,
which is F ¼

R
A PdAþ

R
A sdA; where s is the viscous stress tensor.

The total drag force, the length of the recirculation bubble and
the Strouhal number are compared with those of other studies



Fig. 5. Computed streamline pattern for (a) Re = 20 and (b) Re = 40; (c) pressure coefficient for Re = 20 and Re = 40.
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[29,41,42] in Table 1. The results show that the drag coefficient CD,
the Strouhal number Str and the recirculation length Lw are in good
agreement with other studies.

4.3. Heat transfer of a fixed cylinder in a free flow with different
boundary conditions

The flows and heat transfer over a circular cylinder of unit
diameter, at Reynolds numbers Re = 20 and 40 and a Prandtl num-
ber of Pr = 0.7, are investigated in this section in order to validate
the code’s capability of handling three types of thermal boundary
conditions. Both the temperature ratio and the Mach number are
chosen to have moderate values so that the compressible effect
can be controlled and the results are comparable with incompress-
ible ones. The influence of the Mach number and the temperature
ratio on the heat transfer process will be briefly discussed later.

The domain size, grid resolution and boundary conditions are
the same as those described in Section 4.2. The viscosity and heat
diffusivity are set to be constant. The local Nusselt number on the
boundary interface is defined as

Nulocal ¼ �
@T
@n

� �
BI

D
TBI � T0

; ð21Þ

where TIB and T0 are the temperature of the local immersed inter-
face and the temperature of the free flow. The averaged Nusselt
number is defined as

Nu ¼ 1P
DS

X
surface

Nulocal � DS ð22Þ

where DS is a line segment on the cylinder surface.
The temperature is normalized as
Table 1
Comparison of drag coefficient CD , recirculation length Lw and Strouhal number Str
with other previous studies.

Re = 20 Re = 40 Re = 100

CD Lw CD Lw CD Str

Present 2.117 0.92 1.578 2.17 1.337 0.169
Tritton [42] (exp) 2.09 – 1.58 – 1.25 –
Dennis and Chang [41] 2.045 0.99 1.522 2.35 – –
Pan [29] 2.039 0.914 1.522 2.258 1.336 0.164
~T ¼ T � T0

að@T=@nÞBI þ bðTBI � T0Þ
; ð23Þ

in which ~T means the dimensionless temperature. For Dirichlet
boundary condition, the parameters in Eq. (23) can be set as a ¼ 0
and b ¼ 1; for Neumann boundary condition, the parameters can
be set as a ¼ D and b ¼ 0; and for Robin boundary condition,
a ¼ D and b ¼ 1 are set.

Fig. 6 shows the temperature contours for different boundary
conditions. The contour increment is D~T ¼ 0:1. The difference in
temperature distribution can clearly be seen by considering the
temperature isotherms. The cylinder with Dirichlet boundary
condition is most efficient in heat transfer. The dense cluster of iso-
therms shown in Fig. 6(a) indicates a higher temperature gradient
in the flow near the cylinder, especially in the front region. Higher
surface temperature and temperature gradient enhance the heat
transfer process. While for the cylinder with Neumann boundary
condition, the restriction on temperature gradient over the cylin-
der surface suppress the heat transfer process, and a relatively
low temperature in the flow around the cylinder is then as
expected. For the Robin boundary condition, the heat transfer
process is even worse, since the temperature gradient is related
to the local temperature, which means that the temperature gradi-
ent will decrease when the flow goes downstream and the fluid
temperature will be even lower than that obtained with the
Neumann boundary condition.

The local Nusselt number and temperature distribution obtained
with the different boundary conditions for Re = 20 and Pr = 0.7 are
shown in Fig. 7. The average Nusselt numbers under the three types
of boundary conditions for both Re = 20 and Re = 40 are shown in
Table 2. The present results agree well with those of previous stud-
ies [29,43], which demonstrates the capability of the present
ghost-cell method for handling the three types of different bound-
ary conditions. Lower cylinder surface temperature can be
observed under Neumann and Robin boundary conditions, which
is consistent with the temperature distribution shown in Fig. 6.

4.4. Flow past an in-line oscillating cylinder with heat transfer

A primary attempt to apply the present GCCIB method to a mov-
ing body is made in this section. The case of free flow past an in-line
oscillating cylinder in a free stream at Re = 100 and Pr = 0.7 with



Fig. 6. Temperature contours for (a) Dirichlet boundary condition, (b) Neumann boundary condition and (c) Robin boundary condition.

Fig. 7. (a) Local Nusselt number distribution of three types of boundary conditions; (b) local temperature distribution of Neumann and Robin boundary conditions.

Table 2
Averaged Nusselt number over the cylinder surface under different boundary
condition, Re = 20 and 40.

Methods Re, Pr Nu (Dirichlet) Nu (Neumann) Nu (Robin)

Present 20, 0.7 2.4336 2.7850 2.7221
Pan [29] 20, 0.71 2.4553 2.7739 2.7202
Bharti et al. [43] 20, 0.7 2.4653 2.7788 –
Present 40, 0.7 3.2466 3.7950 3.6532
Pan [29] 40, 0.71 3.2653 3.7703 3.7078
Bharti et al. [43] 40, 0.7 3.2825 3.7755 –

K. Luo et al. / International Journal of Heat and Mass Transfer 92 (2016) 708–717 713
heat transfer is used for a test. According to the study of Hurlbut
et al. [44], choosing an oscillation frequency of the cylinder of
approximately twice the Strouhal frequency of the vortex shedding
causes a phase-locking, which can effectively increases the average
drag coefficient CD;mean and maximum lift coefficient CL;max. The
computational domain in the present simulation is chosen to be
20D � 16D and the grid size near the immersed boundary is
h ¼ D=75. The cylinder is located in the center of the domain. The
Mach number in the present study is 0.025. The motion of the
cylinder is now described by setting its horizontal position to
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XcðtÞ ¼ A sinð2pf ctÞ ð24Þ

The amplitude A is set to be A=D ¼ 0:14. The oscillation fre-
quency is chosen to be f c=f 0 ¼ 2, where f 0 is the frequency of nat-
ural vortex shedding of a corresponding stationary cylinder.
Neglecting the heat radiation, the heat transfer process between
the cylinder and the ambient fluid is usually considered as

hðTIB � T0Þ ¼ �ks
@T
@n

� �
IB
; ð25Þ

where h means the convective heat transfer coefficient and ks is the
heat conductivity of the cylinder. Thus, the thermal boundary con-
dition of the cylinder is set as the Robin type boundary condition.
Fig. 8. Vorticity contours (a)–(e) and isotherms (f)–(j) for in-line oscillating cylinder at Re
(i): 0.75T; (e) and (j): 1.0T.
Fig. 8 shows the instantaneous vorticity and temperature con-
tours at five instants of time within one vortex shedding period.
The synchronization of vortex shedding and temperature field with
cylinder movement is clearly observed by comparing Fig. 8(a) with
Fig. 8(e), and Fig. 8(f) with Fig. 8(j). This indicates that the present
method is able to successfully capture the lock-in phenomenon of
the flow and thermal fields.

To further investigate the influence of synchronization, the vari-
ation of the drag and lift coefficients, together with the Nusselt
number, were recorded over one period, as shown in Fig. 9.
Time-averaged drag coefficient, Nusselt number and maximum lift
coefficient are shown in Table 3 and compared with corresponding
data from the literature. When the cylinder is oscillating at a
= 100 when f c=f 0 ¼ 2:0. (a) and (f): 0.0T; (b) and (g): 0.25T; (c) and (h): 0.5T; (d) and



Fig. 9. Computed CD , CL , and Nu variation for in-line oscillating cylinder with Robin
type thermal boundary condition when lock-in happens (Re = 100, f c=f 0 ¼ 2).

Table 3
Comparison of lift and drag coefficients of in-line oscillating cylinder in a free stream
at Re = 100.

f c=f 0 CD;mean CL;max Nusselt

Present 0 1.3773 0.3303 5.9161
2 1.6834 0.9516 6.6194

Pan [29] 0 1.336 0.3238 5.9255
Hurlbut et al. [44] 0 1.41 0.31 –

2 1.68 0.95 –
Orley et al. [45] 0 1.39 0.33 –

2 1.73 0.93 –

Fig. 10. Influence of Mach number on drag coefficient and Strouhal number at
constant temperature ratio of T⁄ = 1.1.

Fig. 11. Temperature contours of a cylinder in a free stream with Robin boundary
condition at different Mach numbers. (a) Ma = 0.1; (b) Ma = 0.2; (c) Ma = 0.3.
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lock-in frequency, there is a noticeable increase in the amplitude of
the drag and lift forces, and an increase in the Nu number. The CD

and Nu change periodically with a frequency of f c , while the lift CL

changes with a frequency of f 0. Time-averaged overall Nusselt
number and the drag coefficient also increase when the lock-in
occurs. A good agreement is observed when comparing with those
in literature, which demonstrates that the present method can
capture the important practical flow and thermal properties very
well for moving-body problems.

4.5. The compressible effect on heat transfer

As shown in the governing equations and mentioned in the
Introduction, there are plenty of parameters that are strongly
coupled to each other in a compressible flow such as density, tem-
perature, and pressure, which makes it much more complicated
than incompressible flows. The Reynolds and Prandtl numbers
alone are not enough to define the flow characteristics in a
compressible flow. More parameters, like Mach number and
temperature ratio, have to be included in order to describe the flow
phenomena. In Section 4.3, the investigation of the heat transfer
process is limited to a very small Mach number of 0.01 to control
the compressible effect for code validation. In the current section,
the primary purpose is to test the capability of the present method
to describe flow and thermal phenomena in higher Mach number
flows. The effects of Mach number on the flow patterns and param-
eters such as the pressure, drag coefficients and Nusselt numbers
are also discussed.

The computational domain in the present simulation is chosen
to be 20D � 16D and the grid size near the immersed boundary is
h = D/75. The cylinder, with the Robin boundary condition, is
located in the center of the domain. The Mach number in this study
is 0.05, 0.1, 0.2 and 0.3. The temperature ratio between the solid
and the ambient fluid is defined as T� ¼ a @T

@nþ bT
� �

=T0 and is set
to T⁄ = 1.1. The viscosity and the thermal diffusivity are set to be
constant.

The influence of Mach number on flow parameters like drag
coefficient and Strouhal number is shown in Fig. 10. The increase
of the Mach number causes an increase in both the drag coefficient
and the vortex shedding frequency. The physical interpretation of
this phenomenon is that with the increase of the Mach number
the fluid near the cylinder is compressed accordingly. Such a com-
pressible effect causes a temperature raise (see Fig. 12(a)) as well
as an increase in the density near the cylinder, especially in the
front region. According to the equation of state, the value of the
pressure in front of the object increase faster than the pressure
behind it, and an increase in the pressure component of the drag
force is therefore expected. Besides, the increase of density may
also increase the viscous force around the cylinder, which also con-
tributes to the raise of the drag coefficient. The effect of compress-
ibility on the Strouhal number is consistent with the results of [35].
As the Mach number increase, the Strouhal number also increases
slightly.

The influence of the Mach number on the heat transfer process
is observed by considering the temperature contours for different
Mach numbers shown in Fig. 11. As can be seen, the Mach number



Fig. 12. (a) Instantaneous local temperature values around the cylinder surface at
the phase position of Fig. 11 in different Mach numbers; (b) averaged Nusselt
number variation due to the change of Mach number.

716 K. Luo et al. / International Journal of Heat and Mass Transfer 92 (2016) 708–717
effect increases the fluid temperature in the vicinity of cylinder
surface, especially so in the front part. Even the fluid in the
upstream region is influenced by this effect. As the Mach number
increases, the fluid temperature near the surface gets higher and
the isotherms go further upstream. Such a raise of fluid tempera-
ture highly restricts the solid–fluid heat transfer process and
causes a decrease in the average Nusselt number. As shown in
Fig. 12(b), when the Mach number increases from 0.05 to 0.3, the
Nu number has decreased almost 48% and most of this decrease
comes from the front region.

Although the Mach number in the present study is kept moder-
ate (Ma < 0.3), its influence on flow and thermal patterns is still
obvious. An even more prominent influence can be expected for
higher Mach numbers. The combination of the present IB method
and the compressible solver allows us to investigate multiphase
flow problems with complex boundary conditions, large Mach
numbers, and large temperature ratios.
5. Conclusion

In the current work we have presented a second-order recon-
struction scheme for the ghost-cell immersed boundary method
to handle Dirichlet, Neumann and Robin type heat transfer prob-
lems in compressible flows. The present method shows
second-order accuracy for three types of boundary conditions
and has been validated by simulating the laminar heat transfer
process of a circular cylinder in a free stream. A primary attempt
to apply the present IB method on the simulation of moving
boundaries was also made. A validation study for an in-line oscil-
lating cylinder in a free stream shows that the present method suc-
cessfully captures the lock-in phenomena in the flow and thermal
field. Finally, a study of the compressible effect in the heat transfer
process is carried out to illustrate the capability of the method for
relatively high Ma number flows, as well as the advantage of com-
bining IB methods with a compressible flow solver. Further
improvements, like the inclusion of non-spherical geometries and
multiple objects interaction, will be straightforward.
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