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Plans for today

● OpenGL as an API
– History, development
– Advantages and Disadvantages
– Howto get started

● Theory and examples
– Simple Drawing
– Vertex transformation pipeline
– Pixel Testing
– In-depth Texturing
– Lighting crashcourse
– Vertex Buffer Objects
– Sorry, no time for shaders...



What is OpenGL?

● IrisGL from SGI, competing vs PHIGS
● 1992: OpenGL 1.0 released (ARB)

● First 'open' 3D api for common use. 
– Hardware independent
– Widespread use in university and CAD circles

● OpenGL is a rasterizer API
– Transform 3D geometry to 2D images



What is OpenGL?

● OpenGL doesn't know about OS, windowing 
libraries or anything beyond rasterization
– Very dependent on the window API GL bindings

● GLX  (unix)
● WGL (windows)
● AGL (apple)

● OpenGL decides the content of a surface
– But not anything else



OpenGL today

● Version 2.0: Shaders

● Khronos: OpenGL ES

● ARB / Khronos
– Long Peaks

● Version 3.0: well.. uh...
– Deprecation model 

● What now?



Where to start

● Often the hardest problem – issues!

● Windows: WGL stuck at version 1.1
– wglGetProcAddress / GLEW

● Linux: Restricted drivers, glu hell
– Gotten a lot better since my last attempt ;)

● Mac: AGL/GLX interaction issues
– Still error prone



OpenGL issues

● Retaining OS independency
– GLUT
– SDL
– EGL
– Homebrew solution

● Direct X replacements?
– SDL is not enough
– EGL definitively not enough

● OS independency – hard. 



What I did... 

● For today I'll be using a homebrew solution

● dglCreateWindow
● dglDestroyWindow
● dglSwapBuffers

● Lots of fun to make your own wrapper library
– Takes a lot of time



Simple Drawing

● OpenGL is a rasterizer. 
● Converts primitives to 2D images

● Primitives:
– Points
– Lines
– Polygons

● Provide GL with
primitives and
that's it



Vertices

● 'Edge points' for primitives
– 2 for lines, 3 for triangles, 4 for quads

● Each vertex have a position
– Given as an affine value

● x, y, z, w

● Think of w as a divisor
– Real x = x / w
– Real y = y / w
– Real z = z / w
– 'If w = 1, it can be ignored'



Clipspace – 'OpenGL world'

● Origo is the center of this cube
● Camera looking at origo from along the z axis
● Top, bottom, left and right walls limits the screen

● What are the two last walls?
– Nearplane
– Farplane

● All walls at -1, +1

● Anything outside 
this cube
is clipped. 



Drawing a Quad

● Consists of 4 vertices
– Each vertex has a position

● OpenGL likes geometry in CCW order
– Can be changed, but let's play nice

● Need to pass this data to OpenGL

Vertex1 = < -0.8, -0.8, 0.0  >
Vertex2 = < 0,8, -0.8, 0.0  >
Vertex3 = < 0.8, 0.8, 0.0  >
Vertex4 = < -0.8, 0.8, 0.0  >



glVertexPointer

● Accepts an array of vertex positional data
● Takes four parameters

– size - 2, 3 or 4. Padded with [0,0,0,1]
– type - usually GL_FLOAT
– stride - distance between vertices, or 0
– pointer - a pointer to the data

● Allows GL to extract positional data from 
almost any memory construct. 

● Last but not least: 
– glEnableClientState(GL_VERTEX_POINTER);



glDrawArrays

● Draws stuff from the arrays given
– Positional data retrieved from the 

glVertexPointer call
– There are other arrays too!

● Takes three parameters
– mode - what to draw, GL_QUADS for now
– first - the first index to draw
– count - number of indices to draw. 

● glDrawArrays(GL_QUADS, 0, 4);



Drawing a Quad

● Time for an example!



glDrawElements

● Same as draw-arrays, but indirect. 
– Re-using indices

● Need an array of indices

unsigned char indices[] = { 0, 1, 2, 2, 1, 3 };

● glDrawElements( GL_TRIANGLES, 
6, 
GL_UNSIGNED_BYTE, 
indices

  );

● Use as conservative indextype as possible!
● Let's see this in action :)



Colors are fun!

● Let's add another pointer
● glColorPointer
● Works just like glVertexPointer

– Size, type, stride, pointer

● Again, remember to enable the pointer
– glEnableClientState(GL_COLOR_POINTER);
– Remember to disable this if not needed!

● Let's just do this with an example as well



Efficient use of OpenGL

● Statechanges are cheap
● Drawcalls are pipelinable

● Transition between draw and 
statechange is usually 
expensive (red arrows)
– Varying with HW

● You need statechanges
– Often possible to reduce

● Scenegraphs break this 
– But are usually worth it

Init

Swapbuffers

glDraw

Statechange

glClear



glBegin/glEnd must DIE !!!!!

● All tutorials begin with these two

● They are outdated and SLOW
– Tearing down program vertex arrays
– Only to have the driver re-build them
– Overkill of gl calls to draw anything
– Unknown amount of attributes per vertex
– Waste of internal driver allocations
– Excessive amount of state set per vertex
– Better to send the pointers instead

● Join the crusade today



Vertex Transformation Pipeline

● Placing vertices inside the clipspace cube is tedious!

● Use a good mathematical tool for this job: 
– Affine Transformations

● I'll skim through this fast
– In depth on this next week!



Moving (Translation)

● Moving a vertex is easy
– Simply add a value to the vertex component

● By adding the same value to all vertices 
– we can move everything.

● By adding the same value to all vertices in an object
– we move the object 



Scaling

● Scaling 'a vertex' is also easy
– Multiply by some value per component
– Looks kinda scary in maths

● By multiplying the same value to all vertices 
– we can scale everything.

● By multiplying the same value to all vertices in an object
– we scale the object 

Scales around origo



Affine transformations

● Combining these two

The colored 4x4 matrix is called an affine transform matrix
It holds both scaling and translations



Rotations

● Rotations are sort of like scaling
– Rotates around an axis

Rotates around origo

No, you can't rotate 
around all 3 at once.



Chaining Affine 
Transformations

● The point of affine transformations is that it can take 
ANY amount of transformations and squeeze them 
down to 16 numbers
– Matrix Multiply the steps together
– Order matters

● Then multiply the vertices by the matrix
● This matrix is called the modelview transform

Transformation =                        *                        *                        *                         

Scale down 
by 0.75 in 
all three 
directions

Rotate 
by 35 

degrees 
around y. 

Translate 
by 16 units 

in the 
z axis 

Rotate 
by 16 

degrees 
around y



OpenGL is easier!

● Builtin support for affine transformations

● glLoadIdentity - reset matrix to default
● glRotatef - axis to rotate around, and degrees
● glTranslatef - offset to translate in each axis
● glScalef - factor to scale in each axis

● To set up a modelview transformation matrix, simply 
call the GL calls in the proper order.

● OpenGL will apply the 
current modelview matrix 
on all vertices

glScalef(0.75, 0,75, 0.75);
glRotatef(35, 0, 1, 0);
glTranslatef(0, 0, 16);
glRotatef(16, 0, 1, 0);

Earlier example: 



Example time!

● We really need an example for this one!



Camera!

● OpenGL has no concept of camera
– Always looking at origo in clipspace

● Instead: Projection matrix
– Kinda works like the modelview matrix
– But mathematically applied before that

projection * modelview * vertex



What is a Frustum?

● Decapitated Pyramid



Perspective

● Set up a frustum 
instead of a clipbox. 
– Works in the same 

way, only different shape

● Projection transform: 
from frustum to clipbox
– Adding perspective 'resizing'



Setting up a Frustum matrix

● glFrustum
– Left
– Right
– Bottom
– Top
– Near - Do not set to zero
– Far - As far as you like ... but... 

● Keep in mind, the eye is at origo



Setting the Matrices

● glMatrixMode(GL_PROJECTION);
● glLoadIdentity();
● glFrustum(-1, 1, -1, 1, 1, 500);
● glMatrixMode(GL_MODELVIEW);
● glLoadIdentity();
● glRotate(...); glTranslate(...); glScale(...);



Or even easier!
Thanks to GLU

● gluPerspective - setting up camera matrix
– fov - field-of-view
– aspectrate - width/height
– nearplane - same as glFrustum
– farplane - same as glFrustum

● gluLookAt - setting up modelview matrix
– Eye - position of the eye
– Center - the coordinate you look at
– Up - direction up

● Example time!



Advertisement

● Enough Matrices for now
● More on the subject next week, lykkebo



Blending

● Mix a draws pixel with the buffercolor
● glBlendFunc(sourcefactor, destfactor);

– GL_ONE
– GL_ZERO
– GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
– GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA
– And more

● glBlendFuncSeparate

● Order matter!

Result = source * sourcefactor + dest * destfactor



Pixel Testing

● OpenGL can be configured to NOT draw 
– Per pixel basis

● Depth Testing
● Alpha Testing
● Stencil Testing



Depth Testing

● Painters Algorithm

● Buffer of z value per pixel
● Can configure to not draw 

pixels based on z value

● glEnable(GL_DEPTH_TEST);
● glDepthFunc(GL_LESS);

● Depthbuffer must 
be cleared per frame



Alpha Testing

● Drop pixels based on alpha value

● glEnable(GL_ALPHA_TEST);
● glAlphaFunc(GL_LESS, 0.3);

● Faster than blending



Stencil Testing

● Drop pixels based on custom per-pixel value

● glEnable(GL_STENCIL_TEST);
● glStencilFunc
● glStencilOp

● Useful for lots of stuff!
– Stencilshadows, masking
– Only creativity limits

● Stencilbuffer must be
cleared per frame



Texturing

● Adding images on top of your geometry



Texture Coordinates

● Like color, attribute per vertex
● glTexCoordPointer

– Size - usually 2 
– Type, - GL_FLOAT or an integer
– Stride, - like all other 
– Pointer

● Also needs enabling

0,0

WIDTH, HEIGHT

WIDTH, 0

0, HEIGHT



Texture Mapping



OpenGL Object Model

● Some OpenGL state is wrapped in Objects
– Textures
– Framebuffers and Renderbuffers
– Vertex Data Buffers
– Shaders and Programs

● Objects can be bound to targets
– Think of a target as a global variable

● GL_TEXTURE_2D
● GL_FRAMEBUFFER
● Etc... 

● Functions modifying objects work on targets, 
not objects



Creating Objects

● Objects are created when bound
– glBindTexture(GL_TEXTURE_2D, someid);

● You can grab id numbers as you please
– Bad idea, easy to mess up

● glGenTextures(arraysize, array);
– glGenTextures(1, &some_variable);



Object Namespaces

● All objects are stored in different lists
● Each object has a 32bit ID number unique 

per list
● Object 0 often special, depending on type



Texture Object Properties
(mipmaps excluded)

● Dimensionality -1D, 2D, 3D or Cube
● Width and height -Power of two?
● Data Format -RGB8, RGBA8, +++
● Wrapping rules -Clamp or Repeat
● Border -Usually 0
● Minification and Magnification Filter
● The texel data itself



Dimensionality

● One of these four 



Texture Magnification Filter

● Two to choose from

GL_NEAREST (default) GL_LINEAR
require 4x samples per pixel, 
but this performance hit is usually 
caught by the HW texture cache



Texture Wrap Modes

● Two to choose from

GL_REPEAT (default) GL_CLAMP
GL_CLAMP_TO_EDGE



Texture Wrap mode - why?

● Magfilter Linear + Wrapmode Repeat leads to this
– May be desirable for looping textures

Ugly border 'leak'



Mipmaps

● Smaller versions of textures



Miplevels

● Your GPU will pick the proper miplevel
● The one matching the size best

– Or the two bounding miplevels...

Miplevel 4 Miplevel 5

Drawn Quad



Mipmaps - why?

● Allows the GPU to sample in smaller textures

● Saves Texture bandwidth  
– Better speed

● Improved visual quality
– The mipmaps are the best visible reduction
– Better result than having the GPU do it

● Absolutely NO reason to not use mipmaps
– Barring lazyness or 1:1 overlays

● You can specify all mipmaps yourself ... or ...
● OpenGL can generate mipmaps for you



Texture Minification Filters

● Without mipmaps, choose from these two

GL_LINEAR
Also called 'bilinear' filtering 
(if you set the magfilter to this too!)

GL_NEAREST
same performance hit as
magnification filters



More Minification filters

● By choosing the nearest mipmap (*_MIPMAP_NEAREST)

GL_NEAREST_MIPMAP_NEAREST
Fastest choice, not pretty, visible 'banding'

GL_LINEAR_MIPMAP_NEAREST
Very visible 'banding', quite fast



More Minification filters

● By interpolating the nearest mipmaps (*_MIPMAP_LINEAR)

GL_NEAREST_MIPMAP_LINEAR
Default setting in OpenGL (!) 
Not pretty for the chessboard
Far distance turns into 'grey goo'
Best speed vs quality

GL_LINEAR_MIPMAP_LINEAR
High quality, somewhat expensive
Far distance turns into 'grey goo'
Also called 'trilinear filtering'



Anisotropic Filtering

● Special filter available through extension

Anistropic filtering
Very nice adjustable quality
Relatively expensive



Texture Object Properties
(mipmaps included)

● Per-mipmap
– Width and height -Power of two?
– Data Format -RGB8, RGBA8, +++
– Border -Usually 0
– The texel data itself

● Per texture object
– Dimensionality -1D, 2D, 3D or Cube
– Wrapping rules -Clamp or Repeat
– Minification and Magnification Filter



Setting per-mipmap properties ...

● glTexImage2D(
target - GL_TEXTURE_2D
miplevel - 0 through whatever
internalformat - GL_RGB, GL_RGBA
width
height
border - typically 0
format
datatype - input parameters
pointer
);



... and filtermodes ... 

● glTexParameteri(
target - GL_TEXTURE_2D
pname - GL_TEXTURE_MIN_FILTER

- GL_TEXTURE_MAG_FILTER
value - GL_LINEAR

- GL_NEAREST
- GL_*_MIPMAP_LINEAR
- GL_*_MIPMAP_NEAREST

);



... and wrapmodes!

● glTexParameteri(
target - GL_TEXTURE_2D
pname - GL_TEXTURE_WRAP_S

- GL_TEXTURE_WRAP_T
value - GL_REPEAT

- GL_CLAMP
);



Enough theory!

● Let's do some texture examples



Texture Units

● OpenGL supports multitexturing
– Up to 8 texture units at the same time

● glActiveTexture / glClientActiveTexture
● Very very annoying to use

– Ignore these, use shaders ;)

TU0
Multiply

TU1
Multiply

TU2
Interpolate

TexObj 4 TexObj 7 TexObj 3

Color



Tips and Tricks on Texturing

● OpenGL will swap textures in and out of GPU mem on demand
– This happens on glBindTexture(...)

● Envmapped textures are easy eyecandy
– We'll do that later on

● Multitexturing – don't go there w/o shaders



OpenGL Lighting

● 2 types of lighting
– Per-vertex lighting
– Per-pixel lighting (require shaders)

● Gouraud and Phong
– Identical per-vertex and per-pixel light models
– Alter the color of each vertex based on

● Known Light sources
● Ambient Light
● Surface properties (Materials)



Normals

● Each polyon has two faces
– Front side
– Back side

● The normal decides which face is 'front'
– One unit long

● More importantly: 
– Normal is useful in 

lighting calculations



Specifying Normals

● The OpenGL lighting model require Normals
– Can be calculated, but with some limitations...
– Typically provided by 3Dstudio

● glNormalPointer(...)
– Works like all the other pointer functions
– Like color, a normal is a vertex attribute



Facenormals vs vertexnormals

● A normal is a face attribute
● OpenGL works with vertex attributes

– This is actually better!

● Flat faces vs smooth faces



Specifying Light Sources

● OpenGL fixed function T&L supports 8 lights
– If you need more, create a system which 

selects the 8 most significant ones

● Each light source has a 
– Position - 'world coordinates'
– Diffuse/Ambient color  - usually the same
– Specular color
– Direction/Cone-angle - if a spotlight

● Use glLightfv to specify all this



Phong/Gourard Light Model

● Ambient Light - constant background lighting
● Diffuse Light - light reflected from surfaces
● Specular Light - light reflected from shiny surfaces
● Emissive Light - glowing light

– Phong/Gourard does not permit surfaces to enlighten eachother



Image better than a thousand words: 

Light components



Phong/Gourard Light Model

● Ambient Light is constant
● Diffuse Light is simply dot-multiplied with the normal
● Specular light is dot-multiplied with the view angle

– And taken into a power of alpha



What determine materials?

● The alpha decides the 'shinyness' of the material
– OpenGL: between 0 (hard) an 128 (virtually invisible)

● Ka and kd are usually identical
– Typically the color of the object
– Since everything is usually textured, normally white

● Ks is the shinyness color of the material
– Usually white for metallic or plastic surfaces

● Ke is very rarely used, usually zero. 



Lights

● Enough theory, let's do an example!
– Per-vertex lighting
– Per-pixel lighting



Vertex Buffer Objects

● Sending pointers per drawcall is not optimal
– Buses not suited for bursts of small data packets

● Better solution: 
– pre-upload vertex data to GPU

● Vertex Buffer Objects (VBO's)



Types of VBOs

● STATIC - Non-skinned objects
● DYNAMIC - Skinned objects
● STREAM - To be used once 

● DRAW - data only used for drawing
● READ - data only used for reading
● COPY - both draw and read

● Turns into these enums:
– GL_STATIC_READ
– etc



VBOs are very easy to use

● glGenBuffers
● glBindBuffer
● glBufferData(

target - GL_ARRAY_BUFFER or
  GL_ELEMENT_ARRAY_BUFFER

size  - bytesize of this buffer
ptr  - data to put in buffer. Or NULL
type - enum from last slide
);

● Can be mapped
– glMapBuffer / glUnmapBuffer



VBO Example?

● Well, okay... 



OpenGL: The Bigger Picture

● Models come from 3D studio or Blender
– Rarely from hand-programmed arrays

● Each model have N drawcalls
● Each drawcall have one material

– Diffuse Color, Texture
– Specular Color, hardness
– And often more – check 3Dstudio

● Ultimately, you want a model.draw()
– Sets up materials
– Calls the proper draw

● API does not really matter!



And finally... shaders?

● GLSL
– C-like vectorbased shading language

● Programs
– Vertex shader + Fragment Shader
– Replace the fixed-function pipeline

● Do everything yourself... ouch?
● Great possibilities

● Maybe a later course ;)



Questions and stuff

● Fire away!
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