
Introduction to OpenGL

Andreas Danner Nilsen
andreasd@pvv.ntnu.no

Plans for today

● OpenGL as an API
– History, development
– Advantages and Disadvantages
– Howto get started

● Theory and examples
– Simple Drawing
– Vertex transformation pipeline
– Pixel Testing
– In-depth Texturing
– Lighting crashcourse
– Vertex Buffer Objects
– Sorry, no time for shaders...

What is OpenGL?

● IrisGL from SGI, competing vs PHIGS
● 1992: OpenGL 1.0 released (ARB)

● First 'open' 3D api for common use.
– Hardware independent
– Widespread use in university and CAD circles

● OpenGL is a rasterizer API
– Transform 3D geometry to 2D images

What is OpenGL?

● OpenGL doesn't know about OS, windowing
libraries or anything beyond rasterization
– Very dependent on the window API GL bindings

● GLX (unix)
● WGL (windows)
● AGL (apple)

● OpenGL decides the content of a surface
– But not anything else

OpenGL today

● Version 2.0: Shaders

● Khronos: OpenGL ES

● ARB / Khronos
– Long Peaks

● Version 3.0: well.. uh...
– Deprecation model

● What now?

Where to start

● Often the hardest problem – issues!

● Windows: WGL stuck at version 1.1
– wglGetProcAddress / GLEW

● Linux: Restricted drivers, glu hell
– Gotten a lot better since my last attempt ;)

● Mac: AGL/GLX interaction issues
– Still error prone

OpenGL issues

● Retaining OS independency
– GLUT
– SDL
– EGL
– Homebrew solution

● Direct X replacements?
– SDL is not enough
– EGL definitively not enough

● OS independency – hard.

What I did...

● For today I'll be using a homebrew solution

● dglCreateWindow
● dglDestroyWindow
● dglSwapBuffers

● Lots of fun to make your own wrapper library
– Takes a lot of time

Simple Drawing

● OpenGL is a rasterizer.
● Converts primitives to 2D images

● Primitives:
– Points
– Lines
– Polygons

● Provide GL with
primitives and
that's it

Vertices

● 'Edge points' for primitives
– 2 for lines, 3 for triangles, 4 for quads

● Each vertex have a position
– Given as an affine value

● x, y, z, w

● Think of w as a divisor
– Real x = x / w
– Real y = y / w
– Real z = z / w
– 'If w = 1, it can be ignored'

Clipspace – 'OpenGL world'

● Origo is the center of this cube
● Camera looking at origo from along the z axis
● Top, bottom, left and right walls limits the screen

● What are the two last walls?
– Nearplane
– Farplane

● All walls at -1, +1

● Anything outside
this cube
is clipped.

Drawing a Quad

● Consists of 4 vertices
– Each vertex has a position

● OpenGL likes geometry in CCW order
– Can be changed, but let's play nice

● Need to pass this data to OpenGL

Vertex1 = < -0.8, -0.8, 0.0 >
Vertex2 = < 0,8, -0.8, 0.0 >
Vertex3 = < 0.8, 0.8, 0.0 >
Vertex4 = < -0.8, 0.8, 0.0 >

glVertexPointer

● Accepts an array of vertex positional data
● Takes four parameters

– size - 2, 3 or 4. Padded with [0,0,0,1]
– type - usually GL_FLOAT
– stride - distance between vertices, or 0
– pointer - a pointer to the data

● Allows GL to extract positional data from
almost any memory construct.

● Last but not least:
– glEnableClientState(GL_VERTEX_POINTER);

glDrawArrays

● Draws stuff from the arrays given
– Positional data retrieved from the

glVertexPointer call
– There are other arrays too!

● Takes three parameters
– mode - what to draw, GL_QUADS for now
– first - the first index to draw
– count - number of indices to draw.

● glDrawArrays(GL_QUADS, 0, 4);

Drawing a Quad

● Time for an example!

glDrawElements

● Same as draw-arrays, but indirect.
– Re-using indices

● Need an array of indices

unsigned char indices[] = { 0, 1, 2, 2, 1, 3 };

● glDrawElements(GL_TRIANGLES,
6,
GL_UNSIGNED_BYTE,
indices

);

● Use as conservative indextype as possible!
● Let's see this in action :)

Colors are fun!

● Let's add another pointer
● glColorPointer
● Works just like glVertexPointer

– Size, type, stride, pointer

● Again, remember to enable the pointer
– glEnableClientState(GL_COLOR_POINTER);
– Remember to disable this if not needed!

● Let's just do this with an example as well

Efficient use of OpenGL

● Statechanges are cheap
● Drawcalls are pipelinable

● Transition between draw and
statechange is usually
expensive (red arrows)
– Varying with HW

● You need statechanges
– Often possible to reduce

● Scenegraphs break this
– But are usually worth it

Init

Swapbuffers

glDraw

Statechange

glClear

glBegin/glEnd must DIE !!!!!

● All tutorials begin with these two

● They are outdated and SLOW
– Tearing down program vertex arrays
– Only to have the driver re-build them
– Overkill of gl calls to draw anything
– Unknown amount of attributes per vertex
– Waste of internal driver allocations
– Excessive amount of state set per vertex
– Better to send the pointers instead

● Join the crusade today

Vertex Transformation Pipeline

● Placing vertices inside the clipspace cube is tedious!

● Use a good mathematical tool for this job:
– Affine Transformations

● I'll skim through this fast
– In depth on this next week!

Moving (Translation)

● Moving a vertex is easy
– Simply add a value to the vertex component

● By adding the same value to all vertices
– we can move everything.

● By adding the same value to all vertices in an object
– we move the object

Scaling

● Scaling 'a vertex' is also easy
– Multiply by some value per component
– Looks kinda scary in maths

● By multiplying the same value to all vertices
– we can scale everything.

● By multiplying the same value to all vertices in an object
– we scale the object

Scales around origo

Affine transformations

● Combining these two

The colored 4x4 matrix is called an affine transform matrix
It holds both scaling and translations

Rotations

● Rotations are sort of like scaling
– Rotates around an axis

Rotates around origo

No, you can't rotate
around all 3 at once.

Chaining Affine
Transformations

● The point of affine transformations is that it can take
ANY amount of transformations and squeeze them
down to 16 numbers
– Matrix Multiply the steps together
– Order matters

● Then multiply the vertices by the matrix
● This matrix is called the modelview transform

Transformation = * * *

Scale down
by 0.75 in
all three
directions

Rotate
by 35

degrees
around y.

Translate
by 16 units

in the
z axis

Rotate
by 16

degrees
around y

OpenGL is easier!

● Builtin support for affine transformations

● glLoadIdentity - reset matrix to default
● glRotatef - axis to rotate around, and degrees
● glTranslatef - offset to translate in each axis
● glScalef - factor to scale in each axis

● To set up a modelview transformation matrix, simply
call the GL calls in the proper order.

● OpenGL will apply the
current modelview matrix
on all vertices

glScalef(0.75, 0,75, 0.75);
glRotatef(35, 0, 1, 0);
glTranslatef(0, 0, 16);
glRotatef(16, 0, 1, 0);

Earlier example:

Example time!

● We really need an example for this one!

Camera!

● OpenGL has no concept of camera
– Always looking at origo in clipspace

● Instead: Projection matrix
– Kinda works like the modelview matrix
– But mathematically applied before that

projection * modelview * vertex

What is a Frustum?

● Decapitated Pyramid

Perspective

● Set up a frustum
instead of a clipbox.
– Works in the same

way, only different shape

● Projection transform:
from frustum to clipbox
– Adding perspective 'resizing'

Setting up a Frustum matrix

● glFrustum
– Left
– Right
– Bottom
– Top
– Near - Do not set to zero
– Far - As far as you like ... but...

● Keep in mind, the eye is at origo

Setting the Matrices

● glMatrixMode(GL_PROJECTION);
● glLoadIdentity();
● glFrustum(-1, 1, -1, 1, 1, 500);
● glMatrixMode(GL_MODELVIEW);
● glLoadIdentity();
● glRotate(...); glTranslate(...); glScale(...);

Or even easier!
Thanks to GLU

● gluPerspective - setting up camera matrix
– fov - field-of-view
– aspectrate - width/height
– nearplane - same as glFrustum
– farplane - same as glFrustum

● gluLookAt - setting up modelview matrix
– Eye - position of the eye
– Center - the coordinate you look at
– Up - direction up

● Example time!

Advertisement

● Enough Matrices for now
● More on the subject next week, lykkebo

Blending

● Mix a draws pixel with the buffercolor
● glBlendFunc(sourcefactor, destfactor);

– GL_ONE
– GL_ZERO
– GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
– GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA
– And more

● glBlendFuncSeparate

● Order matter!

Result = source * sourcefactor + dest * destfactor

Pixel Testing

● OpenGL can be configured to NOT draw
– Per pixel basis

● Depth Testing
● Alpha Testing
● Stencil Testing

Depth Testing

● Painters Algorithm

● Buffer of z value per pixel
● Can configure to not draw

pixels based on z value

● glEnable(GL_DEPTH_TEST);
● glDepthFunc(GL_LESS);

● Depthbuffer must
be cleared per frame

Alpha Testing

● Drop pixels based on alpha value

● glEnable(GL_ALPHA_TEST);
● glAlphaFunc(GL_LESS, 0.3);

● Faster than blending

Stencil Testing

● Drop pixels based on custom per-pixel value

● glEnable(GL_STENCIL_TEST);
● glStencilFunc
● glStencilOp

● Useful for lots of stuff!
– Stencilshadows, masking
– Only creativity limits

● Stencilbuffer must be
cleared per frame

Texturing

● Adding images on top of your geometry

Texture Coordinates

● Like color, attribute per vertex
● glTexCoordPointer

– Size - usually 2
– Type, - GL_FLOAT or an integer
– Stride, - like all other
– Pointer

● Also needs enabling

0,0

WIDTH, HEIGHT

WIDTH, 0

0, HEIGHT

Texture Mapping

OpenGL Object Model

● Some OpenGL state is wrapped in Objects
– Textures
– Framebuffers and Renderbuffers
– Vertex Data Buffers
– Shaders and Programs

● Objects can be bound to targets
– Think of a target as a global variable

● GL_TEXTURE_2D
● GL_FRAMEBUFFER
● Etc...

● Functions modifying objects work on targets,
not objects

Creating Objects

● Objects are created when bound
– glBindTexture(GL_TEXTURE_2D, someid);

● You can grab id numbers as you please
– Bad idea, easy to mess up

● glGenTextures(arraysize, array);
– glGenTextures(1, &some_variable);

Object Namespaces

● All objects are stored in different lists
● Each object has a 32bit ID number unique

per list
● Object 0 often special, depending on type

Texture Object Properties
(mipmaps excluded)

● Dimensionality -1D, 2D, 3D or Cube
● Width and height -Power of two?
● Data Format -RGB8, RGBA8, +++
● Wrapping rules -Clamp or Repeat
● Border -Usually 0
● Minification and Magnification Filter
● The texel data itself

Dimensionality

● One of these four

Texture Magnification Filter

● Two to choose from

GL_NEAREST (default) GL_LINEAR
require 4x samples per pixel,
but this performance hit is usually
caught by the HW texture cache

Texture Wrap Modes

● Two to choose from

GL_REPEAT (default) GL_CLAMP
GL_CLAMP_TO_EDGE

Texture Wrap mode - why?

● Magfilter Linear + Wrapmode Repeat leads to this
– May be desirable for looping textures

Ugly border 'leak'

Mipmaps

● Smaller versions of textures

Miplevels

● Your GPU will pick the proper miplevel
● The one matching the size best

– Or the two bounding miplevels...

Miplevel 4 Miplevel 5

Drawn Quad

Mipmaps - why?

● Allows the GPU to sample in smaller textures

● Saves Texture bandwidth
– Better speed

● Improved visual quality
– The mipmaps are the best visible reduction
– Better result than having the GPU do it

● Absolutely NO reason to not use mipmaps
– Barring lazyness or 1:1 overlays

● You can specify all mipmaps yourself ... or ...
● OpenGL can generate mipmaps for you

Texture Minification Filters

● Without mipmaps, choose from these two

GL_LINEAR
Also called 'bilinear' filtering
(if you set the magfilter to this too!)

GL_NEAREST
same performance hit as
magnification filters

More Minification filters

● By choosing the nearest mipmap (*_MIPMAP_NEAREST)

GL_NEAREST_MIPMAP_NEAREST
Fastest choice, not pretty, visible 'banding'

GL_LINEAR_MIPMAP_NEAREST
Very visible 'banding', quite fast

More Minification filters

● By interpolating the nearest mipmaps (*_MIPMAP_LINEAR)

GL_NEAREST_MIPMAP_LINEAR
Default setting in OpenGL (!)
Not pretty for the chessboard
Far distance turns into 'grey goo'
Best speed vs quality

GL_LINEAR_MIPMAP_LINEAR
High quality, somewhat expensive
Far distance turns into 'grey goo'
Also called 'trilinear filtering'

Anisotropic Filtering

● Special filter available through extension

Anistropic filtering
Very nice adjustable quality
Relatively expensive

Texture Object Properties
(mipmaps included)

● Per-mipmap
– Width and height -Power of two?
– Data Format -RGB8, RGBA8, +++
– Border -Usually 0
– The texel data itself

● Per texture object
– Dimensionality -1D, 2D, 3D or Cube
– Wrapping rules -Clamp or Repeat
– Minification and Magnification Filter

Setting per-mipmap properties ...

● glTexImage2D(
target - GL_TEXTURE_2D
miplevel - 0 through whatever
internalformat - GL_RGB, GL_RGBA
width
height
border - typically 0
format
datatype - input parameters
pointer
);

... and filtermodes ...

● glTexParameteri(
target - GL_TEXTURE_2D
pname - GL_TEXTURE_MIN_FILTER

- GL_TEXTURE_MAG_FILTER
value - GL_LINEAR

- GL_NEAREST
- GL_*_MIPMAP_LINEAR
- GL_*_MIPMAP_NEAREST

);

... and wrapmodes!

● glTexParameteri(
target - GL_TEXTURE_2D
pname - GL_TEXTURE_WRAP_S

- GL_TEXTURE_WRAP_T
value - GL_REPEAT

- GL_CLAMP
);

Enough theory!

● Let's do some texture examples

Texture Units

● OpenGL supports multitexturing
– Up to 8 texture units at the same time

● glActiveTexture / glClientActiveTexture
● Very very annoying to use

– Ignore these, use shaders ;)

TU0
Multiply

TU1
Multiply

TU2
Interpolate

TexObj 4 TexObj 7 TexObj 3

Color

Tips and Tricks on Texturing

● OpenGL will swap textures in and out of GPU mem on demand
– This happens on glBindTexture(...)

● Envmapped textures are easy eyecandy
– We'll do that later on

● Multitexturing – don't go there w/o shaders

OpenGL Lighting

● 2 types of lighting
– Per-vertex lighting
– Per-pixel lighting (require shaders)

● Gouraud and Phong
– Identical per-vertex and per-pixel light models
– Alter the color of each vertex based on

● Known Light sources
● Ambient Light
● Surface properties (Materials)

Normals

● Each polyon has two faces
– Front side
– Back side

● The normal decides which face is 'front'
– One unit long

● More importantly:
– Normal is useful in

lighting calculations

Specifying Normals

● The OpenGL lighting model require Normals
– Can be calculated, but with some limitations...
– Typically provided by 3Dstudio

● glNormalPointer(...)
– Works like all the other pointer functions
– Like color, a normal is a vertex attribute

Facenormals vs vertexnormals

● A normal is a face attribute
● OpenGL works with vertex attributes

– This is actually better!

● Flat faces vs smooth faces

Specifying Light Sources

● OpenGL fixed function T&L supports 8 lights
– If you need more, create a system which

selects the 8 most significant ones

● Each light source has a
– Position - 'world coordinates'
– Diffuse/Ambient color - usually the same
– Specular color
– Direction/Cone-angle - if a spotlight

● Use glLightfv to specify all this

Phong/Gourard Light Model

● Ambient Light - constant background lighting
● Diffuse Light - light reflected from surfaces
● Specular Light - light reflected from shiny surfaces
● Emissive Light - glowing light

– Phong/Gourard does not permit surfaces to enlighten eachother

Image better than a thousand words:

Light components

Phong/Gourard Light Model

● Ambient Light is constant
● Diffuse Light is simply dot-multiplied with the normal
● Specular light is dot-multiplied with the view angle

– And taken into a power of alpha

What determine materials?

● The alpha decides the 'shinyness' of the material
– OpenGL: between 0 (hard) an 128 (virtually invisible)

● Ka and kd are usually identical
– Typically the color of the object
– Since everything is usually textured, normally white

● Ks is the shinyness color of the material
– Usually white for metallic or plastic surfaces

● Ke is very rarely used, usually zero.

Lights

● Enough theory, let's do an example!
– Per-vertex lighting
– Per-pixel lighting

Vertex Buffer Objects

● Sending pointers per drawcall is not optimal
– Buses not suited for bursts of small data packets

● Better solution:
– pre-upload vertex data to GPU

● Vertex Buffer Objects (VBO's)

Types of VBOs

● STATIC - Non-skinned objects
● DYNAMIC - Skinned objects
● STREAM - To be used once

● DRAW - data only used for drawing
● READ - data only used for reading
● COPY - both draw and read

● Turns into these enums:
– GL_STATIC_READ
– etc

VBOs are very easy to use

● glGenBuffers
● glBindBuffer
● glBufferData(

target - GL_ARRAY_BUFFER or
 GL_ELEMENT_ARRAY_BUFFER

size - bytesize of this buffer
ptr - data to put in buffer. Or NULL
type - enum from last slide
);

● Can be mapped
– glMapBuffer / glUnmapBuffer

VBO Example?

● Well, okay...

OpenGL: The Bigger Picture

● Models come from 3D studio or Blender
– Rarely from hand-programmed arrays

● Each model have N drawcalls
● Each drawcall have one material

– Diffuse Color, Texture
– Specular Color, hardness
– And often more – check 3Dstudio

● Ultimately, you want a model.draw()
– Sets up materials
– Calls the proper draw

● API does not really matter!

And finally... shaders?

● GLSL
– C-like vectorbased shading language

● Programs
– Vertex shader + Fragment Shader
– Replace the fixed-function pipeline

● Do everything yourself... ouch?
● Great possibilities

● Maybe a later course ;)

Questions and stuff

● Fire away!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

