
Fourth order exponential integrators for the
nonlinear Schrödinger equation
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Abstract

We explore the numerical properties of the the fourth order
Lawson exponential integrator and the fourth order ETD4RK
on the nonlinear Schrödinger equation. The Lawson
(integrating factor) scheme does not satisfy the stiff order
conditions derived by Hochbruck and Ostermann, but works
better in some cases for this equation nevertheless.
By varying the regularity of the potential and the initial
condition, order reduction is observed and explained for both
integrators but in different scenarios.

(25 minute talk)
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Overview

1 The Schrödinger equation.

2 Lawson4 vs. ETD4RK in the smooth case.

3 Dependency on the regularity of the potential.

4 Dependency on the regularity of initial conditions.

5 EXPINT: A MATLAB package for exponential integrators.
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The nonlinear Schrödinger equation

Our aim is to solve the nonlinear Schrödinger equation,

iψt = −ψxx + (V (x) + λ|ψ|2)ψ, x ∈ [−π, π]

ψ(x , 0) = ψ0(x), x ∈ [−π, π]

ψ(−π, t) = ψ(π, t), t > 0.

where V (x) is some potential, λ is the nonlinearity constant and
ψ0 is some initial condition.

After a spectral discretization, we have the system of equations

du

dt
= Lu + N(u), where

N(u) = −i · F
(
(V (x) + λ|F−1(u)|2)F−1(u)

)
L = diag(−ik2)
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The format of an exponential Runge–Kutta scheme

One step of an exponential integrator of Runge–Kutta type applied
to a problem

ẏ = Ly + N(y , t)

is written

Yi = h
s∑

j=1

aij(hL) N(Yj , tn−1 + cjh) + ecihLyn−1, i = 1, . . . , s,

yn = h
s∑

i=1

bi (hL)N(Yj , tn−1 + cjh) + ehLyn−1.

and coefficient functions are written up in a Butcher-like tableau.
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Fourth order Lawson scheme based on cRK4

The Lawson4 scheme in this format reads:

0
1
2

1
2ez/2

1
2

1
2

1 ez/2

1
6ez 1

3ez/2 1
3ez/2 1

6

where z = hL.
In general, Lawson schemes may be written as

aij(z) = ãije
(ci−cj )z and bi (z) = b̃ie

(1−ci )z .

where ãij , b̃i and ci are the coefficients from the underlying
Runge–Kutta scheme.
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ETD4RK

0
1
2

1
2ϕ1(z/2)

1
2

1
2ϕ1(z/2)

1 ϕ1(z/2)(ez/2 − 1) ϕ1(z/2)

ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 −ϕ2 + 4ϕ3

where

ϕk(z) =
1

(k − 1)!

∫ 1

0
e(1−θ)zθk dθ

Due to Cox & Matthews 2002.

Computing ϕk(z) is not a trivial task.
(6,6)-Padé-approximations together with scaling and corrected
squaring is used here.
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Lawson is order 4

An introductory numerical test with smooth IC and smooth
potential:

PSfrag replacements

Timestep h

‖
u
(·
,1

)
−

u
h
(·
,1

)‖
2

Global error, NLS, N = 256, IC: exp(sin(2x)), Pot: 1/(1 + sin2(x)), λ = 1

4

ETD4RK
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The stiff order conditions

Hochbruck and Ostermann (2004) introduced stiff order conditions
for analyzing exponential integrators on semilinear parabolic
problems.

The first one reads

hϕ1(z)N(u(t0))− h
s∑

i=1

bi (z)N(u(t0)) = hψ1(z)N(u(t0))

so they require ψ1(z) = 0.
But for Lawson, ψ1(z) looks like

ψ1,env

ψ1

|k|
100101

10

1

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

10
−7

10
−8

For ETD-schemes, ψ1(z) = 0, because they use ϕ1(z).
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Dependency on potential V (x)

From the first stiff order condition, we get a contribution less than
order 4 to the error depending on the regularity of N. N does not
have a higher regularity than the potential V (x).

Proposition

If the regularity r of N is ≤ 8, assuming smooth initial conditions,
we have an error contribution from the first stiff order condition

||hψ1N||2 = O(h1+ r
2
− 1

4 )

The proof is done by using the ψ1,env-function to bound ψ1, and
then summing over each Fourier coeffient, where Fourier
coefficients of N decays by r .

With regard to dependency on potential-regularity, we have
that local order equals global order (seen numerically).
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Numerical experiment with varying potential

Setting V (x) to be a random function with Fourier decay k−2 , we
get the following result

PSfrag replacements

Timestep h

‖
u
(·
,
1
)
−

u
h
(·
,
1
)‖

2

Global error, NLS, N = 256, IC: exp(sin(2x)), Pot: Reg2, λ = 1

1.75

4

ETD4RK
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and the expression Ch1+ r
2
− 1

4 gives exactly order 1.75.
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Numerical experiment with varying potential

Setting V (x) to be a random function with Fourier decay k−4, we
get the following result

PSfrag replacements
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u
(·
,
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u
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,
1
)‖

2
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4

2.75
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and the expression Ch1+ r
2
− 1

4 gives exactly order 2.75.
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Dependency on the initial condition

ETD-schemes suffer from order reduction when the initial
condition has low regularity, the error contribution being

Ch
r
2
− 1

4 .

Lawson is less sensitive to the regularity of the initial
condition. At regularity 4 we almost regain classical order:
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Linear problem, λ = 0

We observe numerically that most of the dependency on the
IC-regularity is still present for Lawson when we set λ = 0. Then
the problem is linear.

Applying the Lawson4 stepper to the simpler equation

u̇ = Lu + Vu

yields the following expression

un+1 =

[
EE +

h

6
(EEV + 4EVE + VEE )

+
h2

6
(EVEV + EVVE + VEVE )

+
h3

12
(EVVEV + VEVVE ) +

h4

24
VEVVEV

]
un

where E = ehL/2.
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The exact solution of the linear problem

Following Jahnke and Lubich (2000), we write the exact solution of
u̇ = (L + V )u as given by the variation of constants formula;

eh(L+V )u0 = ehLu0 +

∫ h

0
esLV e(h−s)(L+V )u0 ds

and we may recursively apply this formula to the red part above.
This yields

eh(L+V )u0 = ehLu0

+

∫ h

0
es1LV e(h−s1)Lu0 ds1

+

∫ h

0
es1LV

∫ h−s1

0
es2LV e(h−s1−s2)(L+V )u0 ds2ds1

and this should be done three more times.
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The Lawson approximation

Lawson solves each of these multi-dimensional integral to a
sufficient degree of accuracy, for example:∫ h

0
es1LV e(h−s1)Lu0 ds1 =

h

6
(VE 2+4EVE+E 2V )u0+

h5

2880
f (4)(ξ)u0

which is the Simpson rule, exact for cubic polynomials.

The error term is

f (4)(ξ) = eξL[L, [L, [L, [L,V ]]]]e(h−ξ)L = eξLad4
L(V )e(h−ξ)L.

Regarding ū = e(h−s)Lu as a continous function and L = d2

dx2

and V as operators on functions, we find the error term to be

esL
(
V (8)ū + 4V (7)ū(1) + 6V (6)ū(2) + 4V (5)ū(3) + V (4)ū(4)

)
(in general, we have adm

L (V )u =
∑m

i=0 2i
(m

i

)
V (2m−i)u(i))
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The Lawson approximation

The double integral∫ h

0
es1LV

∫ h−s1

0
es2LV e(h−s1−s2)Lu0 ds2ds1

h/2

h

0

0 s1

s2

h/2

h

is approximated in the points in the figure by the
quadrature rule

h2

6
(EVEV + EVVE + VEVE )

with degree of precision 2. The error term is∫ h

0

∫ h−s1

0
g(s1, s2) ds1ds2 =

h2

6
(EVEV +EVVE +VEVE )+CM3h

5

where the third derivatives of g is bounded by M3.
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The Lawson approximation

The triple integral∫ h

0
es1LV

∫ h−s1

0
es2LV

∫ h−s1−s2

0
es3LV e(h−s1−s2−s3)Lu0 ds3ds2ds1

s1

s2

s3

h

h

0

0 h/2

h/2

h/2
h

is approximated in the two points

(s1, s2, s3) =
{(

h
2 , 0,

h
2

)
,
(
0, h

2 , 0
)}

by h3

12(EVVEV + VEVVE ) with degree of
precision 1 (exact on linear functions).

The last quadruple integral is evaluated at one point, h4

24VEVVEV
and is exact for constant functions.
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Lawson dependency on initial condition

The error formula for the Simpson quadrature requires u0 to
be 4 times differentiable for order 4 of Lawson (and also the
potential to be 8 times differentiable).

The error terms from the double, triple and quadruple integral
requires less regularity.

Lawson on a constant potential shows no dependency on the
initial condition, then [L,V ] = 0.

When mixing low regularity potential and low regularity initial
condition, the differences in performance between Lawson and
ETD are small.
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Numerical implementation in MATLAB

All computations are performed in a now released
MATLAB-package, EXPINT, featuring:

Easy implementation and comparison
of exponential integrators (more than
30 included).

Numerous examples of discretizations
of common PDEs.

ϕ-functions computed by
(6,6)-Padé-approximations together
with scaling and corrected squaring.

The EXPINT-package and an accompanying technical report may
be downloaded from

http://www.math.ntnu.no/num/expint/
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