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Abstract

We give an introduction to exponential integrators, starting with
a motivation for their use. A format for describing exponential
integrators as an extension of general linear schemes (including
RK-schemes and multistep-schemes), and order conditions in
this setup are developed. Stiff order conditions are relevant for
parabolic problems and are also described. A Matlab package
has been developed to ease the implementation and testing of
most known exponential integrators, we describe this package
and end with some numerical examples using it.

(50 minute talk)
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Overview

1. Motivation, splitting of the equation

2. Format for exponential integrators

3. Stiff order conditions

4. ϕ functions

5. Numerical results

6. A brief history

7. References
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Motivation

We want to solve semilinear problems, typically PDEs,

ut = Lu +N (u, t), u(x , 0) = u0(x)

— The linear operator L is typically unbounded, yielding, after
space discretization, a system of ODEs that normally would
have to be solved by an implicit integrator.

— The nonlinear operator is assumed to be nonstiff in the sense
that it can be approximated by an explicit method.

— This is typically the case when N does not depend on spatial
derivatives.
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Motivation, cont.

A space-discretization yields a system of ODEs,

ẏ = Ly + N(y , t), y(0) = y0

where L is now a matrix.

— This splitting is not unique for a given differential equation

— L is better kept time-independent, for computational reasons.

The strategy is to treat the linear part exactly, and the nonlinear
part in an explicit manner.
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Example, expints vs other types

Kuramoto–Sivashinsky, global error
vs. timestep. 512-point spectral
discretization.

Allen–Cahn, global error vs.
timestep. 80-point Chebyshev
spectral discretization.

(plots taken from Kassam and Trefethen, 2005)

www.ntnu.no Håvard Berland, Exponential integrators



7

Exponential integrator

Definition
An exponential integrator has the following properties

1. If L = 0 the scheme reduces to a standard general linear
method (the underlying scheme).

2. If N(y , t) = 0 for all y and t , the scheme reproduces the exact
solution of ẏ = Ly + N(y , t).

General linear methods are a generalization of both Runge–Kutta
and multistep schemes.
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A simple example

Take the equation
ẏ = Ay + b

where A and b are constants as an example.

The numerical integrator

yn+1 = ehAyn +
ehA − 1

hA
hb

will solve this equation (let it be scalar or vector) exactly.

It is an exponential integrator in the sense just defined. In the limit
A → 0, we recover the Euler scheme.
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Derivation of an exponential integrator

Let ẏ = Ly + N(y , t). Premultiply with e−tL (integrating factor)

e−tLẏ = e−tLLy + e−tLN(y , t)

integrate,∫ tn+h

tn

d
dτ

(
e−τLy(τ)

)
dτ =

∫ tn+h

tn
e−τLN(y , τ) dτ

e−(tn+h)Ly(tn + h)− e−tnLy(tn) =

∫ tn+h

tn
e−τLN(y , τ) dτ

y(tn + h) = ehLy(tn) + e(tn+h)L
∫ tn+h

tn
e−τLN(y , τ) dτ
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Derivation cont.
Substitute τ = tn + θh in the integral,

y(tn + h) = ehLy(tn) + h
∫ 1

0
e(1−θ)hLN(y(tn + θh), tn + θh) dθ

which is still an exact representation of the solution.

— Exponential Time Differencing (ETD) schemes now arise from
approximating N(y(τ), τ) by a polynomial p(θ) and then
integrating exactly.

— Approximating by a constant at θ = 0 is the simplest choice,
and it leads to ETD-Euler

yn+1 = ehLyn + hϕ1(hL)N(y(tn), tn)
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Building the polynomial

For building the polynomial p(θ) approximating N(y , t) when
integrating from tn to tn+1 there are two approaches,

— Intermediate stages, find lower order approximations Yi of y at
points within tn < t < tn+1 and use N(Yi) in some quadrature
rule. This is the Runge–Kutta approach.

— Use the approximate values of y at earlier time-steps. This
leads to multistep-schemes (Adams–Bashforth).

— Combining these two approaches, we get general linear
methods.
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ETD-schemes
Formalizing the above framework, we note the following lemma

Lemma
The exact solution of the initial value problem

ẏ(t) = Ly(t) + N(y(t)), y(0) = y0

has the expansion

y(t) = etLy0 +
∞∑

`=1

ϕ`(tL)t`N(`−1)(y0).

where

ϕ`(z) =
1

(`− 1)!

∫ 1

0
e(1−θ)z θ`−1 dθ.
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Lawson schemes
An alternative to the ETD-approach which also leads to exponential
integrators was developed by Lawson in 1967.

1. Change of variables: z(t) = e−(t−tn)Ly(t) yielding in the
system ż(t) = e−(t−tn)LN(e(t−tn)Lz(t)).

2. Apply a general linear scheme to the system in z, updating zn

to zn+1.
3. Calculate yn+1 = ehLzn+1.

The Lawson–Euler scheme is

yn+1 = ehLyn + hehLN(yn, t)

The same methodology is also found in the PDE-literature as the

Integrating Factor method, reported to work well on
convection-dominated problems.
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General format for exp. integrators
Our exponential integrators (RK-type) can be written in a general
framework, let

Yi = h
s∑

j=1

aij(hL) N(Yj , tn + cjh) + eci hLyn, i = 1, . . . , s

yn+1 = h
s∑

i=1

bi(hL)N(Yj , tn + cjh) + ehLyn.

where aij(hL) = aij(z) and bi(z) are now analytic coefficient
functions of z = hL.

— We require that these functions fulfill classical order conditions
in the limit z → 0.

— We will do general linear methods in a moment.
— Classical order analysis is straightforward.
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Tableau of coefficients
The coefficient functions are conveniently grouped in an extended
Butcher tableau

c1 a11(z) · · · a1s(z) ec1z

...
...

...
...

cs as1(z) · · · ass(z) ecsz

b1(z) · · · bs(z) ez

Lawson–Euler:

yn = exp(hL)yn−1+

exp(hL)N(yn−1, tn−1)

0 0 1
ez ez

ETD-Euler:

yn = exp(hL)yn−1+

ϕ1(hL)N(yn−1, tn−1)

0 0 1
ϕ1(z) ez
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Lawson schemes

Given coefficients of a Runge–Kutta scheme,

ãij , b̃i and cj ,

the corresponding Lawson scheme is given by the coefficient
functions

aij(z) = ãije
(ci−cj )z and bi(z) = b̃ie

(1−ci )z .
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Lawson, 4th order
The most common integrator of the Lawson type, based on Kutta’s
classical order 4 scheme is

0

1
2

1
2ez/2

1
2

1
2

1 ez/2

1
6ez 1

3ez/2 1
3ez/2 1

6

— Easy and relatively cheap to implement.
— Does not preserve fixed points.
— Performs well on NLS.
— Stiff order 1.
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ETD RK-schemes
A fourth order ETD of Runge–Kutta type, common in recent
literature,

0

1
2

1
2ϕ1(z/2)

1
2

1
2ϕ1(z/2)

1 ϕ1(z/2)(ez/2 − 1) ϕ1(z/2)

ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 −ϕ2 + 4ϕ3

— Due to Cox and Matthews 2002.

— Stiff order 2.
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Exponential general linear schemes
The currently best-performing exponential integrators are in the
family of Exponential general linear schemes.

Define a vector of quantities passed from step to step:

Y [n] =
[
y [n]

1 · · · y [n]
r

]T

the write the scheme as

Yi = h
s∑

j=1

aij(z)N(Yj) +
r∑

j=1

uij(z)y [n]
j

y [n+1]
i = h

s∑
j=1

bij(z)N(Yj) +
r∑

j=1

vij(z)y [n]
j

The coefficient functions are typically grouped in four matrix-valued
functions, A(z), B(z), U(z) and V (z).
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Exponential general linear schemes

Tableau
c A(z) U(z)

B(z) V (z)

Schemes in this talk rely on the following structure of the quantities
passed from step to step:

y [n] =
[
yn hNn−1 hNn−2 . . . hNn−r+1

]T

where Nn−i = N(yn−i , tn−i). This choice enables both ETD
Adams–Bashforth and Generalized Lawson schemes to be easily
represented. As a starting procedure, exponential Runge–Kutta
can be used.
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Example scheme, ABNørsett3

This is a third order ETD Adams–Bashforth scheme, classical
order 3, stiff order 3.

0 1 0 0
1 ϕ1 + 3

2ϕ2 + ϕ3 ϕ0 −2ϕ2 − 2ϕ3
1
2ϕ2 + ϕ3

ϕ1 + 3
2ϕ2 + ϕ3 0 ϕ0 −2ϕ2 − 2ϕ3

1
2ϕ2 + ϕ3

1 0 0 0 0
0 0 0 1 0

where ϕ0(z) = ez .
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Example scheme, GenLawson42

Classical order 4, stiff order 3

0 1 0
1
2

1
2ϕ1,2 + 1

4ϕ2,2 ϕ0,2 −1
4ϕ2,2

1
2

1
2ϕ1,2 + 1

4ϕ2,2 − 3
4

1
2 ϕ0,2 −1

4ϕ2,2 + 1
4

1 ϕ1 + ϕ2 − 3
2ϕ0,2 ϕ0,2 ϕ0 −ϕ2 + 1

2ϕ0,2

ϕ1 + ϕ2 − ϕ0,2 − 1
3

1
3ϕ0,2

1
3ϕ0,2

1
6 ϕ0 −ϕ2 + 1

3ϕ0,2 + 1
6

1 0 0 0 0 0

where ϕi,j(z) = ϕi(cjz).
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Stiff order conditions

If L (the original differential operator) is unbounded, one cannot
expect ‖hL‖ → 0 in computations or analysis, independently of the
spatial discretization parameter. Classical order analysis relies on
this.

For semilinear parabolic problems, one is able to prove that
although L is unbounded, the functions ϕ can be bounded, and
thereby bounding the coefficient functions. Then one gets
convergence proofs, see Hochbruck and Ostermann 2005.

This requires a set of stricter order conditions generalizing classical
order conditions, denoted “stiff order conditions”.
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Stiff order, preservation of fixed points
For fixed points we have Ly = −N(y) and we require the integrator
to give y1 = y0. Inserting this in the format of an expontial
RK-scheme, one obtains the requirement

y0 = −
s∑

i=1

bi(z)z + ezy0 ⇒
s∑

i=1

bi(z) = ϕ1(z)

and for the inner stages we get the requirements

s∑
j=1

aij(z) = ciϕ1(ciz) for each i

These are two examples of stiff order conditions. Schemes of stiff
order 2 and higher preserve fixed points.
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Example, order reduction

A nonlinear heat equation,

ut = uxx +
1

1 + u2 + Φ(x , t)

where Φ(x , t) is such that the
exact solution is et(1− x)x .

global error vs. timestep

200 grid points, homogeneous Dirichlet BC. “CoxMatthews” is
ETD4RK, and has order 3 in this plot. Krogstad is a Generalized
Lawson scheme.

Plot taken from Hochbruck and Ostermann 2005.
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MATLAB package
For testing, there is a MATLAB package, EXPINT, featuring:

— Easy implementation and comparison
of exponential integrators (47 schemes
right now).

— Numerous examples of discretizations
of common PDEs.

— ϕ functions computed by
(7,7)-Padé-approximations together
with scaling and corrected squaring.

The EXPINT-package and an accompanying technical report may
be downloaded from

http://www.math.ntnu.no/num/expint/
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Example, nonlinear Schr ödinger
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 Global error, Nonlinear Schrödinger, ND=256, IC: exp(sin(2x)), Pot: 1overSinSqr, λ=−2

abnorsett4
lawson4
etd4rk
hochost4
cranknicolson
genlawson43
eglm433
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Example, sine-Gordon equation
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 Global error, sine−Gordon, ND=64, IC: soliton, Length: 40

abnorsett4
lawson4
etd4rk
hochost4
cranknicolson
genlawson43
eglm433
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ϕ functions
Crucial to ETD-schemes are the evaluation of the ϕ functions,

ϕ`(z) =
1

(`− 1)!

∫ 1

0
e(1−θ)zθ`−1 dθ, ` = 1, 2, . . . .

For small values of ` and z > 0,
these are

ϕ1(z) =
ez − 1

z

ϕ2(z) =
ez − z − 1

z2

ϕ3(z) =
ez − z2/2− z − 1

z3

ϕ`(0) =
1
`!

Defining ϕ0(z) = ez the functions

obey the recurrence

ϕ`+1(z) =
ϕ`(z)− 1

`!

z
, ` = 0, 1, . . .
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ϕ functions cont.

Evaluation of these functions has numerical issues.
Possible approaches:

— Taylor series for small z, direct formula for non-small (Cox and
Matthews 2002).

— Contour integral, works well for suitable chosen radius of
contour (Kassam and Trefethen 2005).

— Scaling, Padé and (corrected) squaring (next slides).

— Krylov subspace approximation (Hochbruck, Selhofer, Lubich
1998).
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ϕ functions, scaling, Pad é and corrected
squaring

The procedure for evaluation is:

z_

scaling

��

ϕ`(z)

z/2p � Padé // ϕ`(z/2p)
_

corrected squaring

OO

p is chosen such that ‖z/2p‖∞ ≤ 1.
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ϕ functions, Pad é approximation
The general form of the (d , d)-Padé approximant of ϕ` is

ϕ`(z) =
N`

d(z)

D`
d(z)

+O(z2d+1)

where the unique polynomials N`
d and D`

d are

N`
d(z) =

d !

(2d + `)!

d∑
i=0

 i∑
j=0

(2d + `− j)!(−1)j

j!(d − j)!(` + i − j)!

 z i

D`
d(z) =

d !

(2d + `)!

d∑
i=0

(2d + `− i)!
i!(d − i)!

(−z)i

(1)
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ϕ functions, corrected squaring

Squaring the exponential function is easy, e2z = ezez . But for ϕ
functions, we need correctional terms,

ϕ2`(2z) =
1

22`

ϕ`(z)ϕ`(z) +
2∑̀

j=`+1

2
(2`− j)!

ϕj(z)

 ,

ϕ2`+1(2z) =
1

22`+1

ϕ`(z)ϕ`+1(z) +
2`+1∑

j=`+2

2
(2` + 1− j)!

ϕj(z)

+
1
`!

ϕ`+1(z)

]
.
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A brief history

— Certaine 1960
ETD2 and ETD3 based on Adams–Moulton methods

— Lawson 1967
Generalized RK processes (Lawson schemes), A-stability

— Nørsett 1969
ETD based on Adams–Bashforth schemes, A-stability

— Verwer and van der Houwen 1974
ETD linear multistep methods

— Friedli 1978
ETD based on explicit RK schemes, order conditions

— Strehmel and Weiner 1982
Adaptive RK schemes, order theory, B-stability
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A brief history

— Hochbruck, Lubich and Selhofer 1998
Exponential integrators (exp4) with inexact Jacobian

— Beylkin, Keiser and Vozovoi 1998
ETD methods of Adams type

— Cox and Matthews 2002
ETDRK methods of order 3 and 4

— Celledoni, Owren and Martinsen 2003
Commutator-free Lie group methods

— Krogstad 2005
Generalized Lawson methods

— Hocbruck and Ostermann 2005
Stiff order conditions, convergence proof
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Credits

Credits are due to my collaborators

— Prof. Brynjulf Owren, Norwegian University of Science and
Technology, Trondheim, Norway

— Dr. Will Wright, La Trobe University, Melbourne, Australia.

— Bård Skaflestad, Norwegian University of Science and
Technology, Trondheim, Norway.
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Future work

Some ideas:

— More analysis on evaluation of ϕ functions.

— Exponential integrators preserving multisymplecticity?

— Conservation of invariants.
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www.ntnu.no Håvard Berland, Exponential integrators



39

References II

A.-K. Kassam and L. N. Trefethen.

Fourth-order time-stepping for stiff PDEs.
SIAM J. Sci. Comput., 26(4):1214–1233 (electronic), 2005.

S. Krogstad.

Generalized integrating factor methods for stiff PDEs.
J. of Comp. Phys., 203(1):72–88, 2005.

D. J. Lawson.

Generalized Runge–Kutta processes for stable systems with large Lipschitz constants.
SIAM J. Numer. Anal., 4:372–380, 1967.

B. Minchev and W. M. Wright.

A review of exponential integrators for semilinear problems.
Technical Report 2/05, Department of Mathematical Sciences, NTNU, Norway, 2005.
http://www.math.ntnu.no/preprint/.

A. Ostermann, M. Thalhammer, and W. M. Wright.

A class of explicit exponential general linear methods.
In preparation, 2005.
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