Fourth Order Exponential Time Integrators for the Nonlinear Schrödinger Equation MaGIC Workshop 2004, Røros

Håvard Berland, joint work with Bård Skaflestad and Brynjulf Owren

NTNU

Introduction

Our aim is to solve the nonlinear Schrödinger equation,

$$\mathrm{i}rac{\partial\psi}{\partial t}=-rac{\partial^2\psi}{\partial x^2}+(V(x)+C_{\mathrm{nl}}|\psi|^2)\psi, \hspace{1em} x\in[-\pi,\pi]$$

where V(x) is some potential and C_{nl} is the nonlinearity constant.

We impose an initial condition and a periodic boundary condition,

$$egin{aligned} \psi(x,0) &= \psi_0(x), \quad x \in [-\pi,\pi] \ \psi(-\pi,t) &= \psi(\pi,t), \quad t > 0. \end{aligned}$$

Semi-discretisation

We do a Fourier transform of the system, setting

$$\psi_n(x,t) = \sum_{k=-rac{N_{\mathcal{F}}}{2}}^{rac{N_{\mathcal{F}}}{2}-1} c_k(t) \mathrm{e}^{\mathrm{i}kx},$$

where $N_{\mathcal{F}}$ is a power of two, yielding

$$egin{aligned} &rac{\mathrm{d}c}{\mathrm{d}t} = Lc + N(c), & ext{where} \ &N(c) = -\mathrm{i}\cdot\mathcal{F}ig((V(x)+C_{\mathrm{nl}})|\mathcal{F}^{-1}(c)|^2)\mathcal{F}^{-1}(c)ig)\ &L = \mathrm{diag}(-\mathrm{i}k^2) \end{aligned}$$

Splitting scheme

The semi-discretised system $\dot{c} = Lc + N(c)$ calls for methods utilizing the splitting into a linear part L and a nonlinear part N(c).

The scheme must cope with the unbounded linear part \boldsymbol{L} (the Laplacian). We focus on the following schemes:

- IF Integrating factor methods (Maday, Patera, Rønquist)
- ETD Exponential Time Differencing (Cox, Matthews, now also Krogstad)
 - LGI Lie group integrators with affine actions (Munthe-Kaas and others).

Splitting scheme

The semi-discretised system $\dot{c} = Lc + N(c)$ calls for methods utilizing the splitting into a linear part L and a nonlinear part N(c).

The scheme must cope with the unbounded linear part \boldsymbol{L} (the Laplacian). We focus on the following schemes:

- IF Integrating factor methods (Maday, Patera, Rønquist)
- ETD Exponential Time Differencing (Cox, Matthews, now also Krogstad)
 - LGI Lie group integrators with affine actions (Munthe-Kaas and others).
 - All these approaches integrate the linear part *exactly* to cope with the unbounded *L*. The alternative is to use some implicit integrator, which we want to avoid.

Integrating factor

By a change of variables, an integrating factor *ameliorates* the "stiff" part L.

The exact integrating factor e^{tL} applied on the semi-discretised system $\dot{c}(t) = Lc(t) + N(c(t))$ results in

$$e^{tL}\dot{c}(t) = e^{tL}Lc(t) + e^{tL}N(c(t))$$

which is integrated to

$$c(h) = e^{-hL}c(0) + e^{-hL} \int_0^h e^{tL}N(c(t)) dt.$$

Integrating factor

By a change of variables, an integrating factor *ameliorates* the "stiff" part L.

The exact integrating factor e^{tL} applied on the semi-discretised system $\dot{c}(t) = Lc(t) + N(c(t))$ results in

$$e^{tL}\dot{c}(t) = e^{tL}Lc(t) + e^{tL}N(c(t))$$

which is integrated to

$$c(h) = e^{-hL}c(0) + e^{-hL} \int_0^h e^{tL}N(c(t)) dt.$$

• Our methods OIFS, ETD and LGI can all be thought of as arising from different ways of evaluating the integral above.

Unified Method format

Framework (Runge–Kutta-like) for all the methods herein:

$$k_i = hN\left(a_{i0}(hL)c_0 + \sum_{j=1}^{i-1} a_{ij}(hL)k_j
ight),$$

for $i = 1, \dots, s$
 $c_1 = b_0(hL)c_0 + \sum_{i=1}^{s} b_i(hL)k_i$

Unified Method format

Framework (Runge–Kutta-like) for all the methods herein:

$$k_i = hN\left(a_{i0}(hL)c_0 + \sum_{j=1}^{i-1} a_{ij}(hL)k_j
ight),$$

for $i = 1, \dots, s$
 $c_1 = b_0(hL)c_0 + \sum_{i=1}^{s} b_i(hL)k_i$

• "Variable coefficients" Runge–Kutta method.

Unified Method format

Framework (Runge–Kutta-like) for all the methods herein:

$$k_i = hN\left(a_{i0}(hL)c_0 + \sum_{j=1}^{i-1} a_{ij}(hL)k_j
ight),$$

for $i = 1, \dots, s$
 $c_1 = b_0(hL)c_0 + \sum_{i=1}^{s} b_i(hL)k_i$

- "Variable coefficients" Runge–Kutta method.
- When L = 0, the order conditions reduce to standard theory. Our $a_{ij}(0)$ and $b_i(0)$ should correspond to Kutta's classical fourth order method. Note also $a_{i0}(0) = 1$ and $b_i(0) = 1$.

Unified method format

We will write all our fourth order methods in the four stages, where z := hL,

$$k_1 = hNig(a_{10}(z)c_0ig) \ k_2 = hNig(a_{20}(z)c_0 + a_{21}(z)k_1ig) \ k_3 = hNig(a_{30}(z)c_0 + a_{31}(z)k_1 + a_{32}(z)k_2ig) \ k_4 = hNig(a_{40}(z)c_0 + a_{41}(z)k_1 + a_{42}(z)k_2 + a_{43}(z)k_3ig) \ c_1 = b_0ig(z)c_0 + b_1ig(z)k_1 + b_2ig(z)k_2 + b_3ig(z)k_3 + b_4ig(z)k_4$$

which is again written in the tableau

Operator–Integration–Factor methods (OIFS)

A methodology for generating time-splitting schemes. We use the integrating factor $Q(t) = e^{-tL}$ as we have an autonomous linear part. This corresponds to using an exact solver for the inner time-step in OIFS-methods.

RK4/Exact:

$$\begin{split} k_1 &= hN(c_0) \\ k_2 &= hN(e^{\frac{hL}{2}}c_0 + \frac{1}{2}e^{\frac{hL}{2}}k_1)) \\ k_3 &= hN(e^{\frac{hL}{2}}c_0 + \frac{1}{2}k_2) \\ k_4 &= hN(e^{hL}c_0 + e^{\frac{hL}{2}}k_3)) \\ y_1 &= e^{hL}c_0 + \frac{1}{6}(e^{hL}k_1 + 2e^{\frac{hL}{2}}(k_2 + k_3) + k_4) \end{split}$$

Operator–Integration–Factor methods (OIFS)

A methodology for generating time-splitting schemes. We use the integrating factor $Q(t) = e^{-tL}$ as we have an autonomous linear part. This corresponds to using an exact solver for the inner time-step in OIFS-methods.

RK4/Exact, Unifi ed method format Let hL =: z,

Explicit Time Differentiation (ETD)

Cox and Matthews proposed to solve the integral $\int_0^h e^{tA} b(c(t)) dt$ by approximating b(c(t)) by an interpolating polynomial.

First order method, ETD1:

$$b(c(t))) \approx b(c_0) \implies \int_0^h e^{tA} b(c_0) dt = \frac{e^{hA} - 1}{A} b(c_0)$$

Second order method, ETDRK2:

$$\begin{split} b(c(t)) &\approx b(c_0) + t \frac{b(c_1) - b(c_0)}{h} \Rightarrow \\ \int_0^h e^{tA} \left(b(c_0) + t \frac{b(c_1) - b(c_0)}{h} \right) \, \mathrm{d}t = \frac{e^{hA} - 1 - hA}{hA^2} \left(b(c_1) - b(c_0) \right) \, \mathrm{d}t \end{split}$$

where c_1 is an approximation of c(h) done via ETD1.

Explicit Time Differentiation (ETD)

Cox and Matthews proposed to solve the integral $\int_0^h e^{tA} b(c(t)) dt$ by approximating b(c(t)) by an interpolating polynomial.

Fourth order, ETDRK4: Let z = hL,

$$\begin{split} \tilde{k}_1 &= e^{\frac{z}{2}} c_0 + h \frac{1}{2} \alpha(z/2) N(c_0) \\ \tilde{k}_2 &= e^{\frac{z}{2}} c_0 + h \frac{1}{2} \alpha(z/2) N(\tilde{k}_1) \\ \tilde{k}_3 &= e^{\frac{z}{2}} k_1 + h \frac{1}{2} \alpha(z/2) (2N(\tilde{k}_2) - N(c_0)) \\ c_1 &= e^z c_0 + h \beta_1(z) N(c_0) + h \beta_2(z) \left(N(\tilde{k}_1) + N(\tilde{k}_2) \right) + h \beta_3(z) N(\tilde{k}_3) \end{split}$$

and

$$egin{aligned} lpha(z) &= z^{-1} ig(\mathrm{e}^z - 1 ig) \ eta_1(z) &= z^{-3} ig(-4 - z + \mathrm{e}^z (4 - 3z + z^2) ig) \ eta_2(z) &= z^{-3} ig(2 + z + \mathrm{e}^z (-2 + z) ig) \cdot 2 \ eta_3(z) &= z^{-3} ig(-4 - 3z - z^2 + \mathrm{e}^z (4 - z) ig) \end{aligned}$$

Explicit Time Differentiation (ETD)

Cox and Matthews proposed to solve the integral $\int_0^h e^{tA} b(c(t)) dt$ by approximating b(c(t)) by an interpolating polynomial. Fourth, order, ETDRK4, Unified method format:

$$egin{aligned} &k_1 = hN(c_0)\ &k_2 = hN(\mathrm{e}^{rac{z}{2}}c_0 + rac{1}{2}lpha(z/2)k_1)\ &k_3 = hN(\mathrm{e}^{rac{z}{2}}c_0 + rac{1}{2}lpha(z/2)k_2)\ &k_4 = hN(\mathrm{e}^z c_0 + rac{z}{4}lpha(z/2)^2k_1 + lpha(z/2)k_3) \end{aligned}$$

Lie group integrator — Affine action (LGI)

We have the *affine Lie group*, with elements (A, b) acting on \mathbb{C}^N via the group action $(A, b) \cdot c = Ac + b$, $A \in \operatorname{GL}_N(\mathbb{C})$. The group becomes $\operatorname{GL}_N(\mathbb{C}) \rtimes \mathbb{C}^N$.

The associated *affine Lie algebra* has the exponential map

$$\mathrm{Exp}\left(t(A,b)
ight) = \left(\mathrm{e}^{tA}, rac{\mathrm{e}^{tA}-1}{A}b
ight)$$

This is put into the framework of Runge–Kutta–Munthe-Kaas methods and we get a RKMK4 method from Kutta's classical 4th order method, and the commutator in g

 $[(A_2, b_2), (A_1, b_1)] = ([A_2, A_1], A_1b_2 - A_2b_1)$.

Commutator-free schemes (LGI)

Commutator-free methods are also based on the *affine Lie group* and is an LGI-method, but unlike RKMK, they avoid the necessity of forming commutators in \mathfrak{g} by extra evaluations of the exponentials. We use the standard 4th order method, denoted CFREE4 with 5 exponentials.

$$\begin{split} k_1 &= hN(c_0) \\ U_2 &= e^{\frac{hL}{2}}c_0 + \frac{1}{2}\alpha(\frac{hL}{2})k_1 \\ k_2 &= hN(U_2) \\ k_3 &= hN(e^{\frac{hL}{2}}c_0 + \frac{1}{2}\alpha(\frac{hL}{2})k_2) \\ k_4 &= hN(e^{\frac{hL}{2}}U_2 + \alpha(\frac{hL}{2})(k_3 - \frac{1}{2}k_1)) \\ U_s &= e^{\frac{hL}{2}}c_0 + \frac{1}{12}\alpha(\frac{hL}{2})(3k_1 + 2k_2 + 2k_3 - k_4) \\ c_1 &= e^{\frac{hL}{2}}U_s + \frac{1}{12}\alpha(\frac{hL}{2})(-k_1 + 2k_2 + 2k_3 + 3k_4) \end{split}$$

Commutator-free schemes (LGI)

Commutator-free methods are also based on the *affine Lie group* and is an LGI-method, but unlike RKMK, they avoid the necessity of forming commutators in g by extra evaluations of the exponentials. We use the standard 4th order method, denoted CFREE4 with 5 exponentials.

$$\begin{array}{cccc} 1 & & & \\ e^{\frac{z}{2}} & & \frac{1}{2}\alpha(z/2) \\ e^{\frac{z}{2}} & & & \frac{1}{2}\alpha(z/2) \\ e^{z} & & \frac{z}{4}\alpha(z/2)^{2} & & & \alpha(z/2) \\ e^{z} & & \frac{\alpha(z/2)}{12} \left(3e^{\frac{z}{2}} - 1 \right) & \frac{\alpha(z/2)}{6} \left(e^{\frac{z}{2}} + 1 \right) & \frac{\alpha(z/2)}{6} \left(e^{\frac{z}{2}} + 1 \right) & \frac{\alpha(z/2)}{12} \left(3 - e^{\frac{z}{2}} \right) \end{array}$$

• The $a_{ij}(z)$ functions are the same for CFREE4 and ETD4RK.

Runge–Kutta–Munthe-Kaas fourth order (LG

From Munthe-Kaas & Owren (1999) we derive

 $k_1 = hN(c_0)$ $k_2 = hN(\mathrm{e}^{rac{z}{2}}c_0 + rac{1}{2}lpha(z/2)k_1)$ $C_1 = L(k_2 - k_1)$ $k_3 = hN(\mathrm{e}^{ ilde{2}}c_0 + lpha(z/2)(rac{1}{2}k_2 - rac{1}{8}C_1)\mathrm{k}_2 - rac{1}{8}\mathrm{C}_1))$ $k_4 = hN(e^z c_0 + \alpha(z)k_3)$ $C_2 = L(k_1 - 2k_2 + k_4)$ $c_1 = e^z c_0 + \frac{1}{6} \alpha(z) (k_1 + 2k_2 + 2k_3 + k_4 - C_1 - \frac{1}{2}C_2)$ where C_1 and C_2 represents the two commutators needed.

Runge–Kutta–Munthe-Kaas fourth order (LG

In the unified method format,

Crank–Nicolson

- Physicists seem to use Crank–Nicolson almost exclusively, as it is regarded the "best" solver for these problems.
- It is implemented for reference, with Newton-iterations making it comparable to our methods in terms of computational cost.

Crank–Nicolson

- Physicists seem to use Crank–Nicolson almost exclusively, as it is regarded the "best" solver for these problems.
- It is implemented for reference, with Newton-iterations making it comparable to our methods in terms of computational cost.
- Trapezoidal rule in time, spectral in space:

 $c_1 = c_0 + \frac{h}{2} \left(Lc_0 + Lc_1 + N(c_0) + N(c_1) \right)$

Crank–Nicolson

- Physicists seem to use Crank–Nicolson almost exclusively, as it is regarded the "best" solver for these problems.
- It is implemented for reference, with Newton-iterations making it comparable to our methods in terms of computational cost.
- Trapezoidal rule in time, spectral in space:

 $c_1 = c_0 + \frac{h}{2} \left(Lc_0 + Lc_1 + N(c_0) + N(c_1) \right)$

• Newton: Solve $F(c_1) = 0$ where

$$F(c_1) = c_1 - c^k - rac{h}{2} \left(L c^k + L c_1 + N(c^k) + N(c_1)
ight)$$

and $F'(c_1) = 1 - \frac{hL}{2} - \frac{hN'(c_1)}{2}$ which gives the iteration: $c^{k+1} = (1 - hL/2)^{-1} \left(\frac{hN(c^k)}{2} + (1 + hL/2)c_0 + \frac{h}{2}N(c_0) \right)$

Crank–Nicolson, unified method format

Crank–Nicolson, with simplified Jacobian and 4 iterations, may be put into the framework common for our methods as follows:

where we recognise $\frac{1+z/2}{1-z/2}$ as the (1, 1) Padé approximant to e^z . This is also a *W*-method.

Spatial resolution

- The number of Fourier modes, $N_{\mathcal{F}}$, is chosen big, $N_{\mathcal{F}} = 1024$ in all our experiments.
- When $hN_{\mathcal{F}}^2 \lesssim 1$ all methods attain classical order for all initial conditions and potentials tested.
- For N_F = 1024 we typically look at the interval h ∈ [10⁻⁶, 10⁻¹], where classical order is not expected.

Spatial resolution

- The number of Fourier modes, $N_{\mathcal{F}}$, is chosen big, $N_{\mathcal{F}} = 1024$ in all our experiments.
- When $hN_{\mathcal{F}}^2 \lesssim 1$ all methods attain classical order for all initial conditions and potentials tested.
- For $N_{\mathcal{F}} = 1024$ we typically look at the interval $h \in [10^{-6}, 10^{-1}]$, where classical order is *not* expected.
- $N_{\mathcal{F}} = 1024$ pose such big "problems" for our integrator, that we can set the nonlinearity constant $C_{\rm nl} = 0$.

Initial conditions

- Crucial for observed order (order reduction).
- Decay in Fourier coefficients is connected to differentiability. If a function $c_0(x)$ is p times continuously differentiable, then there exists a K_p such that

$$|c_k^0| < rac{K_p}{k^p}$$

where $\psi_0(x) = \sum c_k^0(t) \mathrm{e}^{\mathrm{i}kx}$.

- Examples used in experiments
 - Hat function: $\psi_0(x) = \operatorname{abs}(x)$ on $[-\pi,\pi]$, p = 1.
 - Smooth function: $\psi_0(x) = \exp(2\sin(x))$ on $[-\pi,\pi], \, p = \infty.$
 - Randomly generated functions with prescribed regularity $p \in \{1, 2, 3, 4, 5, 6\}$

Potentials

Various potensials V(x) have been used.

- Smooth potential
- Hat potential
- Random potential with prescribed regularity
- Constant potential, $V(x) \equiv \lambda$. The system of equations decouples.

We will see that a potential with low regularity also leads to order reduction.

IC	Potential	OIFS4 order	ETD4/RKMK4/CFREE4 order	
	$V = \lambda$	4	4	
IC = smooth	V = smooth	4	4	
	V = hat	1.25 oscillating	1.65	
	$V = \lambda$	4	0.7	
IC = hat	V = smooth	2 < order, staircase	0.7	
	V = hat	1.25 oscillating	0.7	

Global error, N=1024, Initial condition: exp(sin(2x)), Potential=1.

IC	Potential	OIFS4 order	ETD4/RKMK4/CFREE4 order	
	$V = \lambda$	4	4	
IC = smooth	V = smooth	4	4	
	V = hat	1.25 oscillating	1.65	
	$V = \lambda$	4	0.7	
IC = hat	V = smooth	2 <order,staircase< td=""><td>0.7</td></order,staircase<>	0.7	
	V = hat	1.25 oscillating	0.7	

Global error, N=1024, Initial condition: exp(sin(2x)), Potential=1overSinSqr.

IC	Potential	OIFS4 order	ETD4/RKMK4/CFREE4 order	
	$V = \lambda$	4	4	
IC = smooth	V = smooth	4	4	
	V = hat	1.25 oscillating	1.65	
	$V = \lambda$	4	0.7	
IC = hat	V = smooth	2 <order,staircase< td=""><td>0.7</td></order,staircase<>	0.7	
	V = hat	1.25 oscillating	0.7	

Global error, N=1024, Initial condition: exp(sin(2x)), Potential= $1/4||x||^2$.

IC	Potential	OIFS4 order	ETD4/RKMK4/CFREE4 order	
	$V = \lambda$	4	4	
IC = smooth	V = smooth	4	4	
	V = hat	1.25 oscillating	1.65	
	$V=\lambda$	4	0.7	
IC = hat	V = smooth	2 < order, staircase	0.7	
	V = hat	1.25 oscillating	0.7	

Global error, N=1024, Initial condition: hat, Potential=1.

IC	Potential	OIFS4 order	ETD4/RKMK4/CFREE4 order		
	$V = \lambda$	4	4		
IC = smooth	V = smooth	4	4		
	V = hat	1.25 oscillating	1.65		
	$V = \lambda$	4	0.7		
IC = hat	V = smooth	2 < order, staircase	0.7		
	V = hat	1.25 oscillating	0.7		

Global error, N=1024, Initial condition: hat, Potential=1overSinSqr.

IC	Potential	OIFS4 order	ETD4/RKMK4/CFREE4 order	
	$V = \lambda$	4	4	
IC = smooth	V = smooth	4	4	
	V = hat	1.25 oscillating	1.65	
	$V = \lambda$	4	0.7	
IC = hat	V = smooth	2 < order, staircase	0.7	
	V = hat	1.25 oscillating	0.7	

Global error, N=1024, Initial condition: hat, Potential=1/4||x|².

Conclusions from numerical tests

- $C_{\rm nl}$ does not affect numerical results when $N_{\mathcal{F}} = 1024$.
- ETDRK4/RKMK4/CFREE4 performs very similarly.
- OIFS4 more sensitive to potential, also senses the subtle difference smooth vs. constant potential.
- OIFS4 less sensitive to initial condition.
- ETDRK4/RKMK4/CFREE4 bad on hat initial condition, regardless of potential.

Observe the global error for each Fourier mode:

Decoupled case, $V(x) = \lambda$:

$$\dot{c}_k = -\mathrm{i}k^2c_k - \mathrm{i}\lambda c_k$$

with exact solution

 $c_k(t) = \exp(-\mathrm{i}(k^2 + \lambda)t)c_k^0$

Observe the global error for each Fourier mode:

Decoupled case, $V(x) = \lambda$:

$$\dot{c}_k = -\mathrm{i}k^2c_k - \mathrm{i}\lambda c_k$$

with exact solution

$$c_k(t) = \exp(-\mathrm{i}(k^2 + \lambda)t)c_k^0$$

Observe the global error for each Fourier mode:

Decoupled case, $V(x) = \lambda$:

$$\dot{c}_k = -\mathrm{i}k^2c_k - \mathrm{i}\lambda c_k$$

with exact solution

$$c_k(t) = \exp(-\mathrm{i}(k^2 + \lambda)t)c_k^0$$

Global error for each component goes like

$$|| ext{ge}_k|| pprox \left(rac{hk^2}{S_B}
ight)^4$$

when $hk^2 < S_B$.

For $hk^2 > S_B$, the error is bounded by 2. S_B is given by $\frac{960}{T|\lambda|}^{1/4}$ which is 3.13 here.

The global error for each Fourier mode is now bounded by

$$| ext{ge}_k| < egin{cases} 2\left(rac{hk^2}{S_B}
ight)^4 |c_k^0| & hk^2 \leq S_B \ 2|c_k^0| & hk^2 > S_B \end{cases}$$

Remember $|c_k^0| < \frac{K_p}{k^p}$.

The global error for each Fourier mode is now bounded by

$$| ext{ge}_k| < egin{cases} 2\left(rac{hk^2}{S_B}
ight)^4 |c_k^0| & hk^2 \leq S_B \ 2|c_k^0| & hk^2 > S_B \end{cases}$$

Remember $|c_k^0| < \frac{K_p}{k^p}$. Compute

$$egin{aligned} &rac{1}{4}|| extrm{ge}_k||^2 = rac{1}{4}\sum_{k=-N_{\mathcal{F}}/2}^{N_{\mathcal{F}}/2-1}| extrm{ge}_k|^2 \ &\leq \sum_{|k| \leq \sqrt{S_b/h}} \left(rac{hk^2}{S_B}
ight)^8 |c_k^0|^2 + \sum_{|k| > \sqrt{S_B/h}} |c_k^0|^2 \ &\leq K_p^2 \left(rac{h}{S_b}
ight)^8 \sum_{|k| \leq \sqrt{S_B/h}} k^{16-2p} + K_p^2 \sum_{|k| > \sqrt{S_B/h}} k^{-2p} \end{aligned}$$

The global error for each Fourier mode is now bounded by

$$| ext{ge}_k| < egin{cases} 2\left(rac{hk^2}{S_B}
ight)^4 |c_k^0| & hk^2 \leq S_B \ 2|c_k^0| & hk^2 > S_B \end{cases}$$

Remember $|c_k^0| < \frac{K_p}{k^p}$. Compute

$$egin{aligned} &rac{1}{4}||\mathrm{ge}_k||_2^2 = rac{1}{4}\sum_{k=-N_{\mathcal{F}}/2}^{N_{\mathcal{F}}/2-1}|\mathrm{ge}_k|^2 \ &\leq \sum_{|k| \leq \sqrt{S_b/h}} \left(rac{hk^2}{S_B}
ight)^8 |c_k^0|^2 + \sum_{|k| > \sqrt{S_B/h}} |c_k^0|^2 \ &\leq K_p^2 \left(rac{h}{S_b}
ight)^8 \sum_{|k| \leq \sqrt{S_B/h}} k^{16-2p} + K_p^2 \sum_{|k| > \sqrt{S_B/h}} k^{-2p} \end{aligned}$$

Using the Euler–MacLaurin with remainder term to find bounds for the sums, we eventually find for $p \leq 8$ $||ge||_2 \leq K \left(\frac{h}{S_B}\right)^{\frac{2p-1}{4}}$

We have

$$|| ext{ge}|| = \sum_{k} || ext{ge}_{k}|| pprox Ch^{rac{2p-1}{4}} \qquad p \leq 8$$

Predicted and observed order, CFREE4:

IC:	Reg1	Reg2	Reg3	Reg4	Reg5	Reg6	Smoot
V(x) = 1	0.25	0.75	1.25	1.75	2.25	2.75	4*

We have

$$|| ext{ge}|| = \sum_{k} || ext{ge}_{k}|| pprox Ch^{rac{2p-1}{4}} \qquad p \leq 8$$

Predicted and observed order, CFREE4:

IC: Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Sm 4* 0.25 0.75 1.25 V(x) = 11.75 2.25 2.75Observed order, CFREE4, ETD4, RKMK: $V = \frac{1}{4} ||x||^2$ 0.35 0.75 1.25 1.75 1.75 1.25 1.6 Smooth V 0.25 0.75 1.25 1.75 2.25 2.75 4

Accordingly for **OIFS4**:

Each mode behaves the same, with the result that OIFS4 has order 4 on all constant potentials. Verified experimentally.

$$egin{aligned} |\mathrm{ge}||_2^2 &= \sum_{k=-N_{\mathcal{F}}/2}^{N_{\mathcal{F}}/2-1} |\mathrm{ge}_k|^2 \ &= K_h h^4 |c_k^0| \ &= K_h h^4 \sum_{k=-N_{\mathcal{F}}/2}^{N_{\mathcal{F}}/2-1} |c_k^0 \ &= K_h ||c^0||_2^2 \, h^4. \end{aligned}$$

The end

References

• See Borko & Will's slides for a reference list..

The end

References

• See Borko & Will's slides for a reference list..

Conclusions (or an attempt thereat)

• OIFS seems best for our Schrödinger application