Exponential integrators for the non-linear Schrödinger equation

Håvard Berland Joint work with Brynjulf Owren, Bård Skaflestad and Will Wright

Department of Mathematical Sciences, NTNU, Norway

October 21, 2004

Abstract

We present numerical experiments from applying exponential integrators to the nonlinear Schrödinger equation. With periodic boundary conditions, the semi-discretised system becomes diagonal after a Fourier transform, and exponential integrators may therefore be implemented cheaply for our problem.

Our experiments indicate that the observed global error is not affected by the smoothness of initial data when the schemes due to Lawson (1967) are applied, as opposed to the Cox and Matthews and Lie group schemes. We present some analysis on a simplified problem to explain this.

(25 minute talk)

Overview

1 The Schrödinger equation

- The non-linear Schrödinger equation
- Semi-discretisation
- 2 Exponential integrators
 - Method format
 - Schemes
 - Numerical tests

3 Analysis

- Local error
- Global error
- The end

The non-linear Schrödinger equation

Our aim is to solve the nonlinear Schrödinger equation,

$$i\frac{\partial\psi}{\partial t} = -\frac{\partial^2\psi}{\partial x^2} + (V(x) + C_{nl}|\psi|^2)\psi, \quad x \in [-\pi,\pi]$$

where V(x) is some potential and C_{nl} is the nonlinearity constant. We impose an initial condition and a periodic boundary condition,

$$\psi(x,0) = \psi_0(x), \quad x \in [-\pi,\pi] \ \psi(-\pi,t) = \psi(\pi,t), \quad t > 0.$$

The non-linear Schrödinger equation Semi-discretisation

Semi-discretisation

We do a Fourier transform of the system, setting

$$\psi_n(x,t) = \sum_{k=-\frac{N_F}{2}}^{\frac{N_F}{2}-1} c_k(t) \mathrm{e}^{\mathrm{i}kx},$$

where $N_{\mathcal{F}}$ is a power of two, yielding

$$\begin{split} & \frac{\mathrm{d}c}{\mathrm{d}t} = Lc + N(c), & \text{where} \\ & N(c) = -\mathrm{i} \cdot \mathcal{F}\big((V(x) + C_{\mathsf{nl}}|\mathcal{F}^{-1}(c)|^2)\mathcal{F}^{-1}(c)\big) \\ & L = \mathsf{diag}(-\mathrm{i}k^2) \end{split}$$

Method format Schemes Numerical tests

Exponential integrators

We write all (explicit) integrators for solving $\dot{u} = Lu + N(u)$ in the format:

$$N_{r} = N\left(a_{r}^{0}(hL)u_{0} + h\sum_{j=1}^{r-1}a_{r}^{j}(hL)N_{j}\right), \quad r = 1, ..., s$$
$$u_{1} = b^{0}(hL)u_{0} + h\sum_{r=1}^{s}b^{r}(hL)N_{r}$$

and the coefficient functions $a_r^j(z)$ and $b^r(z)$ are written in the tableau

$$\begin{array}{c|c} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_5 \\ a_s^1(z) \\ \hline b^1(z) \\ c_5 \\ c_5 \\ b^{-1}(z) \\ c_5 \\ b^{-1}(z) \\ c_5 \\ c$$

For exponential integrators, $a_r^0(z) = e^{c_r z}$, $b^0(z) = e^z$.

Method format Schemes Numerical tests

Fourth order Lawson scheme

In general, Lawson schemes may be written as

$$a_r^j(z) = lpha_r^{j,0} \mathrm{e}^{(c_r-c_j)z}$$
 and $b^r(z) = eta^{r,0} \mathrm{e}^{(1-c_r)z}.$

where $\alpha_r^{j,0}$, $\beta^{r,0}$ and c_r are the coefficients from the underlying Runge-Kutta scheme.

Method format Schemes Numerical tests

Commutator-free, order 4

$$\phi_0(z) = \frac{\mathrm{e}^z - 1}{z}$$

• Lie group method, with the affine Lie group action.

Method format Schemes Numerical tests

ETD4RK

$$\begin{array}{c|cccc} 0 & & & \\ \frac{1}{2} & \frac{1}{2}\phi_0(z/2) \\ \frac{1}{2} & & \frac{1}{2}\phi_0(z/2) \\ 1 & \frac{z}{4}\phi_0(z/2)^2 & \phi_0(z/2) \\ \hline & \phi_0 - 3\phi_1 + 2\phi_2 & 2\phi_1 - 2\phi_2 & -\phi_1 + 2\phi_2 \end{array}$$

where

$$\phi_k(z) = \int_0^1 \mathrm{e}^{(1-\theta)z} \theta^k \,\mathrm{d}\theta$$

• Due to Cox & Matthews 2002.

Method format Schemes Numerical tests

Runge–Kutta–Munthe-Kaas, order 4

- Lie group method, with the affine Lie group action.
- CFREE4, ETD4RK and RKMK4 are exact on the affine scalar problem y' = Ly + N for L, N constants. They may therefore be denoted affine exponential integrators.

The Schrödinger equation Exponential integrators Analysis Method format Schemes Numerical tests

Combined Commutator-free and Lawson, order 4

- The scheme has $a_r^j(z)$ -coefficients from the Commutator-free scheme, and $b^r(z)$ -coefficients from the Lawson-scheme.
- This is not an affine integrator.

Method format Schemes Numerical tests

Crank–Nicolson

- Simplified Jacobian
- 4 Newton-iterations \Rightarrow 4 stages

$$\begin{array}{c|cccc} 0 & & & \\ 1 & \frac{2}{2-z} & & \\ 1 & \frac{1}{2-z} & \frac{1}{2-z} & \\ 1 & \frac{1}{2-z} & & \frac{1}{2-z} & \\ \hline 1 & \frac{1}{2-z} & & \frac{1}{2-z} & \\ \end{array}$$

and with $a_r^0(z) = b^0(z) = \frac{1+z/2}{1-z/2}$.

In this form, Crank–Nicolson is also a W-method.

IC	Potential	Lawson4	AcfreeBlawson	ETD4RK/CFREE4/RKMK4
IC = smooth	$V = \lambda$	4	4	4
	V = smooth	4	4	4
	V = hat	1.25 oscillating	1.25 oscillating	1.65
	$V = \lambda$	4	1.75	0.75
IC = hat	V = smooth	> 2, staircase	2	0.75
	V = hat	1.25 oscillating	1.25 oscillating	0.75

	IC	Potential	Lawson4	AcfreeBlawson	ETD4RK/CFREE4/RKMK
IC = smooth	$V = \lambda$	4	4	4	
	V = smooth	4	4	4	
	V = hat	1.25 oscillating	1.25 oscillating	1.65	
IC = hat	$V = \lambda$	4	1.75	0.75	
	V = smooth	> 2, staircase	2	0.75	
	V = hat	1.25 oscillating	1.25 oscillating	0.75	

IC	Potential	Lawson4	AcfreeBlawson	ETD4RK/CFREE4/RKMK4
IC = smooth	$V = \lambda$	4	4	4
	V = smooth	4	4	4
	V = hat	1.25 oscillating	1.25 oscillating	1.65
	$V = \lambda$	4	1.75	0.75
IC = hat	V = smooth	> 2, staircase	2	0.75
	V = hat	1.25 oscillating	1.25 oscillating	0.75

IC	Potential	Lawson4	AcfreeBlawson	ETD4RK/CFREE4/RKMK4
IC = smooth	$V = \lambda$	4	4	4
	V = smooth	4	4	4
	V = hat	1.25 oscillating	1.25 oscillating	1.65
	$V = \lambda$	4	1.75	0.75
IC = hat	V = smooth	> 2, staircase	2	0.75
	V = hat	1.25 oscillating	1.25 oscillating	0.75

IC	Potential	Lawson4	AcfreeBlawson	ETD4RK/CFREE4/RKMK4
IC = smooth	$V = \lambda$	4	4	4
	V = smooth	4	4	4
	V = hat	1.25 oscillating	1.25 oscillating	1.65
	$V = \lambda$	4	1.75	0.75
IC = hat	V = smooth	> 2, staircase	2	0.75
	V = hat	1.25 oscillating	1.25 oscillating	0.75

IC	Potential	Lawson4	AcfreeBlawson	ETD4RK/CFREE4/RKMK4
IC = smooth	$V = \lambda$	4	4	4
	V = smooth	4	4	4
	V = hat	1.25 oscillating	1.25 oscillating	1.65
	$V = \lambda$	4	1.75	0.75
IC = hat	V = smooth	> 2, staircase	2	0.75
	V = hat	1.25 oscillating	1.25 oscillating	0.75

The Schrödinger equation Exponential integrators Analysis Local error Global error The end

Local error

If V(x) is constant and $C_{nl} = 0$ in the NLS-equation, one obtains a decoupled system of scalar ODEs. We write the equation for each Fourier mode as a scalar linear equation

$$\dot{y} = Ly + Ny \qquad y(0) = y_0 \tag{1}$$

with exact solution $y(h) = e^{h(L+N)}y_0$, $(L = -ik^2)$.

The stability function R(h, L, N) for each scheme gives us the local error

Lawson4
ETD4RK
RKMK4
CFREE4
AcfreeBlawson

$$\frac{h^5}{2880}(3NL^4 - 7N^2L^3 - 4N^3L^2 + 30N^4L + 24N^5)$$

 $\frac{h^5}{2880}(11NL^4 + 20N^2L^3 + 15N^3L^2 + 30N^4L + 24N^5)$
 $\frac{h^5}{480}(NL^4 + 5N^4L + 4N^5)$
 $\frac{h^5}{2880}(15N^2L^3 + 10N^3L^2 - 30N^4L - 24N^5)$

Local error Global error The end

Local error for Lawson-schemes

Proposition

The local error for an explicit p-th order Lawson scheme on the scalar initial value problem $\dot{y} = Ly + Ny, y(0) = 1, L, N \in C$ is

$$\frac{h^{p+1}}{(p+1)!}N^{p+1} + \mathcal{O}(h^{p+2})$$

Proof.

The "change of variables"-trick makes the stability function $e^{hL}R(hN)$ where R(hN) is the stability function for the underlying RK-scheme. Thus, the local error becomes

$$e = e^{h(L+N)} - e^{hL}R(hN) = e^{hL}\mathcal{O}((hN)^{p+1})$$

In the matrix case, this is true if [L, N] = 0.

The Schrödinger equation Exponential integrators Analysis Local error Global error The end

The global error for the decoupled case

The effect of having L^4 in the local error for each Fourier mode:

- We have order-four behaviour for $h < h_{crit}$.
- h_{crit} dominated by the NL^4 term in the local error ($L = -ik^2$ here).
- For $h > h_{crit}$, the error is bounded by 2 as long as $hN < 2\sqrt{2}$ (classical stability of RK4C).
- For the Lawson scheme, this plot is equivalent for all k.

The Schrödinger equation Exponential integrators Analysis Local error Global error The end

Order reduction

For the CFREE/ETD-methods we bound the global error for each Fourier mode for the simplified case $y' = -ik^2y + Ny$, $y(0) = y_0^k$ by

$$|\mathsf{ge}_k| \le \begin{cases} 2\left(\frac{hk^2}{S_B}\right)^4 |y_k^0|, & hk^2 \le S_B\\ 2|y_k^0|, & hk^2 > S_B \end{cases}$$

Order reduction depends on the regularity of the initial function. The decay of the Fourier coefficients in the initial condition is governed by

$$y_k^0 \le \frac{K_r}{k^r}$$

for some regularity r. For the hat function, r = 1.

The Schrödinger equation Exponential integrators Analysis Local error Global error The end

Order reduction

Summing over all Fourier modes, we obtain

$$\begin{split} \frac{1}{4} ||\mathbf{g}\mathbf{e}||_{2}^{2} &= \frac{1}{4} \sum_{k=-N_{\mathcal{F}}/2}^{N_{\mathcal{F}}/2-1} |\mathbf{g}\mathbf{e}_{k}|^{2} \\ &\leq \sum_{|k| \leq \sqrt{S_{B}/h}} \left(\frac{\hbar k^{2}}{S_{B}}\right)^{8} |y_{k}^{0}|^{2} + \sum_{|k| > \sqrt{S_{B}/h}} |y_{k}^{0}|^{2} \\ &\leq K_{r}^{2} \left(\frac{h}{S_{B}}\right)^{8} \sum_{|k| \leq \sqrt{S_{B}/h}} k^{16-2r} + K_{r}^{2} \sum_{|k| > \sqrt{S_{B}/h}} k^{-2r} \end{split}$$

Using Euler–MacLaurin with remainder term to find bounds for the sums, we eventually find the reduced global order for $r \le 8$:

$$||\mathsf{ge}||_2 \le Ch^{\frac{2r-1}{4}}$$

This is confirmed experimentally:

Predicted and observed order CFREE4:

 The Schrödinger equation
 Local error

 Exponential integrators
 Global error

 Analysis
 The end

Conclusions

- The Lawson scheme is competitive for the NLS-equation.
- Affine integrators (CFREE/ETD/RKMK) exhibits order reduction when the initial condition has low regularity.

- Thank you for your attention!
- Project webpage

http://www.math.ntnu.no/num/expint/