# Isotropy in geometric integration SciCADE 2003

Håvard Berland

Norwegian University of Science and Technology

Isotropy in geometric integration, SciCADE 2003, July 3 – p.1/1

## Introduction

We consider ambiguity in the formulation of Lie group methods. Examples used are

- The action of SO(3) on the sphere  $S^2$
- The action of SL(2) on  $\mathbb{R}^2$ .

The ideas presented here are based on the paper by Lewis and Olver, *Geometric integration algorithms on homogeneous manifolds*, Found. Comput. Math. 2:363-392 (2002).

We shall see that the stability of first-order integrators can be significantly improved by use of the isotropy in the formulation.

## **Isotropy** — definition

The isotropy subgroup of a Lie group action  $\Lambda: G \times M \to M$  is defined pointwise on the manifold as

 $G_p = \{ g \in G \mid \Lambda(g,p) = p \}$ 

## **Isotropy** — **definition**

The isotropy subgroup of a Lie group action  $\Lambda: G \times M \to M$  is defined pointwise on the manifold as

 $G_{p} = \{ g \in G \mid \Lambda(g,p) = p \}$ 

The isotropy subalgebra is the Lie algebra of  $G_p$ . Defining the Lie algebra action as  $\lambda(u, p) = \Lambda(exp(u), p)$ , this is equivalent to

$$\mathfrak{g}_{\mathfrak{p}} = \{\mathfrak{u} \in \mathfrak{g} \, | \, \lambda(\mathfrak{u},\mathfrak{p}) = \mathfrak{p} \, \}$$

# **Isotropy** — $SO(3) - S^2$ example

Consider the action of SO(3) on  $S^2$ , which rotates vectors in  $S^2 \subset \mathbb{R}^3$ .



The isotropy subgroup of SO(3) at the point p rotates p around itself.

## **Isotropy in RKMK methods**

Given a differential equation on a manifold M

 $\dot{y} = F(y), \quad F: M \to TM$ 

an RKMK method relies on the *existence* of an algebra-valued map  $f: M \to \mathfrak{g}$  representing the differential equation.  $\lambda_{\star}: \mathfrak{g} \times M \to TM$  is  $\frac{d}{dt}\Big|_{t=0} \lambda(tu, y)$ .



## **Isotropy in RKMK methods**

Given a differential equation on a manifold M

 $\dot{y} = F(y), \quad F: M \to TM$ 

an RKMK method relies on the *existence* of an algebra-valued map  $f: M \to \mathfrak{g}$  representing the differential equation.  $\lambda_{\star}: \mathfrak{g} \times M \to TM$  is  $\frac{d}{dt}\Big|_{t=0} \lambda(tu, y), \ \lambda_{\star}(\mathfrak{g}_y)(y) = 0.$ 



where  $\zeta(y)$  is any element in the isotropy subalgebra  $\mathfrak{g}_y$ .

### Lie-Euler

The RKMK method we are going to use is Lie-Euler, which for some chosen algebra map **f** is

 $y_{n+1} = \exp(hf(y_n))y_n$ 

where  $f(y)y = F(y) = \dot{y}$ .

(For our matrix-vector examples,  $\lambda_{\star}(f(y))(y) = f(y)y$ )

### Lie-Euler

The RKMK method we are going to use is Lie-Euler, which for some chosen algebra map f is

 $y_{n+1} = \exp(hf(y_n))y_n$ 

where  $f(y)y = F(y) = \dot{y}$ .

Adding an isotropy correction to f preserves the differential equation, but affects the numerical method

 $y_{n+1} = \exp(h(f(y_n) + \sigma(y_n)\zeta(y_n)))y_n$ 

where  $\sigma: \mathcal{M} \to \mathbb{R}$  is a scalar function.

## Lie series expansion

An expansion of  $\exp(f + \zeta)$  goes like (suppressing arguments of f and  $\zeta$ )

$$\exp(f + \zeta) = I + f + \zeta + \frac{f^2 + f\zeta + \zeta f + \zeta^2}{2} + \cdots$$

## Lie series expansion

An expansion of  $\exp(f + \zeta)$  goes like (suppressing arguments of f and  $\zeta$ )

$$\exp(f+\zeta) = I + f + \zeta + \frac{f^2 + f\zeta + \zeta f + \zeta^2}{2} + \cdots$$

but remember that  $\zeta y = 0$ , so for Lie-Euler

$$\exp(f+\zeta)(y) = y + fy + \frac{f^2 + \zeta f}{2}y + \frac{f^3 + f\zeta f + \zeta^2 f}{6}y + \cdots$$

 $\Rightarrow$  isotropy only has an effect from second order  $(\frac{h^2}{2}\zeta f)$  and upwards.

# The range of isotropy, $SO(3) - S^2$

#### The effect of varying the scalar $\sigma$ in front of $\zeta$ :



(One Lie-Euler step with isotropy correction,  $\Delta t = 0.1$ )

Isotropy in geometric integration, SciCADE 2003, July 3 - p.8/1

# The range of isotropy, $SO(3) - S^2$

### The effect of varying the scalar $\sigma$ in front of $\zeta$ :



The second order effect  $\zeta f$  corrects the path orthogonally, as  $\zeta f y \perp f y$  when  $\zeta$  is skew-symmetric.

in geometric integration, SciCADE 2003, July 3

### **Orbit capture** [Lewis-Olver]



Orbit capture is sought by choosing a  $\sigma$  such that we get close to the red point above.

"Minimize the distance from the true orbit"

### **Orbit capture** [Lewis-Olver]



• "Minimize the distance from the true orbit"

By using isotropy, we are able to cancel the second order orbit error. Phase error is still order 1. Condition:



## **Results for the rigid body**



- The isotropy corrected Lie-Euler is significantly better than no correction.
- There is some energy drift.

## **Results for the rigid body**



There is some energy drift.

• Remedy: Scale  $\sigma(y)$  by a constant  $\alpha$ 



Isotropy in geometric integration, SciCADE 2003, July 3 - p.10/1

SL(2) action on  $R^2$ SL(2) is all  $2 \times 2$  matrices with determinant 1. We want a Lie-Euler method of the form  $y_{n+1} = \exp(hf(y_n))y_n$ where  $f : \mathbb{R}^2 \to \mathfrak{sl}(2)$  (trace-free matrices). The isotropy subalgebra at y = (u, v) in  $\mathbb{R}^2$  is

$$\zeta(\mathbf{y}) = \begin{pmatrix} \mathbf{u}\mathbf{v} & -\mathbf{u}^2 \\ \mathbf{v}^2 & -\mathbf{u}\mathbf{v} \end{pmatrix}$$

## SL(2) action on $R^2$

An f:  $\mathbb{R}^2 \to \mathfrak{sl}(2)$  for Lotka-Volterra

$$\begin{cases} \dot{u} = u(v-2) \\ \dot{v} = v(1-u) \end{cases} \quad \Rightarrow \quad f(y) = \begin{pmatrix} u-1 & -\frac{u(u-v+1)}{v} \\ 0 & 1-u \end{pmatrix}$$

An f:  $\mathbb{R}^2 \to \mathfrak{sl}(2)$  for *Duffing oscillator* 

$$\begin{cases} \dot{u} = v \\ \dot{v} = u - u^3 \end{cases} \quad \Rightarrow \quad f(y) = \begin{pmatrix} 0 & 1 \\ 1 - u^2 & 0 \end{pmatrix}$$

## **Results on SL(2), Lotka-Volterra,** $\Delta t = 0.1$

#### No scaling, $\alpha = 1$



#### Not as promising as the rigid body example

# **Results on SL(2), Lotka-Volterra,** $\Delta t = 0.1$

#### No scaling, $\alpha = 1$



#### With scaling, $\alpha = 1.84$





# **Results on SL**(2), **Duffing**, $\Delta t = 0.1$

#### No scaling, $\alpha = 1$

۲



# **Results on SL(2), Duffing,** $\Delta t = 0.1$

#### No scaling, $\alpha = 1$



### With scaling, $\alpha = 1.17$





### On the scaling $\alpha$

- For rigid body:  $\alpha = 1.00009$
- Lotka-Volterra:  $\alpha = 1.84$ , Duffing:  $\alpha = 1.17$
- Found by trial and error.

### On the scaling $\alpha$

- For rigid body:  $\alpha = 1.00009$
- Lotka-Volterra:  $\alpha = 1.84$ , Duffing:  $\alpha = 1.17$
- Why small for rigid body?
- Partial answer: ζfy ⊥ fy for rigid body, *not* true for our *SL*(2) examples. We even have ζfy || fy at some points, which means that isotropy does not contribute here (in red below).



### Notes

- Easily applicable to Lie-Euler on the rigid body equations, with good results.
- Stability comparable to symplectic euler when a satisfactory  $\alpha$  has been found.
- Promising results recently noted for SE(2).

### The end

- Easily applicable to Lie-Euler on the rigid body equations, with good results.
- Stability comparable to symplectic euler when a satisfactory  $\alpha$  has been found.
- Promising results recently noted for SE(2).

Thank you for your attention