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Thesis overview

This thesis concerns the numerical solution of differential
equations.

I Focus on time-integration

Aims:

I Construct and analyze schemes for numerical integration

I Measure in terms of computational speed and numerical
quality
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Numerical analysis for ordinary differential equations

A differential equation

y ′(t) = f (y(t)), y0 = y(0)

describes the time evolution of a
quantity y , given

I its initial state y0

I a function f describing how the
solution y changes Time t

y(t)

y0

Exact solution

(unknown)

f (y0)

global
error

stepsize h

One aim of numerical analysis

Design methods to minimize error while maximizing stepsize h
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Applications

The solution we search for may be any quantity.

Some important examples are

I Weather forecasting

I Modeling of oil flow in reservoirs

I Modeling of ocean currents

I Evolution of water waves

I Planet positions in solar system
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Overview of papers

Paper I: Algebraic structures on

ordered rooted trees

Paper II: B-series and order

conditions for exp. integrators

Paper III: Expint — A Matlab

package for exp. integrators

Paper IV: Solving the nonlinear

Schrödinger equation . . .

Paper V: Conservation of phase

space properties for CSE . . .

Paper VI: Generalized affine

groups in exp. integrators

Lie group int.

Exponential
integrators

Order analysis

Implementation

Numerical

experiments

Inverse

spectral

theory
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Lie group integrator, example

An equation in R2, (rotational vector
field):

ẏ1 = y2

ẏ2 = −y1

d
dt ‖y(t)‖ = 0, so ‖y(t)‖ is constant.

y0

I Classical numerical
integrators move in straight
lines.

y0

I Lie group integrators
tailored for S1-
problems move along
the solution manifold. 6 / 1



Order analysis using trees

Order analysis

Expand the exact and numerical solution in Taylor series in h, and
compare term by term

ẏ = f (y) ∼
ÿ = f ′(y)ẏ = f ′(y)f (y) ∼

y (3) = f ′′(y)ẏ2 + f ′(y)ÿ = f ′′(y)f (y)2 + (f ′(y))2f (y) ∼ +

Revolutionary trick by Butcher (1972):

I Work with trees instead of tedious expressions (number of
terms in y (i) increase exponentially)
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Hopf algebras and applications

Hopf algebras

Runge–Kutta analysis (Butcher 1972/Dür 1986)

Noncommutative geometry (Connes 1998)

Renormalization, quantum physics (Kreimer 1998)

I Brouder (2000) showed that these three Hopf algebras were
equivalent.

The Leibniz rule

(fg)′ = f ′g + fg ′

is the essential part of the entire structure!
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Paper I

I We describe how Hopf algebra structures can be applied to a
general class of Lie group integrators, extending the work of
Butcher on classical Runge–Kutta integrators.

I Two relevant and connected Hopf algebra structures are
presented.

I Backward error analysis explicitly computed using a logarithm
map. Important for further analysis and construction of new
schemes, where symplecticity and/or volume preservation is
essential, as found in Chartier, Murua and Faou 2006.
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Exponential integrators, format

A differential equation

y ′(t) = f (y(t))

= Ly(t) + N(y)

can be solved using a Runge–Kutta scheme given a previously
computed value yn,

Yi =

ecihL

yn + h
s∑

j=1

aij

(hL)

f (Yj), i = 1, . . . , s

yn+1 =

ehL

yn + h
s∑

i=1

bi

(hL)

f (Yj).

Order analysis specifies what values can be used for the coefficients
aij and bi .
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Exponential integrators, format

The differential equation can be split into two parts

y ′(t) = f (y(t)) = Ly(t) + N(y)

and can be solved by an exponential integrator given a previously
computed value yn,

Yi = ecihLyn + h
s∑

j=1

aij(hL)N(Yj), i = 1, . . . , s

yn+1 = ehLyn + h
s∑

i=1

bi (hL)N(Yj).

The coefficient functions aij(hL) and bi (hL) must at least satisfy
classical Runge–Kutta conditions for L → 0.
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Why exponential integrators

For systems of differential equations (y(t) is vector-valued),
explicit Runge–Kutta schemes may experience an upper limit on
the timestep h, depending on the eigenvalues of the system.

Increasing spatial resolution in a PDE problem typically reduces the
limit on h, sometimes unacceptable.

Two possible solutions to remedy stepsize restrictions:

I Use implicit Runge–Kutta schemes. Expensive evaluation of
Yi at each stage (nonlinear systems of equations).

I Use exponential explicit Runge–Kutta schemes. One needs to
compute exponentials of L, but it is hopefully less expensive
than implicit Runge–Kutta.
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Exponential integrators

From the scheme format, there will be two immediate analytical
features of exponential integrators of Runge–Kutta-format:

I If N(y) = 0 the scheme will yield the exact solution

I If L = 0 the scheme will reduce to the underlying RK-scheme

Paper II:

I Classical order analysis using bicolored trees

I Provides a procedure for constructing exponential integrators

I Convergence is more subtle for stiff problems, as discussed in
Hochbruck and Ostermann 2005
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Paper III, MATLAB package for exponential integrators

A MATLAB package for modular implementation of exponential
integrators

I Easy implementation and comparison
of more than 30 exponential
integrators

I Numerous examples of discretizations
of common PDEs

I Written for exponential general linear
methods, of which exponential
Runge–Kutta-integrators are a subset
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Exponential integrators, ϕ functions

A frequently used class of exponential-like functions used in
exponential integrators are the

ϕ functions

ϕj(z) =
1

(j − 1)!

∫ 1

0
e(θ−1)zθj−1 dθ, j = 1, 2, . . . ,

for j = 1, 2, 3 (and for z 6= 0),

ϕ1(z) =
ez − 1

z
, ϕ2(z) =

ez − z − 1

z2
,

and ϕ3(z) =
ez − z2/2− z − 1

z3
.

I Numerical issues when z near 0.
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Scaling and squaring of ϕ functions (Paper III)

z

z/2p ϕj(z/2p)

ϕj(z)

scaling

(7, 7) Padé

corrected squaring

I p is chosen such that ‖z/2p‖∞ ≤ 1.
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Scaling and squaring of ϕ functions (Paper III)

z

z/2p ϕj(z/2p)

ϕj(z)

scaling

(7, 7) Padé

corrected squaring

(d , d)-Padé approximation of ϕj :

ϕj(z) = N j
d(z)/D j

d(z) +O(z2d+1) where

N j
d(z) =

d!

(2d + j)!

d∑
i=0

[
i∑

k=0

(2d + j − k)!(−1)k

k!(d − k)!(j + i − k)!

]
z i

D j
d(z) =

d!

(2d + j)!

d∑
i=0

(2d + j − i)!

i !(d − i)!
(−z)i
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Scaling and squaring of ϕ functions (Paper III)

z

z/2p ϕj(z/2p)

ϕj(z)

scaling

(7, 7) Padé

corrected squaring

Theorem (Paper VI)

ϕj(2α) =
1

2j

(
eαϕj(α) +

j∑
k=1

1

(j − k)!
ϕk(α)

)

(compare to e2z = ezez)
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Exponential integrators for nonlinear Schrödinger

What are the important criteria for a “good integrator”?

I Local error, predicted by order analysis (Paper II)

I Global error, sometimes known analytically from local error,
sometimes only observed numerically (Paper IV)

I Preservation of conservation quantities (Paper V)

I Processor/memory demands
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Exp. integrators for nonlinear Schrödinger (Paper IV)

Analytical and observed
global error. Periodic BC.
iut = −uxx + (V (x) + |u|2)u
Regularity is decay of Fourier
coeff.
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Exp. integrators for nonlinear Schrödinger (Paper V)

ut = iuxx + 2i|u|2u (?)

I Aim: Assess “goodness” of numerical integrator by monitoring
preservation of conserved quantities over long time-scales.

Lax pair for (?)

L =

(
i ∂
∂x u∗

u i ∂
∂x

)
A =

(
−i|u|2 u∗x
−ux i|u|2

)
The spectrum σ(L) is invariant in time if u is a solution of (?).

I Initial condition is a perturbation of an unstable plane wave
solution (periodic boundary conditions).
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Spectrum preservation (Paper V)

Re λ

Im λ

σ(L)

Unperturbed plane wave

Unstable points

x

time|u|2
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Spectrum preservation (Paper V)

Re λ

Im λ

σ(L)

Perturbed plane wave

Spectrum gaps
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Paper V conclusions

I Exponential integrators preserve the spectrum better and are
faster than the split-step schemes which are most prominent
in the literature for this problem.

I CFREE4 preserves the spectrum for the longest time, slightly
better than LAWSON4 (possibly related to stiff order)

I A multisymplectic scheme (order 2 and implicit) was slower
and less able to preserve the spectrum compared to the other
schemes.
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Thanks

Thanks to co-authors:

I Brynjulf Owren (Paper I, II, IV)

I Bård Skaflestad (Paper II, III, IV)

I Will Wright (Paper III)

I Constance Schober and Alvaro Islas (Paper V)

Thanks for your attention!
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