Isotropy in geometric integration
FoCM’02

Havard Berland

Department of Mathematical Sciences, NTNU, Norway



Introduction

The ideas are based on

e Lewis and Olver, Geometric integration algorithms on
homogeneous manifolds, preprint, University of
Minnesota, 2001.

Outline:

e A strategy to minimize local error by use of isotropy.

e Numerical results from the above strategy to ridid body
rotations and two example differential equations on R>.

e A tweak by a constant gives extraordinary stability.
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Isotropy

Definition: The isotropy subgroup of a Lie group action
A: G x M — M is defined pointwise on the manifold as

G,=19€G|Ag,p)=p}

The isotropy subalgebra is the Lie algebra of G,,. Defining
the Lie algebra action as A(u, p) = A(exp(u), p), this is
equivalent to

gp={ucg|Mup =p}
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Isotropy in RKMK methods

For the differential equation
y=F(y), F:M—TM
an RKMK method relies on the existenceofa f: M — g
A(f)y) = F(y) for Ac:igx M —TM
Let {(y) be any element in the isotropy subalgebra at y,

A(f(y) +C()(y) = F(y)

as well. f is thus not unique!
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Lie-Euler

The RKMK method we are going to use is Lie-Euler, which
uncorrected is

Yn+1 = exp(hf(yn))yn

and the corrected version is
Yn+1 = eXp(h(f(yn) -+ U(yn)g(yn)))yn

where ¢ is a scalar function we are going to adjust in order

to improve the consecutive steps of Lie-Euler.
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Local isotropy correction

A Lie series expansion of the exact flow and the flow of
corrected Lie-Euler leads to a second order condition
(assuming matrix-vector group action):

o)) f(y)y = ——="y ()

At each point we use numerical differentiation for the right
side, and search for a ¢ which approximates (x) “in some

sense”.
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Isotropy for rigid body

The Lewis and Olver correction for y = F(y) =y x Iy is

(F(y), 17" F(y))

ForE vl

o(y) =

e The second order error is in the direction of the vector
field, second order orbit capture.

e Equivalent to the approach in (x).
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Results for the rigid body
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Acting on R? by SL(2)

SL(2) is the group of 2 x 2 matrices with determinant equal
to 1. This approach is motivated by the stability properties
obtained from isotropy on the rigid body.

The isotropy subalgebra at y = (u,v) in R? is
uv —u2
C(y) = ( , )
(V) —Uuv
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Equations in R”

We have f: R? — sl(2) for the following equations:
Lotka-Volterra

(.: B ) B _u(u—v+1)
e f<y>(“ LT )

0 1 —u
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Results on SL(2), o =1

otka-Volterra
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Results on SL(2), o # 1

Lotka-Volterra (o = 1.84)
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The constant o

_otka-Volterra a = 1.84
Duffing a=1.17
Rigid body a = 1.00009

e Is o = 1.00009 for rigid body pure luck?
e Dependent on time-step h, f and o.

e Currently found by trial and error.
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The end

Conclusions:

e [aking advantage of isotropy for RKMK methods looks
promising in order to attain good global behavior.

e The role of a not yet understood.

Thank you for your attention!

Full diploma thesis available at
htto.//www.math.ntnu.no/"berland/thesis
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