Isotropy in geometric integration *FoCM'02*

Håvard Berland

Department of Mathematical Sciences, NTNU, Norway

Introduction

The ideas are based on

 Lewis and Olver, Geometric integration algorithms on homogeneous manifolds, preprint, University of Minnesota, 2001.

Outline:

- A strategy to minimize local error by use of isotropy.
- Numerical results from the above strategy to ridid body rotations and two example differential equations on \mathbf{R}^2 .
- A tweak by a constant gives extraordinary stability.

Isotropy

Definition: The isotropy subgroup of a Lie group action $\Lambda: G \times M \to M$ is defined pointwise on the manifold as

$$G_p = \{ g \in G \mid \Lambda(g, p) = p \}$$

The isotropy subalgebra is the Lie algebra of G_p . Defining the Lie algebra action as $\lambda(u, p) = \Lambda(\exp(u), p)$, this is equivalent to

$$\mathfrak{g}_p = \{ u \in \mathfrak{g} \mid \lambda(u, p) = p \}$$

NTNU – p.3/14

Isotropy in RKMK methods

For the differential equation

 $\dot{y} = F(y), \quad F: M \to TM$

an RKMK method relies on the existence of a $f: M \to \mathfrak{g}$

$$\lambda_*(f(y))(y) = F(y) \text{ for } \lambda_* \colon \mathfrak{g} \times M \to TM$$

Let $\zeta(y)$ be any element in the isotropy subalgebra at y,

 $\lambda_*(f(y) + \zeta(y))(y) = F(y)$

as well. f is thus not unique!

Lie-Euler

The RKMK method we are going to use is Lie-Euler, which uncorrected is

 $y_{n+1} = \exp(hf(y_n))y_n$

and the corrected version is

$$y_{n+1} = \exp(h(f(y_n) + \sigma(y_n)\zeta(y_n)))y_n$$

where σ is a scalar function we are going to adjust in order to improve the consecutive steps of Lie-Euler.

Local isotropy correction

A Lie series expansion of the exact flow and the flow of corrected Lie-Euler leads to a second order condition (assuming matrix-vector group action):

$$\sigma(y)\zeta(y)f(y)y = \frac{\mathrm{d}f(y)}{\mathrm{d}t}y \tag{(*)}$$

At each point we use numerical differentiation for the right side, and search for a σ which approximates (*) "in some sense".

Isotropy for rigid body

The Lewis and Olver correction for $\dot{y} = F(y) = y \times \mathbb{I}^{-1}y$ is

$$\sigma(y) = \frac{\langle F(y), \mathbb{I}^{-1}F(y)\rangle}{\|F(y)\|^2} - \langle y, \mathbb{I}^{-1}y\rangle$$

- The second order error is in the direction of the vector field, second order orbit capture.
- Equivalent to the approach in (*).

Results for the rigid body

The isotropy corrected Lie-Euler increases slowly by time. Remedy: Scale $\sigma(y)$ by a constant α

Acting on \mathbb{R}^2 by SL(2)

SL(2) is the group of 2×2 matrices with determinant equal to 1. This approach is motivated by the stability properties obtained from isotropy on the rigid body.

The isotropy subalgebra at y = (u, v) in \mathbb{R}^2 is

$$\zeta(y) = \begin{pmatrix} uv & -u^2 \\ v^2 & -uv \end{pmatrix}$$

Equations in \mathbb{R}^2

We have $f: \mathbb{R}^2 \to \mathfrak{sl}(2)$ for the following equations: Lotka-Volterra

$$\begin{cases} \dot{u} = u(v-2) \\ \dot{v} = v(1-u) \end{cases} \quad \Rightarrow \quad f(y) = \begin{pmatrix} u-1 & -\frac{u(u-v+1)}{v} \\ 0 & 1-u \end{pmatrix}$$

Duffing oscillator

$$\begin{cases} \dot{u} = v \\ \dot{v} = u - u^3 \end{cases} \quad \Rightarrow \quad f(y) = \begin{pmatrix} 0 & 1 \\ 1 - u^2 & 0 \end{pmatrix}$$

Results on SL(2), $\alpha = 1$

Lotka-Volterra

Duffing oscillator

Results on SL(2), $\alpha \neq 1$

Lotka-Volterra ($\alpha = 1.84$)

Duffing oscillator ($\alpha = 1.17$)

The constant α

Lotka-Volterra	$\alpha = 1.84$
Duffing	$\alpha = 1.17$
Rigid body	$\alpha = 1.00009$

- Is $\alpha = 1.00009$ for rigid body pure luck?
- Dependent on time-step h, f and σ .
- Currently found by trial and error.

The end

Conclusions:

- Taking advantage of isotropy for RKMK methods looks promising in order to attain good global behavior.
- The role of α not yet understood.

Thank you for your attention!

Full diploma thesis available at *http://www.math.ntnu.no/~berland/thesis*