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Introduction

The ideas are based on

• Lewis and Olver, Geometric integration algorithms on
homogeneous manifolds, preprint, University of
Minnesota, 2001.

Outline:

• A strategy to minimize local error by use of isotropy.

• Numerical results from the above strategy to ridid body
rotations and two example differential equations on R

2.

• A tweak by a constant gives extraordinary stability.
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Isotropy

Definition: The isotropy subgroup of a Lie group action
Λ: G × M → M is defined pointwise on the manifold as

Gp = { g ∈ G | Λ(g, p) = p }

The isotropy subalgebra is the Lie algebra of Gp. Defining
the Lie algebra action as λ(u, p) = Λ(exp(u), p), this is
equivalent to

gp = {u ∈ g | λ(u, p) = p }
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Isotropy in RKMK methods

For the differential equation

ẏ = F (y), F : M → TM

an RKMK method relies on the existence of a f : M → g

λ∗(f(y))(y) = F (y) for λ∗ : g × M → TM

Let ζ(y) be any element in the isotropy subalgebra at y,

λ∗(f(y) + ζ(y))(y) = F (y)

as well. f is thus not unique!
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Lie-Euler

The RKMK method we are going to use is Lie-Euler, which
uncorrected is

yn+1 = exp(hf(yn))yn

and the corrected version is

yn+1 = exp(h(f(yn) +σ(yn)ζ(yn)))yn

where σ is a scalar function we are going to adjust in order

to improve the consecutive steps of Lie-Euler.
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Local isotropy correction

A Lie series expansion of the exact flow and the flow of
corrected Lie-Euler leads to a second order condition
(assuming matrix-vector group action):

σ(y)ζ(y)f(y)y =
df(y)

dt
y (∗)

At each point we use numerical differentiation for the right

side, and search for a σ which approximates (∗) “in some

sense”.
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Isotropy for rigid body

The Lewis and Olver correction for ẏ = F (y) = y × I
−1y is

σ(y) =
〈F (y), I−1F (y)〉

‖F (y)‖2
− 〈y, I−1y〉

• The second order error is in the direction of the vector
field, second order orbit capture.

• Equivalent to the approach in (∗).
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Results for the rigid body
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The isotropy corrected Lie-Euler increases slowly by time.
Remedy: Scale σ(y) by a constant α
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 α = 1.00009
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Acting on R
2 by SL(2)

SL(2) is the group of 2 × 2 matrices with determinant equal
to 1. This approach is motivated by the stability properties
obtained from isotropy on the rigid body.

The isotropy subalgebra at y = (u, v) in R
2 is

ζ(y) =





uv −u2

v2 −uv




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Equations in R
2

We have f : R
2 → sl(2) for the following equations:

Lotka-Volterra






u̇ = u(v − 2)

v̇ = v(1 − u)







⇒ f(y) =





u − 1 −u(u−v+1)
v

0 1 − u





Duffing oscillator






u̇ = v

v̇ = u − u3







⇒ f(y) =





0 1

1 − u2 0




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Results on SL(2), α = 1

Lotka-Volterra
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Results on SL(2), α 6= 1

Lotka-Volterra (α = 1.84)
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Duffing oscillator (α = 1.17)
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The constant α

Lotka-Volterra α = 1.84

Duffing α = 1.17

Rigid body α = 1.00009

• Is α = 1.00009 for rigid body pure luck?

• Dependent on time-step h, f and σ.

• Currently found by trial and error.
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The end

Conclusions:

• Taking advantage of isotropy for RKMK methods looks
promising in order to attain good global behavior.

• The role of α not yet understood.

Thank you for your attention!

Full diploma thesis available at
http://www.math.ntnu.no/˜berland/thesis
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