
DIPLOMA THESIS

Isotropy in geometric integration

Author: H̊avard Berland

Spring 2002

Norwegian University of Science and Technology
Department of Mathematical Sciences

NTNU Faculty of Information Technology,
Norwegian University of Mathematics and Electrical Engineering
Science and Technology

DIPLOMA THESIS

for

stud.techn. H̊avard Berland

Faculty of Information Technology, Mathematics and
Electrical Engineering

NTNU

Date due: June 14, 2002

Discipline: Numerics

Title: “Isotropy in geometric integration”

Purpose of the work: Make a numerical study of the role of isotropy in Lie group methods
and find ways to improve the quality of numerical solvers by using isotropy.

This diploma thesis is to be carried out at the Department of Mathematical Sciences under
guidance by Professor Brynjulf Owren.

Trondheim, January 14, 2002.

Trond Digernes
Instituttleder

Dept. of Mathematical Sciences

Brynjulf Owren
Professor

Dept. of Mathematical Sciences

Preface

The ideas of this diploma thesis emerged from a recent paper on isotropy in geometric integra-
tion by Lewis and Olver [15] where they used isotropy to significantly improve the numerical
solution of Lie group methods. I was motivated for a subject that included both numerical
analysis and numerical implementation of Lie group methods.

The work started by various implementation attempts of the isotropy correction for rigid
body, and also some literature studies of Hamiltonian theory and also the generalization to
Poisson systems. An early goal was to extend the isotropy correction on the sphere to Stiefel
manifolds. For various reasons, interest turned to utilization of isotropy for SL(2) actions, as
it to our knowledge never has been used before for an R2-solver, and as it might be simple
enough to facilitate analysis.

The thesis ended by a numerical investigation of the performance of the rigid body cor-
rection and the SL(2)-correction, together with a successful tweak discovered by luck for the
SL(2)-action. Deeper analysis explaining the tweak was sought, but it has not been found
yet.

I wish to thank my supervisor, Brynjulf Owren, for continuous support and supervision.

Trondheim, June 2002
H̊avard Berland

i

ii Preface

Abstract

Lie group methods are formulated by means of a Lie group action on a manifold. If the
dimension of the Lie group is greater than the dimension of the manifold, there is a certain
freedom in the formulation of the method. We focus on Runge-Kutta-Munthe-Kaas Lie group
methods. Background from differential topology, Lie and matrix groups is provided and from
there a presentation of Runge-Kutta-Munthe-Kaas which methods are given.

Lewis and Olver [15] has recently shown how to improve the accuracy for algorithms on
the sphere by means of an SO(3)-action. We elaborate and extend their approach by using
Lie series, and find an equation that can be used to determine a choice of the isotropy freedom
leading to better numerical behavior.

The same methodology is then applied to an SL(2)-based Lie group method on R2. We
use the Lotka-Volterra system and the Duffing oscillator as examples and obtain excellent
long time behaviour comparable to Symplectic Euler by a careful choice of isotropy.

iii

iv Abstract

Contents

1 Introduction 1

2 Manifolds and Lie groups 3
2.1 Manifolds . 3
2.2 Submanifolds . 4
2.3 Vector fields and differential equations . 5
2.4 Lie groups . 6
2.5 Lie series . 7
2.6 Lie algebras . 8
2.7 Matrix groups . 8
2.8 The matrix exponential . 10
2.9 Matrix groups are Lie groups . 15
2.10 The tangent spaces of the Lie groups . 17

3 Lie group Methods 19
3.1 Introduction to Geometric Integration . 19
3.2 Lie group methods on Homogeneous Manifolds 20
3.3 The differential equation on the Lie algebra . 23
3.4 The dexp map and its inverse . 25
3.5 Runge-Kutta-Munthe-Kaas methods . 28

4 Using isotropy to improve the solution 31
4.1 Isotropy by example . 31
4.2 Isotropy in rkmk algorithms . 33
4.3 Isotropy for actions on Stiefel manifolds . 35

5 Hamiltonian and Poisson systems 37
5.1 Hamiltonian systems . 37

5.1.1 Lagrangian formulation . 37
5.1.2 Hamiltonian formulation . 38
5.1.3 First integrals . 38
5.1.4 Symplecticness . 39

5.2 Poisson systems . 39
5.2.1 The structure of Poisson systems . 39
5.2.2 Poisson maps . 40

v

vi Contents

6 Isotropy corrections for rigid body dynamics 43
6.1 The Euler equations . 43
6.2 Invariants . 44
6.3 Known solvers . 45
6.4 Order conditions by Lie series expansion . 45
6.5 Orbit capture . 47
6.6 Choosing σ for the rigid body problem . 48

6.6.1 Exact differentiation . 48
6.6.2 Numerical differentiation . 48

6.7 Numerical results . 49
6.7.1 Uncorrected Lie-Euler . 49
6.7.2 Isotropy corrected Lie-Euler . 49
6.7.3 Long time behavior . 50
6.7.4 Order plots . 50

6.8 Concluding remarks . 52

7 Lie group methods for R2 based on SL(2) 53
7.1 Using an SL(2) action on R2 . 53

7.1.1 The matrix exponential for sl(2) . 54
7.1.2 The isotropy subgroup . 54
7.1.3 The isotropy subalgebra . 54
7.1.4 Constructing f for rkmk-methods . 55

7.2 The Lotka-Volterra model . 56
7.2.1 The Poisson structure of Lotka-Volterra 57

7.3 The Duffing oscillator . 57
7.4 Basic methods . 58

7.4.1 Forward Euler . 58
7.4.2 Symplectic Euler . 59
7.4.3 Lie-Euler . 59
7.4.4 Lie-Euler with isotropy correction . 60
7.4.5 Introductory results . 60

7.5 Analysis of the isotropy corrected Lie-Euler method 61
7.5.1 Local expansion . 61
7.5.2 Backward error analysis . 62

7.6 Conservation of the Lotka-Volterra invariant . 63
7.7 Strategies for choosing σ . 63

7.7.1 Minimizing Lie-series error expansion by numerical differentiation . . . 63
7.7.2 Minimizing h2-coefficient in the invariant expansion 65
7.7.3 Making a Poisson integrator . 65
7.7.4 Projecting away isotropy . 66

7.8 Numerical results . 66
7.8.1 Lie-Euler with isotropy correction . 66
7.8.2 Tweaking σ by shooting . 68
7.8.3 Using Newton iteration to find an optimal correction 70
7.8.4 Timing issues . 70

7.9 Concluding remarks . 72

Contents vii

8 Conclusions 73

Bibliography 76

A Matrix exponential for sl(2)-matrices 77

B Symplectic Euler for Lotka-Volterra 79

Isotropy in geometric integration

viii Contents

Chapter 1

Introduction

We consider the solution of differential equations on manifolds,

ẏ(t) = F (y(t)), y(t) ∈M, F (y(t)) ∈ Ty(t)M for all t ∈ R (1.1)

to which Lie group methods are applied. If the dimension of the Lie group is greater than the
dimension of the solution manifold M , the Lie group possesses an isotropy subgroup. The
formulation of the Lie group method (we consider Runge-Kutta-Munthe-Kaas methods) is
not uniquely determined by Equation (1.1), and our goal for this thesis is to see what can be
done regarding the choice of isotropy.

We do not opt for numerical methods with the highest possible local order. Because of this,
emphasis is restricted to the Lie group version of the classical Forward Euler algorithm. Focus
is on global properties, and we will use examples from Poisson systems which has invariants
we know a priori should be conserved. Our numerical methods should be able to preserve
these invariants when integrating over long time intervals. Nevertheless, we use local order
theory to construct the isotropy correction for Lie-Euler, which we will has greater impact on
global behavior than local.

First necessary background in differential topology and Lie groups is given. The matrix
groups that are going to be used in the following chapters, The special orthogonal group SO(n)
and The special linear group SL(n) are given special attention regarding relevant results and
proofs. Readers already familiar with Lie group methods and the noted matrix groups may
skip Chapter 2 and 3.

Doing a straightforward Taylor expansion of the local error by Lie series, we find a second
order condition for the isotropy. In general, this condition can not be fulfilled by the isotropy,
so we resort to a minimalization of the local order in the numerical implementations.

Lewis and Olver [15] have written a paper on how to use the isotropy for rigid body
dynamics. This seems to be the only paper available to the current date discussing isotropy
corrections. By local error analysis in a basis especially suited for the SO(3) action on S2,
they develop a corrected version of Lie-Euler with stability properties of the Hamiltonian
superior to the uncorrected Lie-Euler. In Chapter 6 we rephrase their analysis, and show that
their result is equivalent to our more general proposition on how to use the isotropy.

Chapter 7 contains a new application of the SL(2) action to differential equations in
R2. Using SL(2) seems uninteresting if isotropy is not paid attention to, because of the
additional computational overhead inherent in a Lie group method compared to a classical
solver. A straightforward construction of a Lie-Euler method performs roughly the same as

1

2 Chapter 1. Introduction

the standard (and bad-performing) Euler method on the well know Lotka-Volterra system
and on the Duffing oscillator. It becomes interesting when the isotropy corrected Lie-Euler
with the same strategy for isotropy correction as for the rigid body problem, performs in the
league of Symplectic Euler, which has superb proven stability properties for the Lotka-Volterra
system, as it is a Poisson map and is symplectic for the Hamiltonian Duffing oscillator. The
downside of the best correction we construct, is a dependency on a constant which has to be
determined by trial and error. Still to be done is analysis explaining the role of this constant,
and if it is possible to choose it a priori.

Chapter 2

Manifolds and Lie groups

A manifold is a generalization of spaces, to spaces more difficult to grasp in the human mind.
We are in this thesis going to solve ordinary differential equations for which the solution

evolves on a manifold. Our main tool for this will be the use of Lie groups. For this, we will
present some general theory on manifolds and Lie groups.

The presentation given will emphasize on notation and vital results for our applications.
Deep proofs are skipped.

2.1 Manifolds

Definition 2.1 (Manifolds). An n-dimensional manifold M is a defined as a Hausdorff topo-
logical space with a countable basis for its topology, and locally homeomorphic to a subset of
Rn.

�

���

� �

� �

Locally homeomorphic to a subset of Rn means that
there exists an atlas — a collection of charts

xi : Ui → Vi (2.1)

where Ui ⊆M and xi(Ui) = Vi ⊆ Rn, such that all the
Ui’s cover M .

In order to do differential topology we need to bring
in the concept of a differentiable structure on the mani-
fold. This is to ensure that all the properties we discuss
will be independent of the choice of charts.

���������	��
 ����������������

�

� �

� �

� �
� �

� ��� � �

� �

���

For any two charts

xi : Ui −→ xi(Ui), i = 1, 2

we define the chart transformation

x12 = x2◦x−1
1 |x1(U1∩U2) : x1(U1∩U2) −→ x2(U1∩U2)

which is a mapping from an Euclidean space to
another Euclidean space, in which differentiation
is well defined. We say that that the manifold M

has a smooth structure if all possible chart transformations in the atlas is smooth, or C∞.
3

4 Chapter 2. Manifolds and Lie groups

To each point p ∈ M we associate a vector space containing all possible tangent vectors
at p. Each of these vector spaces (or tangent spaces) is named TpM and the tangent bundle
of the manifold is defined as the union of these

TM =
∐
p∈M TpM

π

��
M

(2.2)

where π is the canonical projection sending any vector in TpM to p. TpM is also called the
fiber above p.

The elements of the tangent space are written as equivalence classes of curves [γ], γ : R →
M where two curves γ and σ are considered equivalent if their derivative under any chart
coincide at zero, that is if (xγ)′(0) = (xσ)′(0). The choice of the chart x or the value 0 does
not matter.

Locally the tangent bundle can always be written as a product bundle U ×E → U ⊂M .

Definition 2.2. Let f : M −→ N be a mapping between two manifolds. The tangent map-
ping of f over a point p ∈M is defined as

Tpf : TpM −→ Tf(p)N

Tpf([γ]) = [fγ]

where γ(0) = p.

A tangent bundle is said to be trivial if the space TM can be represented by a product
manifold M × E for a vector space E, that is the following diagram commutes

TM
h //

π
""DD

DD
DD

DD
M × E

prMzzvvv
vv

vv
vv

M

(2.3)

where h is the bundle chart as defined in [8, Definition 5.1.1], and prM is the projection on
the first factor.

For a simple example take the manifold Rn. The tangent space TpRn at each point p ∈ Rn

can be identified by Rn itself, and we get the isomorphism TRn ∼= Rn ×Rn.
When the tangent bundle of a manifold is trivial, the manifold itself is called parallelizable.

2.2 Submanifolds

A submanifold is as its name suggests, a subset of a manifold. We require some more for the
subset to be a manifold on its own.

Definition 2.3. A submanifold of dimension k is a subset of a manifold of dimension n, in
which there exists homeomorphisms that will map domains in the subspace to Rk×0n−k ⊂ Rn.

A subset of all submanifolds can be realized as inverse images of surjective maps.

2.3. Vector fields and differential equations 5

Theorem 2.4. [8, Theorem 6.4.3] Let f : M → N where dim(M) = n+ k and dim(N) = n.
If q = f(p) is a regular value, that is, the linear mapping Tpf is surjective, then f−1(q) is a
k-dimensional submanifold of M .

All manifolds which we will encounter in this thesis, can be realized in this way. For
example, the matrix groups we will cater for in Section 2.7 will all be submanifolds of n× n
matrices.

2.3 Vector fields and differential equations

Definition 2.5. A vector field on a manifold M is a mapping

F : M −→ TM

such that π ◦ F = idM (F is a section to the tangent bundle). The collection of all vector
fields on a manifold M is denoted by X(M).

Vector fields may be added together pointwise, (F + G)(p) = F (p) + G(p), and we also
have scalar multiplication (αF)(p) = α(F (p)), so F +G ∈ X(M) and αF ∈ X(M).

A vector field may be applied to a function. In this setting, the vector field acts as a
derivation on the ring of functions M → R. Let F be a vector field on M , and given a
function ψ : M → R, we define

F [ψ] = π2 ◦ Tψ ◦ F (2.4)

where π2 is the projection to the value in the tangent space above ψ(p), which is also R
here. This is motivated by the fact that TR has two components through the isomorphism
TR ∼= R×R. By this definition, we get the Leibniz rule for vector fields, here shown pointwise

F [ψφ](p) = F [ψ](p) · φ(p) + ψ(p) · F [φ](p) (2.5)

where multiplication and addition take place in R. This results in a value in Tψ(p)φ(p)R.
It is possible to attach an algebra structure to the collection of all vector fields. We have

already defined addition pointwise, so we form a product (a bracket [·, ·] : X(M) × X(M) →
X(M) with the following properties

[F,G] = −[G,F]
[αF,G] = α[F,G], α ∈ R

[F +G,H] = [F,H] + [G,H]
0 = [F, [G,H]] + [G, [H,F]] + [H, [F,G]]

(2.6)

The bracket with these properties is

[F,G] = GF − FG (2.7)

to be understood as
[F,G][φ] = G[F [φ]]− F [G[φ]]

when [F,G] is applied to the function φ.

Isotropy in geometric integration

6 Chapter 2. Manifolds and Lie groups

Given coordinate charts x1, . . . , xn : M → R, component i of the bracket(through the use
of charts) is given as

[F,G]i =
n∑
j=1

(
Gj
∂Fi(y)
∂xj

− Fj
∂Gi(y)
∂xj

)
Next we define what a differential equation on a manifold looks like.

Definition 2.6. Let F be a vector field on M . A (non-autonomous) differential equation on
M is an equation of the form

dy
dt

= F (y(t)), y(0) = y0 ∈M. (2.8)

For an autonomous differential equation we replace the right-hand-side by F (t, y(t)).

A solution of Equation (2.8) is denoted by a flow operator Ψt,F : M → M . The solution
for any time given the initial condition can then be written as

y(t) = Ψt,F (y0) (2.9)

In the following chapters, φh will also be used instead of Ψt,F for the exact solution, and Φh

for a numerical solution. There is no restriction in always specifying the initial condition at
t = 0. For compact smooth manifolds the solution will be globally defined (for all t ∈ R) [8,
Chapter 9], while for non-compact manifolds we can only hope for a locally defined solution,
ie. for t ∈ J ⊂ R where J will depend on the initial value.

Often exp is used as the solution operator, since the exponential may also be defined as an
operator mapping a vector field F to the solution of the associated differential equation (2.8).

2.4 Lie groups

Lie groups are manifolds equipped with a group structure. They stem from the works of
Sophus Lie in the 19th century, who named them Transformation groups. An extensive
source of information for Lie groups and Lie algebras is Varadarajan’s book [24].

Definition 2.7 (Lie group). A Lie group G is a smooth manifold with a smooth group
structure. That is for each element g, h ∈ G there exist a

i) Group operation, g · h ∈ G which is smooth in the sense of the manifold.

ii) Inverse, g−1 ∈ G such that g · g−1 = id ∈ G.

Often the smoothness of the inverse map g 7→ g−1 is included in the definition of a Lie
group. It can be shown that this is strictly not necessary as it follows from the smoothness
of the multiplication.

Definition 2.8 (Lie subgroup). A subgroup H of a group G is a subset of G which is also a
group. For a subset H of a Lie group G to be Lie subgroup, we must have that

i) H is a subgroup of G

ii) H is a submanifold of G

2.5. Lie series 7

A beautiful theorem significantly helping later results is the following

Theorem 2.9 (E. Cartan). Closed subgroups of Lie groups are Lie subgroups.

Proof. The proof may be found in Lemma 2.28, 2.29 and 2.30 in [1] and in Theorem 3.6
of [20]

This theorem greatly simplifies the proofs of why several matrix groups really are Lie
groups.

Proposition 2.10. All Lie groups are parallelizable.

Proof. We recall from Section 2.1 that manifolds are parallelizable if their tangent bundle is
trivial, Equation (2.3).

Let g be an element in a Lie group G. By the group structure, there exist a g−1 ∈ G. Let
e be the identity in G and TidG the tangent space at the identity. We need a diffeomorphism

TG
∼=−→ G× TidG.

Let γ be a curve in G with γ(0) = g. An isomorphism is

[γ] 7→ (γ(0), [γ(0)−1γ]).

2.5 Lie series

For functions ψ : M → R we are interested in how ψ varies along a flow of a differential
equation on the Lie Group, defined by the vector field F . Given the Lie group differential
equation

y′(t) = F (y(t)), y(0) = y0 ∈ G, F : G→ TG

the solution defines the exponential of a vector field as

y(t) = exp(tF)y0).

Applying ψ to the solution y(t) and differentiate at t = 0

d
dt

∣∣∣∣
t=0

ψ(exp(tF)y0) = F [ψ](y0) (2.10)

where the equality stems from the definition of F [ψ]. F [ψ] is also a function G→ R so it is
possible to continue

d
dt

∣∣∣∣
t=0

F [ψ](exp(tF)y0) = F [F [ψ]](y0) = F 2[ψ](y0)

Taylor’s theorem for real-valued functions must apply to our ψ as well, assuming F and
ψ to be in C∞, we have the formal series

ψ(exp(tF)y0) =
∞∑
k=0

tk

k!
F k[ψ](y0) (2.11)

This expansion is called the Lie series for the function ψ. Note that this is a formal series, as
convergence is not considered. As we have only required C∞ it might happen that the series
diverge. In applications, we will always use truncations.

Isotropy in geometric integration

8 Chapter 2. Manifolds and Lie groups

2.6 Lie algebras

Definition 2.11 (Lie algebra and Lie bracket). A vector space over a field is called a Lie
algebra if there is a bilinear map g× g → g that satisfies

i) [a, b] + [b, a] = 0 (skew-symmetry)

ii) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 (Jacobi identity).

This map is the Lie bracket.

From Proposition 2.10 we have that the tangent space at identity of a Lie group determines
any point in the tangent space TG. This is a remarkable fact for Lie groups, and means that
we can focus on the tangent space at identity for all our tangent purposes in the Lie group.

The tangent space has the algebra structure as in Section 2.3, and we may therefore
associate the tangent space at identity TidG of a Lie group G with a Lie algebra, and denote
it by the symbol g.

We will return to more concrete examples of Lie algebras for matrix groups in the next
section.

2.7 Matrix groups

Matrix groups are subsets of all n × n real matrices (denoted Mn(R)) to which we attach a
group structure. Our groups will also turn out to be Lie groups later. The product in these
groups will be the standard matrix product, and the inverse is taken from linear algebra. The
group identity element is the diagonal identity matrix I = diag(1, . . . , 1).

These matrix groups are going to be used in Lie group methods, catered for in Chapter 3.
Especially the groups SO(3) and SL(2) are going to be used in Chapter 6 and 7 respectively.

i) The General Linear group GL(n).
This is all the matrices in Mn(R) where the determinant is different from zero,

GL(n) = {A ∈Mn(R) | det(A) 6= 0} (2.12)

We immediately see that the product AB of two matrices, A,B ∈ GL(n) will still be in
GL(n), by

det(AB) = det(A)︸ ︷︷ ︸
6=0

det(B)︸ ︷︷ ︸
6=0

6= 0.

The inverse of A is A−1, and A−1 is defined because det(A) 6= 0. This is also of course
in GL(n) because

1 = det(I) = det(A)︸ ︷︷ ︸
6=0

det(A−1)

and therefore det(A−1) 6= 0.

ii) The Special Linear group SL(n).
This is a subset of the GL(n)-group, defined as

SL(n) = {A ∈Mn(R) | det(A) = 1} (2.13)

2.7. Matrix groups 9

If A,B ∈ SL(n), then
det(AB) = det(A) det(B) = 1

so that AB ∈ SL(n) as well. For the inverse,

1 = det(AA−1) = det(A) det(A−1) = det(A−1)

so A−1 ∈ SL(n).

iii) The Orthogonal group O(n).
This is defined as

O(n) = {A ∈Mn(R) |AAT = I} (2.14)

The condition AAT = I means that AT is the inverse of A and that all column vectors
vi, A = [v1, . . . , vn] are orthonormal, 〈vi, vj〉 = δij . For the value of the determinant we
have

1 = det(AAT) = det(A) det(AT)

and since the determinant is invariant under transposition, det(A) = det(AT) we get
that

det(A) ∈ {−1, 1}, for all A ∈ O(n). (2.15)

A set in Rn is connected if there exist a path from any element to any other element
in the set which is continuous. Let γ : [0, 1] → O(n) be a curve in O(n) where γ(0) =
A,det(A) = −1 and γ(1) = B, det(B) = 1. Can γ be continuous? We compose by a
function which we know is continuous, the determinant. If γ is continuous, then det ◦ γ
is also continuous. But (det ◦ γ)[0, 1] is a discrete set, and there can’t be a continuous
path in {−1, 1} from −1 to 1. So O(n) is disconnected.

iv) The Special Orthogonal group SO(n).
As O(n) was not connected, we name the component containing the identity element
the Special Orthogonal group,

SO(n) = {A ∈ O(n) | det(A) = 1}. (2.16)

The group structure is inherited fromO(n). The other component inO(n), O(n)\SO(n),
is not a group, because if B,C ∈ O(n)\SO(n), then

det(BC) = det(B) det(C) = (−1)(−1) = 1

so BC ∈ SO(n). In addition, O(n)\SO(n) does not contain any identity element.

SO(n) is also called the group of rotations. This is because applied to vectors in Rn,
the vectors are rotated around the origin. Their lengths are preserved.

Proposition 2.12. All orthogonal matrices preserve lengths of vectors under matrix-vector
products, for A ∈ O(n) and x ∈ Rn

‖Ax‖ = ‖x‖.

Isotropy in geometric integration

10 Chapter 2. Manifolds and Lie groups

���������

	�
 ����

��
 �����

��� �����
� ������� ��� ����

Figure 2.1: The introduced matrix groups and their subset-relationships. Note that O(n) = SO(n)∪
O(n)\SO(n).

Proof. By use of the definition of norm, and the definition of the transpose via the inner
product

‖Ax‖ = 〈Ax,Ax〉
= 〈x,ATAx〉
= 〈x, x〉 = ‖x‖.

2.8 The matrix exponential

The exponential of a matrix, to be defined as an infinite series (like the Taylor series of ex

when x ∈ R), is the most important construct for matrix groups. The exponential map will
later be used as a chart for the matrix groups when we prove that they are manifolds and
thereby Lie groups.

Definition 2.13 (The exponential of a matrix). Let A ∈Mn(R) and define

exp(A) =
∞∑
i=0

Ai

i!
.

This sequence is said to converge if all the elements (scalar) of the matrix exp(A) converge
in R. It does in fact converge for all A ∈Mn(R) [7, Chapter 4, Proposition 1].

Proposition 2.14. If the matrices A and B in Mn(R) commute (AB = BA) then

exp(A+B) = exp(A) exp(B)

2.8. The matrix exponential 11

Proof.

exp(A+B) =
∞∑
i=0

(A+B)i

i!

=
∞∑
i=0

1
i!

i∑
k=0

(
i

k

)
Ai−kBk (by commutativity)

=
∞∑
i=0

i∑
k=0

Ai−k

(i− k)!
Bk

k!
=

∞∑
k=0

Bk

k!

∞∑
i=k

Ai−k

(i− k)!

=

 ∞∑
j=0

Aj

j!

(∞∑
k=0

Bk

k!

)
by j = i− k and commutativity

= exp(A) exp(B)

From this proposition, the next one follows

Proposition 2.15. The exponential of any matrix in Mn(R) is invertible.

Proof. The matrices A and −A commute, so

I = exp(0) = exp(A−A) = exp(A) exp(−A)

and
1 = det(exp(A) exp(−A)) = det(exp(A)) det(exp(−A))

so det(exp(A)) 6= 0 and the matrix exp(A) is invertible.

Proposition 2.16. The derivative of the determinant at the identity I is

TI det(A) = tr(A)

where tr(A) is the trace of the matrix A.

��
�� ��

���	
�
�
�� ��

�������
�

� �����
�����������

We need some notation to get ready for the proof. Let here a
parenthesized superscript (k) of a matrix A denote the lower right
(n − k + 1 × n − k + 1)-submatrix of A, A(1) = A, A(n) = ann, and
two subscripts ij of a matrix denotes the ij’th cofactor of the matrix (row
i and column j removed). The ij’th element of a matrix A is denoted
by lower case letter and subscripts, aij . The superscript has precedence
over the subscript in this proof, that is we are making cofactors of the
submatrices, although the cofactor-indices are relative to the whole matrix.

Proof. Let I + tA be a path in Mn(R), then

TI det(A) =
d
dt

∣∣∣∣
t=0

det(I + tA)

Isotropy in geometric integration

12 Chapter 2. Manifolds and Lie groups

The proof will be on induction, our induction hypothesis is

d
dt

∣∣∣∣
t=0

det(I + tA)(k) = akk +
d
dt

∣∣∣∣
t=0

det(I + tA)(k+1) (2.17)

For the smallest lower right submatrix, we get

d
dt

∣∣∣∣
t=0

det(I + tA)(n) =
d
dt

∣∣∣∣
t=0

(1 + tann) = ann.

Let us prove the hypothesis:

d
dt

∣∣∣∣
t=0

det(I + tA)(k) =
d
dt

∣∣∣∣
t=0

(
(1 + takk) det(I + tA)(k)kk

−(tak,k+1) det(I + tA)(k)k,k+1 + (tak,k+2) det(I + tA)(k)k,k+2 − · · ·
)

where we have expanded the determinant along the first row using cofactors

= akk det(I(k)) + 1 · d
dt

∣∣∣∣
t=0

det(I + tA)(k+1)

− ak,k+1 det(I(k)
k,k+1)︸ ︷︷ ︸

=0

−(0 · ak,k+1)
d
dt

∣∣∣∣
t=0

det(I + tA)(k)k,k+1 + · · ·

all cofactors except the diagonal cancel

= akk +
d
dt

∣∣∣∣
t=0

det(I + tA)(k+1)

Since this was true for k = n, we must have that

d
dt

∣∣∣∣
t=0

det(I + tA)(1) =
n∑
k=1

akk = tr(A) (2.18)

Proposition 2.17. For any A ∈Mn(R) we have

det(exp(A)) = etr(A) (2.19)

Before the proof, we note the result

Corollary 2.18. exp maps matrices with zero trace to SL(n).

Proof of Proposition 2.17. We make no assumptions on A. A possesses a Jordan decomposi-
tion

A = WJW−1 (2.20)

where det(W) 6= 0 and J is block diagonal, with s block elements

Jk =

λk 1
. . . 1

λk

2.8. The matrix exponential 13

each with dimension nk × nk. We need the exponential of these blocks, only shown here for
2× 2-matrices. By using the series expansion for exp and that(

λk 1
0 λk

)i
=
(
λik (i+ 1)λik
0 λik

)
we get

exp(Jk) =

(
eλk

∑∞
j=0

(j+1)λj
k

j!

0 eλk

)
.

Then

det(exp(Jk)) = eλkeλk − 0 ·
∞∑
j=0

(j + 1)λjk
j!

= e2λk .

By a tedious extension to arbitrarily sized blocks we have an intermediate result:

det(exp(A)) = det(exp(WJW−1))

= det(W exp(J)W−1) (exp is invariant under conjugation)
= det(exp(J))

=
s∏

k=1

det(exp(Jk))

= e
Ps

k=1 nkλk = etr(J)

Starting at the other end, we show that the trace of matrix is equal to the sum of the
eigenvalues (repeated eigenvalues are summed according to their multiplicity). This is based
on tr(AB) = tr(BA) which is verified by simply writing out the elementwise expression of the
matrix product. Because of this,

tr(A) = tr(W (JW−1)) = tr((JW−1)W) = tr(J)

and we have proved Proposition 2.17.

Proposition 2.19. exp maps skew-symmetric matrices to the Special Orthogonal group,

exp: so(n) −→ SO(n). (2.21)

Proof. First we prove that exp maps to the Orthogonal group. A skew-symmetric A is a
matrix A ∈ Mn(R) such that A + AT = 0. A and AT commute when A is skew-symmetric
because AAT −ATA = −AA+AA = 0. From the previous propositions we get

I = exp(0) = exp(A+AT) = exp(A) exp(AT) = exp(A) exp(A)T

so exp(A) must be orthogonal.
To prove that it only maps to the identity component SO(n) of O(n) we need a con-

nectedness argument from topology. Both the exponential and the determinant (and their
composition) are continuous functions, which map connected sets to connected sets. Let
γ(t) = exp(tB) be a path in O(n), where B ∈ so(n). We have

det ◦ exp: so(n) −→ {−1, 1}

For t ∈ [0, 1] (a connected set in R), we have det(γ(0)) = det(I) = 1, and the only possible
value for det(γ(1)) is 1 because we need a connected set in {−1, 1}. So exp must map only
to the Special Orthogonal group.

Isotropy in geometric integration

14 Chapter 2. Manifolds and Lie groups

We note that we have not proved any surjectivity, which it is not true either. But we are
eventually going to prove local injectivity, for this we need a potential inverse.

Definition 2.20 (The logarithm of a matrix). The logarithm of a matrix A ∈ Mn(R) is
defiend as

log(A) =
∞∑
i=1

(−1)i+1 (A− I)i

i
. (2.22)

For A sufficiently near the identity I this series will converge [7, Chapter 4, Proposition
5] (each component of A− I must be less than 1/n).

Proposition 2.21. Let NI be a sufficiently small neighborhood of I in Mn(R) and N0 a
neighborhood of 0 in Mn(R) such that exp(N0) ⊆ NI . The map

exp: N0 −→ NI (2.23)

will be injective with log as its inverse. That is, there exists

i) a B ∈ N0 such that log(exp(B)) = B

ii) an A ∈ NI such that exp(log(A)) = A.

Proof. We use the series expansions of exp and log and rearrange the terms so that they
cancel

i)

log(exp(B)) =
(
B +

B2

2!
+ · · ·

)
− 1

2

(
B +

B2

2!
+ · · ·

)2

+
1
3

(
B +

B2

2!
+ · · ·

)3

= B +
(
B2

2!
− B2

2

)
+
(
B3

6
− B3

2
+
B3

3

)
+ · · ·

= B.

ii)

exp(log(A)) = I +
(

(A− I)− (A− I)2

2
+ · · ·

)
+

1
2!

(
(A− I)− (A− I)2

2
+ · · ·

)
+ · · ·

= A−
(

(A− I)2

2
+

(A− I)2

2

)
+
(

(A− I)3

3
− (A− I)3

2
+

(A− I)3

6

)
+ · · ·

= A.

Proposition 2.22. If A, B and AB are in NI (from Proposition 2.21), and if log(A) and
log(B) commute, then

log(AB) = log(A) + log(B).

Moreover, if A is orthogonal, log(A) is skew-symmetric.

2.9. Matrix groups are Lie groups 15

Proof. A, B and AB are in the domain where exp is injective,

exp(log(AB)) = AB = exp(log(A)) exp(log(B))
= exp(log(A) + log(B))

where the last equality follows from Proposition 2.14. Taking log of this equation yields the
result. For the second part, let now A ∈ NI ∩ SO(n). A and AT commute as mentioned
before, that causes log(A) and log(AT) to commute as well by looking at the series expansion.
Since log(I) = 0 and the transpose operation commutes with the logarithm operation (again
by looking at the series expansion) we get

0 = log(I) = log(AAT) = log(A) + log(AT) = log(A) + (log(A))T

which means that log(A) is skew-symmetric.

The last part of this proposition was an extension to Proposition 2.19 saying that no other
than skew-symmetric matrices map to the special orthogonal group. The results obtained so
far on orthogonal matrices may be visualized as in Figure 2.2.

������� �	��
���������

� �������

� �
� ��!#"%$ �'&(�

�)���

*,+.-
"%$ �'&(�

$ ��&/�10 "%$ �'&(�

243 �'&(�

�65	! 273 �'&/�

Figure 2.2: Summary of results on the exponential mapping for skew-symmetric matrices and the
Special Orthogonal group, we have exp: so(n) → SO(n), log : NI → so(n), and that
exp|N0 : N0 → NI is injective. This figure also illustrates the linearity of so(n) and the
non-linearity of SO(n).

2.9 Matrix groups are Lie groups

In this section we would like to prove that all our matrix groups covered mentioned in Sec-
tion 2.7 really are Lie groups. Since we know they are groups, we need to prove that they are
manifolds.

Isotropy in geometric integration

16 Chapter 2. Manifolds and Lie groups

All our groups may be given chart in the following way. Let Ng be a neighborhood of the
element g ∈ G. Let Ng be a chart domain, and use the chart

log ◦Lg−1 : Ng −→ N0 (2.24)

where Lg−1 is left-translation by the inverse of g in G. The domains Ng and N0 are chosen
such that log ◦Lg−1 becomes a homeomorphism. We need N0 to be a subset of Rn, this is so
because of the properties of the logarithmic map developed in the previous section.

Cartan’s Theorem, here Theorem 2.9, also provides proof with the result that our matrix
groups are manifolds, with examples below.

The last source of proof is Theorem 2.4 which says that a subset of all submanifolds can
be realized as inverse images of regular values.

i) The General Linear group GL(n)
This is an open subset of Mn(R), as the determinant

det : Mn(R) −→ R

is a continuous function, and so the inverse image of R\0 must also be open.

ii) The Special Linear group SL(n)
This group is the inverse image of {1} for the following determinant map

det : Mn(R) −→ R

because TA det is surjective for some A with det(A) = 1. The fact that TA det is
surjective follows from the proof of Proposition 2.16.

In addition, {1} is a closed set, and the determinant is continuous, so SL(n) is closed
and thereby a manifold by Cartan’s Theorem.

iii) The Orthogonal group O(n)
Here we look at the mapping

f : GL(n) −→ Sym(n)

A 7→ ATA

where Sym(n) is the space of n × n-symmetric matrices. If A is orthogonal, then
f(A) = I. By Example 6.4.11 in [8], TAf is surjective, and f−1(I) = O(n) is a manifold.

Cartan’s Theorem also applies here, since every element in every column vector of O(n)
must be less than 1 in absolute value for the column vectors to be orthonormal. Thus
O(n) is a closed subset of [−1, 1]n

2
and therefore a manifold.

iv) The Special Orthogonal group SO(n)
This is the component of O(n) where the determinant is equal to 1. For the continuous
mapping

det : O(n) −→ {−1, 1}
SO(n) is the inverse image of {1}, which is closed, and therefore SO(n) is a submanifold
of O(n) by Cartan’s Theorem.

Note that the other component of O(n), O(n)\SO(n) is also closed by the same argu-
ment. Since O(n) is closed, this means that the complement of O(n)\SO(n) is open,
that is SO(n) (and its complement) is both open and closed.

2.10. The tangent spaces of the Lie groups 17

2.10 The tangent spaces of the Lie groups

By the trivialization of Lie group tangent bundles (Proposition 2.10), the tangent space at
the identity of all Lie group characterize the whole tangent bundle of the group.

Essential for the tangent spaces is the following definition:

Definition 2.23. A one-parameter subgroup of G is a homomorphism of Lie groups

γ : R −→ G

ie, γ(s+ t) = γ(s)γ(t).

Adams [1, Theorem 2.6] proves the one-to-one correspondence between vectors in TidG
and one-parameter subgroups. These one-parameter subgroups are solutions to differential
equations determined by the value in TidG, and the solution is defined to be the exponential
map. So for a vector A ∈ TidG, the corresponding one-parameter subgroup is γ(tA) =
exp(tA). The crucial point now is to see that all the results on the exponential map for
various Lie groups we have obtained, characterize the Lie group’s tangent spaces.

Let us summarize this for the matrix groups already discussed:

i) The General Linear group GL(n)
Proposition 2.15 gives that forA ∈MnR, exp(A) will be in GL(n). Thereby, TidGL(n) =
MnR which is the Lie algebra gl(n). The dimension of GL(n) and gl(n) is n2.

ii) The Special Linear group SL(n)
Corollary 2.18 gives that all trace-free matrices map to SL(n) under exp, and sl(n)
is thereby TidSL(n). The zero trace requirement removes one degree of freedom from
MnR, so dim sl(n) = n2 − 1.

iii) The Orthogonal and Special Orthogonal group O(n)and SO(n)
Proposition 2.19 says that skew-symmetric matrices map to orthogonal matrices. An
n × n-matrix has n(n − 1)/2 elements above its diagonal, and this is the dimension
of n × n-skew-symmetric matrices, so o(n) = so(n) is the tangent space at identity of
O(n)and SO(n). Another common way of seeing this is by differentiating the curve
ρ(t)ρ(t)T which equals to id for all t ∈ R when ρ(t) ∈ O(n), and ρ(0) = id .

0 =
d
dt

∣∣∣∣
t=0

(ρ(t))ρ(0)T + ρ(0)
d
dt

∣∣∣∣
t=0

(ρ(t)T) = ρ(0) + ρ(0)T

which says that ρ(0) is skew-symmetric.

Isotropy in geometric integration

18 Chapter 2. Manifolds and Lie groups

Chapter 3

Lie group Methods

Solvers for the standard problem in numerical analysis of differential equations for the last
100 or so years has been designed for the problem

y′ = F (y), y(0) = y0, y(t) ∈ Rn. (3.1)

Numerical solutions to this problem has been developed with few assumptions on the right
hand side f , through careful discretization of the equations and solvers and ensuring the local
truncation error is minimized. This together with step-size control, has led to robust and
general black-box algorithms for solving (3.1), covered in great detail by the books by Hairer,
Nørsett and Wanner [11, 12].

3.1 Introduction to Geometric Integration

Geometric integration represents a new philosophy for the solution of (3.1). Notice the so-
lution space in (3.1), y(t) ∈ Rn. We can imagine more general structures (enter manifolds)
on which the solution is known to evolve (which we also call the configuration space), but by
Whitney’s embedding theorem [8, Theorem 7.5.1] we know that any manifold of dimension n
may be embedded in a Euclidean space of at most dimension 2n — and thereby the general
solvers for equation (3.1) do still apply. However, there is room for improvement. The classi-
cal solvers of Equation (3.1) do not always take advantage of any special structures that the
manifold or equation in question may possess.

Geometric integration is about using a priori knowledge about the solution from the given
differential system, whether the solution is to evolve in a general manifold or in a Euclidean
space, and then obtaining a solver which produces a numerical approximation preserving the
qualitative attributes of the system. Classical solvers typically preserve the attributes less
accurately or not at all. For differential equations on manifolds, we are interested in having
a solver which at all times will produce approximations in the manifold, in addition to any
other properties of the equation.

The downside of Geometric Integration is the loss of generality, we are no longer developing
robust routines which are able to tackle any differential equation, but rather narrowing in the
scope of our solvers to only a subset of all differential equations.

For a comprehensive introduction to Geometric Integration there is the new book by
Hairer, Lubich and Wanner to be recommended [10], and also the overview article by Budd
and Piggott [3].

19

20 Chapter 3. Lie group Methods

3.2 Lie group methods on Homogeneous Manifolds

This chapter will cover a subset of Geometric Integration, the Lie group methods. The
usability of Lie groups stem from their ability to “act” on manifolds and thereby provide
means of motion on the manifold. The Lie group methods we are using here, were originally
developed in the papers of Munthe-Kaas [17, 18, 19]. The methods due to Crouch and
Grossman will not be considered. Other reference material is the overview article by Iserles,
Munthe-Kaas, Nørsett and Zanna [14]. Iserles has also written a brief introduction to Lie
group methods [13].

The configuration space of Equation (3.1) is Rn which is a linear space and the standard
classical methods (Runge-Kutta and multistep) use linear translations for motion in the con-
figuration space, yn+1 = yn + δ, δ ∈ Rn. For a manifold M (not linear in general) embedded
in Rn for some n, such linear motions can not guarantee that yn ∈ M for all n, which will
be the case for the exact solution. We would like to have another way of motion which can
make that guarantee, specifically designed for the manifold M .

Lie group methods provide a non-linear way of motion through Lie group actions for
several types of configuration spaces.

Definition 3.1 (Lie group action). Let M be a smooth manifold and let G be a Lie group.
An action of the Lie group G on the manifold M is a smooth mapping Λ : G×M →M such
that

i) Λ(id ,m) = m, for all m ∈M .

ii) Λ(g,Λ(h,m)) = Λ(g · h,m), for all g, h ∈ G,m ∈M .

For fixed g ∈ G we obtain a diffeomorphism Λg : M → M , and the map g 7→ Λg becomes a
Lie group homomorphism as

ΛidG
= idM , Λg·h = Λg ◦ Λh.

Now we have defined the tool to be used to move around in the manifold M . The idea is
have a way to find an element g ∈ G such that our next step in the manifold is

yn+1 = Λ(g, yn), for g ∈ G, yn ∈M.

This is our current framework for a Lie group solver.
If for any points m,m∗ ∈ M there exist a g ∈ G such that Λ(g,m) = m∗ then the action

is transitive.
If we for a solution space have available a transitive Lie group action we are well equipped

for developing a Lie group solver.

Definition 3.2 (Homogeneous space). A manifold M with a transitive Lie group action Λ
is called a homogeneous space, denoted by the triple (M,G,Λ).

Although we refer to the methods we are going to develop as Lie group methods (note
again that Crouch-Grossman methods are not considered), they might just as well be referred
to as Lie algebra methods. What we aim to do, is to transfer our equation into an equation
on the Lie algebra of the Lie group of our homogeneous space. The Lie algebra g is a linear
space, and if we are able to reformulate our equation in g, we can apply our classical methods

3.2. Lie group methods on Homogeneous Manifolds 21

for solving ordinary differential equations, and then step back to our manifold through the
chart (the exponential map) of the Lie group and the Lie group action.

Let Φ̃h be a time stepping-procedure on g which takes a point un ∈ g to a new point
un+1 ∈ g for some differential equation. When un+1 has been found, we may step back to our
manifold. We summarize the Lie group approach in the following figure, where we note that
not all maps are defined yet.

M 3 yn � // un ∈ g_

Φ̃h(yn)

��
M 3 yn+1 exp(un+1) ∈ G�Λynoo un+1 ∈ g�expoo

(3.2)

As for the Lie group action, we define a corresponding Lie algebra action using the chart for
the Lie group and the Lie group action.

λ : g×M →M

λ(v,m) = Λ(exp(v),m)
(3.3)

This way of solving the differential equation on M guarantees that our approximated solution
will stay exactly on the manifold M , this is ensured by the construction of the Lie group
action.

Differential equations for Lie (matrix) group methods are often represented in a slightly
different way than equation (3.1), as

y′ = f(y)y, y(0) = y0

where f : M → g and f(y)y really is λ∗(f(y))(y) (λ∗ to be defined in Equation (3.11)). We
will soon get back to why and how this can be done, we here just note it to get ready for
a full-fleshed example. Using this as a starting point, we are already ready to grasp a first
example of a Lie group method (justification will appear shortly), a Lie-version of the simple
Euler method, Lie-Euler. Referring to Diagram (3.2), we set un = 0, and use a forward Euler
step on g with time step h, then let un+1 act on our manifold M again, and the result becomes

yn+1 = Λ(exp(hf(yn)), yn)

Later we will clarify how and why this will work. Note that for most applications, G will
be a matrix Lie group acting on a manifold M embedded in a Euclidean space (each point
represented by a vector), and the Lie group action will be manifested as just ordinary matrix-
vector multiplication. We therefore allow for a shorter notation for Lie-Euler (and other Lie
group methods)

yn+1 = exp(hf(yn))yn.

Example 3.1 (Euler and Lie-Euler).
We elaborate here on a simple and familiar example of the flow of a differential equation on
the sphere, S2. The homogeneous space consists of the manifold S2, the Lie group SO(3) of
rotations in R3 and the Lie group action Λ which is matrix-vector multiplications. Points in
S2 are represented by a vector y ∈ R3, ||y|| = 1. The Lie algebra of SO(3) is so(3), the space
of three-by-three skew-symmetric matrices.

Isotropy in geometric integration

22 Chapter 3. Lie group Methods

From [22, Page 233] we have an example vector field, there given as a vector field in R3.

ẏ =

ẏ1

ẏ2

ẏ3

 =

 −y2 + y1y
2
3

y1 + y2y
2
3

−y3(y2
1 + y2

2)

 . (3.4)

We can easily check by insertion that d
dt(y

2
1 + y2

2 + y2
3) = 0 and thereby ‖y‖ will be a constant

for this flow. Given an initial value on S2, the solution will evolve on S2. The flow for initial
values in R3\S2 will be topologically equivalent to the flow on S2.

To develop a Lie-Euler version we need the corresponding mapping from S2 to the Lie
algebra so(3). We make use of the hat map R3 → so(3) to be defined in Definition 4.3 for
further simplification. A vector field on S2 may be represented as a cross-product ω×y where
both ω and y are taken as R3-vectors. The corresponding element in so(3) will then be ω̂.

To find ω we set up the system of equations

ω × y =

ω2y3 − ω3y2

ω3y1 − ω1y3

ω1y2 − ω2y1

 =

 −y2 + y1y
2
3

y1 + y2y
2
3

−y3(y2
1 + y2

2)

 . (3.5)

At each point y two of these equation will be linearly dependent (TyS2 is two-dimensional,
so this is expected). To uniquely determine ω we enforce the additional constraint 〈ω, y〉 = 0
which gives the unique solution

ω1 = −y3(y1 + y2)
ω2 = y3(y1 − y2)

ω3 = y2
1 + y2

2

(3.6)

Referring back to Equation (3.2) we have now provided the upper mapping from the
manifold to the algebra, through the ω and its hat version ω̂. The time step on the algebra
is a straightforward Euler-step, and we step back to the manifold just as in Equation (3.2).

Algorithm 1 Lie-Euler on the sphere
1: Given y0.
2: for n = 1 to n = N do
3: yn = exp(ω̂(yn−1)yn−1

4: end for

Applied to our vector field from Equations (3.4) and (3.6) to a starting point near (0, 0, 1)T

(a repulsive equilibria) we get the numerical solutions depicted in Figure 3.1.
From the figure and the proposition below we see that the Lie-Euler flow stays (in fact

by machine accuracy) on the sphere, while the Euler spirals outwards. In time usage, the
Lie-Euler is in fact roughly 10% faster than Euler when calculated in Matlab 6 for the same
number of time steps.

Proposition 3.3. The solution obtained by the Lie-Euler algorithm on the sphere will stay
exactly on the manifold M .

3.3. The differential equation on the Lie algebra 23

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Timesteps

E
rr

or
 in

 2
−n

or
m

Lie−Euler
Euler

Figure 3.1: Comparison of Euler and Lie-Euler. Lie-Euler plotted in solid, Euler dash-dot and exact
solution dotted.

Proof. Let yn ∈ S2, then ‖yn‖ = 1. yn+1 is obtained by multiplying from left by a matrix
A ∈ SO(3). We should have ‖yn+1‖ = ‖Ayn‖ = 1. This is so because all orthogonal matrices
preserve lengths of vectors by Proposition 2.12.

Lie-Euler was so simple that we did not need to pay attention to any more details than we
did, although we did skip some fundamental parts. For developing higher-order Runge-Kutta
methods we need to do more analysis to determine how the time stepping on the Lie algebra
can be found. We will follow the lead of Munthe-Kaas [19], and also inspired by [9, 14, 13].

3.3 The differential equation on the Lie algebra

Our starting point is the differential equation on the manifold M which we want to solve.

y′ = F (y), y(0) = y0, y(t) ∈ Rn.

The aim for the Lie group methods of Munthe-Kaas is to find a differential equation

u̇(t) = f̃(u(t))

which has a flow on g which again reproduces the flow of our original equation on M by use
of the Lie algebra action λp.

For this, we construct the diagram

Tg
Tλp // TM

g
λp // M

g

f̃

OO

φ̃h

??�������

λp

// M

φh

??������

F

OO

(3.7)

We require the flow φ̃h to reproduce the original flow φh, that is we require the horizontal
part of Diagram (3.7) to be commutative,

λp ◦ φ̃h = φh ◦ λp (3.8)

Isotropy in geometric integration

24 Chapter 3. Lie group Methods

Differentiating this requirement with respect to time we are left with

Tλp ◦ f̃ = F ◦ λp (3.9)

which becomes the requirement for the f̃ , and which is the commutativity of the vertical part
of Diagram (3.7). Equation (3.9) is also called λp-relatedness of the vector fields f̃ and F ,
and is denoted f̃ ∼λp F .

Before we can use Equation (3.9) to find f̃ we need to sort out some details on the Lie
algebra action

λp = Λp ◦ exp: g −→M.

The tangent version appearing in Diagram (3.7) becomes by the chain rule

Tλp = TΛp ◦ T exp: Tg −→ TM.

Tuλp = Texp(u)Λp ◦ Tu exp: Tug −→ Tλp(u)M pointwise

For reasons to be clear later we like to split T exp into two factors as in the diagram

TidG ∼= g
TidRexp(u)

&&MMMMMMMMMM

Tug

dexpu

::uuuuuuuuu

Tu exp
// Texp(u)G

(3.10)

where dexp is called a right trivialization of T exp. The motivation for this splitting is the
parallelizable property of all Lie groups, making their tangent spaces trivial. In the following
sections explicit expressions for dexp and its inverse dexp−1 will be developed.

The construction of an f̃ in Equation (3.9) relies on an assumption on F being repre-
sentable by an f : M → g through a Lie algebra homomorphism

λ∗ : g×M −→ TM

defined as

λ∗(u)(p) =
d
dt

∣∣∣∣
t=0

Λ(exp(tu), p) ∈ TpM. (3.11)

We are now ready for the theorem characterizing the differential equation on g.

Theorem 3.4. The differential equation on g that will have a flow equivariant with the flow
on M is

du
dt

= dexp−1
u (f ◦ λp(u(t))) (3.12)

and where f : M → g is such that λ∗(f(p))(p) = F (p), p ∈ M and λp : g → M is the Lie
algebra action.

Proof. We need to prove that this choice of f̃ satisfies λp-relatedness.
To prove Equation (3.9) we start from the left and in the point u ∈ g

Tf̃(u)λp ◦ f̃(u) = Texp(u)Λp ◦ Tu exp(u) ◦ f̃(u)

= Texp(u)Λp ◦ TidRexp(u) ◦ dexpu ◦f̃(u)

= Texp(u)Λp ◦ TidRexp(u) ◦ dexpu ◦ dexp−1
u ◦f ◦ λp.

(3.13)

3.4. The dexp map and its inverse 25

where we inserted the hypothesis of the theorem.
Now for the right side we use the assumption on F being representable by a Lie algebra

homomorphism, λ∗, defined in Equation (3.11)

F ◦ λp(u) = λ∗ (f(λp(u)))(λp(u))

=
d
dt

∣∣∣∣
t=0

Λ (exp(tf(λp(u))),Λ(exp(u), p))

=
d
dt

∣∣∣∣
t=0

Λ (exp(tf(λp(u))) exp(u), p)

= Texp(u)Λp ◦ TidRexp(u) ◦ f ◦ λp(u).

which is equal to the last line of Equation (3.13).

For non-autonomous equations on M we should replace the time-dependent variable in
Equation (3.12) by another letter, say s (because it will not be equal to the current time in
the flow on M , s will be restarted for each step). We would then get

f̃(t, u(s)) = dexp−1
u (f(t, λp(t)(u)))

3.4 The dexp map and its inverse

In order to use Theorem 3.4 we need to have an expression for dexp and its inverse. This
requires a significant amount of theory which we will delve into now. We will mainly follow
the lecture notes of Brynjulf Owren [21] and some theory from [14].

We recall that the exponential map maps from a Lie group’s tangent space at identity to
the Lie group (locally):

exp: TidG −→ G

where TidG = g. The tangent lift of this mapping then becomes

T exp: Tg −→ TG

Tu exp: Tug −→ Texp(u)G pointwise.

The notation dexp scarcely introduced in Lemma 3.4 is a (right) trivialization of T exp.
Tu exp splits as in Diagram (3.10).

Definition 3.5 (The Adjoint representation). Let g ∈ G and ν(t) a curve in G such that
ν(0) = id and ν ′(0) = v ∈ g, then the Adjoint representation is defined as

Adg(v) =
d
dt

∣∣∣∣
t=0

gν(t)g−1.

Sometimes the shorthand (abuse of) notation Adg(v) = gvg−1 will be used. The derivative
of Ad with respect to the group element (the lowered index) is denoted by ad, we set

adu(v) =
d
ds

∣∣∣∣
s=0

Adµ(s)(v)

where µ(0) = id and µ′(0) = u.

Isotropy in geometric integration

26 Chapter 3. Lie group Methods

Writing and calculating the expression for ad we get

adu(v) =
∂2

∂s∂t

∣∣∣∣
s=t=0

µ(s)ν(t)µ(−s)

=
∂

∂s

∣∣∣∣
s=0

µ(s)ν ′(0)µ(s)

= µ′(0)ν(0)′µ(0)− µ(0)ν ′(0)µ′(0)
= uv − vu = [u, v]

the standard commutator in the Lie algebra from Definition 2.11.
Powers of ad may be recursively defined as

adku(v) = adu(adk−1
u (v))

so that for example ad2
u(v) = [u, [u, v]]. Inspired by the Taylor series for scalar exponentiation

we set

exp(adu)(v) =
∞∑
k=0

1
k!

adku(v) (3.14)

Now we can relate Ad and exp.

Lemma 3.6.
Adexp(u)(v) = exp(adu)(v)

Proof. Extend both sides of the equation to curves in t, like

yL(t) = Adexp(tu)(v)

yR(t) = exp(tadu)(v)

Differentiating with respect to t,

dyL
dt

= exp(tu)uv exp(−tu)− exp(tu)vu exp(−tu)

= adu(yL) = [u, yL].
dyR
dt

= adu(yR).

As yL(0) = v = yR(0) both curves must be equal (for t in some J ⊂ R) by uniqueness of
solutions of first order differential equations. In particular yL(1) = yR(1) which is what we
were looking for.

Lemma 3.7 (The derivative of the exponential mapping). The tangent mapping of
exp: g → G is T exp. Applied to v ∈ Tug we have

Tu exp(v) =
d
ds

∣∣∣∣
s=0

exp(u+ sv) = dexpu(v) exp(u)

where

dexpu(v) =
∫ 1

0
exp(r adu)(v) dr (3.15)

3.4. The dexp map and its inverse 27

Proof. Let µ(s) be a curve in g, where µ(0) = u, µ′(0) = v. Because Tug ∼= g we may write
µ(s) = u+sv as an example of such a curve. exp(µ(s)) becomes a curve in G, and the tangent
mapping must then be

Tu exp(v) =
d
ds

∣∣∣∣
s=0

exp(u+ sv).

We now make a surface in g by (s, t) 7→ tµ(s) = t(u+ sv), and define g(s, t) = exp(t(u+ sv)).
Our expression for Tu exp(v) now becomes Tu exp(v) = d

ds

∣∣
s=0

g(s, 1).
For s sufficiently close to 0 we have by Lie series that g(s, t) = exp(tu) +O(s). Keeping

s fixed we write gs(t) = g(s, t), and differentiating by time we get

d
dt
gs(t) = (u+ sv) exp(t(u+ sv)) = (u+ sv)gs(t).

From here we obtain

ġs − ugs = svgs = sv exp(tu) +O(s2)
d
dt

(exp(−tu)gs) = s exp(−tu)v exp(tu) +O(s2)

which is recognized as a differential equation where exp(−tu) is an integrating factor, inte-
grating both sides from 0 to t we get

exp(−tu)gs − id = s

∫ t

0
exp(−ru)v exp(ru) dr +O(s2)

gs(t) = exp(tu) + s

∫ t

0
exp(tu) exp(−ru)v exp(ru) dr +O(s2)

= exp(tu) + s

∫ t

0
exp(ru)v exp(−ru) exp(tu) dr +O(s2)

by the change of variables t− r 7→ r. Introducing s as a variable again

g(s, 1) = exp(u) + s

∫ 1

0
exp(ru)v exp(−ru) dr exp(u) +O(s2)

and our definition for Tu exp(v) was

d
ds

∣∣∣∣
s=0

g(s, 1) =
∫ 1

0
exp(r adu)(v) dr exp(u)

Using the analytic expansion of exp in powers of ad, Equation (3.14), we may integrate
the expression from the above lemma

dexpu =
∫ 1

0
exp(r adu) dr

=
∫ 1

0

∞∑
k=0

rk

k!
adku dr

=
∞∑
k=0

1
(k + 1)!

adku.

Isotropy in geometric integration

28 Chapter 3. Lie group Methods

This is recognized as the Taylor series of the entire function

g(z) =
ez − 1
z

=
∞∑
k=0

1
(k + 1)!

zk.

Using Equation (3.14), we can write just as for g(z)

dexpu =
exp(adu)− id

adu

This means that dexp is analytic in ad, and we may invert dexp by just inverting the analytic
expansion

h(z) =
1
g(z)

=
z

ez − 1

=
1∑∞

k=0
1

(k+1)!z
k

=
1

1 + z
2! + z2

3! + z3

4! + · · ·

= 1− z

2
+
z2

12
− z4

720
+

z6

30240
− z8

1209600
+ · · ·

= 1− z

2
+

∞∑
k=1

B2k

(2k)!
z2k

where B2k are the Bernoulli numbers (odd Bernoulli numbers except B1 are zero). Replacing
z by ad again, we obtain the usable expression for dexp−1 : g → g

dexp−1
u (v) = 1− adu(v)

2
+

∞∑
k=1

B2k

(2k)!
ad2k

u (v) (3.16)

3.5 Runge-Kutta-Munthe-Kaas methods

We are now able to cater for examples for the time stepping procedure Φh in Diagram (3.2).
We set the upper mapping M → g to map to 0 ∈ g for all yn, and then perform a classical
Runge-Kutta step in gof the differential equation in Theorem 3.4. The Runge-Kutta method
is characterized by the Butcher-tableau

c1 a11 · · · as1
...

...
...

cs a1s · · · ass
b1 · · · bs

with conditions on the coefficients up to order p.

Definition 3.8. The order of a time stepping procedure Φh on a manifold is p if for all
functions ψ : M → R we have

ψ(Φh(yn))− ψ(y(tn + h)) = O(hp+1) (3.17)

3.5. Runge-Kutta-Munthe-Kaas methods 29

In order to use dexp−1 numerically, we need a truncated version of Equation (3.16), and
give a slightly modified name for the truncated version

dexpinv(u, v, p) = v − adu(v)
2

+
p−2∑
i=2

Bi
i!

adiu(v) (3.18)

Compared to Equation (3.16) we see that we are not in this formula using that all odd
Bernoulli numbers are zero.

Applying the Runge-Kutta method given by the tableau above to the differential equation
u(t) = f̃(u(t)) and using Theorem 3.4 we obtain the Runge-Kutta-Munthe-Kaas algorithm [19]

Algorithm 2 s-stage Runge-Kutta-Munthe-Kaas of order p
1: Given yn, tn, set u0 = 0 ∈ g.
2: for i = 1 to s do
3: gi = h

∑s
j=1 aijkj

4: k∗i = f(tn + cih, λyn(gi)) ∈ g

5: ki = f̃(tn + cih, gi) = dexpinv(gi, k∗i , p) ∈ Tgig

6: end for
7: yn+1 = λyn

(
h
∑s

j=1 bjkj

)
∈M

Proposition 3.9. A classical Runge-Kutta method of order p applied to the differential
equation on the Lie algebra given by Theorem 3.4, yields an order p Runge-Kutta-Munthe-
Kaas method.

Proof. This follows from the fact that our mappings between g and M are smooth.

Note that we must ensure high enough order of our truncated dexp−1. We need order
p− 1 on dexp−1 because its output will be multiplied once by h in line 7 of Algorithm 2.

Example 3.2 (First order rkmk).
For a first order rkmk method we use a first order truncation of dexpinv and a first order
rk-method on g. That is Euler on g and dexpinv(u, v, 0) = v, Butcher tableau on the left
and corresponding Lie-Euler algorithm on the right

0 0
1

1: Given yn, tn
2: g1 = 0
3: k∗1 = f(tn, yn)
4: k1 = k∗1
5: yn+1 = λyn (hk1) = λyn(hf(tn, yn))

Example 3.3 (Second order rkmk).
A classic example of a second order Runge-Kutta method. We need one higher order of the
dexpinv approximation, but the expression is the same, dexpinv(u, v, 1) = v,

Isotropy in geometric integration

30 Chapter 3. Lie group Methods

0
1 1

1
2

1
2

1: Given yn, tn
2: g1 = 0
3: k∗1 = f(tn, yn)
4: k1 = k∗1
5: g2 = hk1

6: k∗2 = f(tn + h, λyn(g2))
7: k2 = k∗2
8: yn+1 = λyn

(
h
(

1
2k1 + 1

2k2

))
Example 3.4 (Third order rkmk (Heun)).
This is the first method in which we need commutators to correct dexp−1, dexpinv(u, v, 2) =
v − adu(v)

2 .

0
1
3

1
3

2
3 0 2

3
1
4 0 3

4

1: Given yn, tn
2: g1 = 0
3: k∗1 = f(tn, yn)
4: k1 = k∗1
5: g2 = h

3k1

6: k∗2 = f(tn + 1
3h, λyn(g2))

7: k2 = k∗2 − 1
2adg2(k

∗
2)

8: g3 = 2
3k2

9: k∗3 = f(tn + 2
3h, λyn(g3))

10: k3 = k3 − 1
2adg3(k

∗
3)

11: yn+1 = λyn

(
h
(

1
4k1 + 3

4k3

))
The cost of the above algorithm is dominated by the number of times λ is used. For these

methods these numbers is 1, 2 and 3 respectively, thereby providing acceptable cost/accuracy
relationships.

Chapter 4

Using isotropy to improve the
solution

Chapter 3 defined the Lie group action. Some Lie group actions have the property of an
isotropy subgroup. The aim of this chapter is to explain what this subgroup is, which problem
it presents, and what use we can have from it in the construction of Lie group methods
through a Proposition which we will use in the following chapters.

The matrix group SO(3) is the example we use for explaining isotropy, as it has a nice
geometric interpretation. This group is used in Chapter 6 for the rotation of a rigid body.
In Chapter 7 we use a different matrix group, SL(2), for the Lie group action, which does
not have the same geometric interpretation, but to which still the theory presented here will
apply.

4.1 Isotropy by example

Example 4.1.
Given the Lie group action

Λ: SO(3)× S2 −→ S2 (4.1)

manifested as a matrix-vector product.
The following is easily verified:1 0 0

0 cos θ − sin θ
0 sin θ cos θ

1
0
0

 =

1
0
0

 , for all θ ∈ R

which means that for all matrices of this form, the action will not move the point p = (1, 0, 0)T

in the manifold S2, for arbitrary θ. The lower right 2 × 2-corner of the matrix is recognized
as the group of rotations in R2, namely SO(2). This SO(2) is the isotropy subgroup at
p = (1, 0, 0)T for this Lie group action.

Definition 4.1 (Isotropy subgroup). The isotropy (or stabilizer) subgroup of a Lie group
action Λ: G×M −→M is defined pointwise on the manifold as

Gp = {g ∈ G | Λ(g, p) = p}

31

32 Chapter 4. Using isotropy to improve the solution

From the definition we easily verify that Gp has the necessary properties for being a group.

Definition 4.2 (Isotropy subalgebra). For each isotropy subgroup, there is a isotropy subal-
gebra associated to the Lie algebra action (Equation (3.3)) defined pointwise on the manifold
as

gp = {u ∈ g | λ(u, p) = 0}

The isotropy subgroup from Example 4.1 has a corresponding subalgebra in so(3), which
is so(2).

For the action (4.1) there is an aforementioned nice geometric interpretation of the isotropy.
SO(3) is the group of rotation in 3 dimensions, with three degrees of freedom. For rigid bodies,
its orientation in space is fully described by a SO(3) matrix together with three coordinates.
When working with vectors in S2 instead of rigid bodies, the vectors are invariant with respect
to rotations around the vector itself. This type of rotation is the isotropy subgroup for this
action, visualized in Figure 4.1.

�

Figure 4.1: The effect of the three elements of so(3) on S2 through λp. The so(3)-element which
yields rotation around p is the isotropy element p̂.

We are going to use SO(3) and so(3) a lot, so we make some details explicit. The basis
for so(3) is three skew-symmetric matrices, we set

e1 =

0 0 0
0 0 −1
0 1 0

 , e2 =

 0 0 1
0 0 0
−1 0 0

 e3 =

0 −1 0
1 0 0
0 0 0

Definition 4.3 (The hat map). The Lie algebra so(3) of SO(3) is isomorphic to R3 by the
hat map:

̂: R3 −→ so(3)v1v2
v3

 7→

 0 −v3 v2
v3 0 −v1
−v2 v1 0

Note that the hat map is defined such that the isotropy algebra at a point p ∈ S2 ⊂ R3

is simply p̂. It is natural to identify the vector itself with the isotropy subalgebra because of
the geometric interpretation above.

4.2. Isotropy in rkmk algorithms 33

4.2 Isotropy in rkmk algorithms

The last chapter introduced the Runge-Kutta-Munthe-Kaas algorithms. Theorem 3.4 assumes
the existence of a map f : M → g such that λ∗(f(p))(p) = F (p). But in the presence of
isotropy, f is not uniquely determined by F , because

λ∗(f(p) + ζ(p))(p) = λ∗(f(p))(p) + λ∗(ζ(p))(p)︸ ︷︷ ︸
=0

= F (p) (4.2)

if ζ(p) ∈ gp for all p ∈M . This is so because

λ∗(ζ(p))(p) =
d
dt

∣∣∣∣
t=0

Λ(exp(tζ(p))p) = 0

by the definition of gm. But

Λ(exp(h(f(p) + ζ(p))), p) 6= Λ(exp(hf(p)), p)

so our numerical flow will be influenced by the choice of f or ζ.
By the way of Lie series, Section 2.4, it is possible to see the local role of isotropy for the

Lie-Euler solver (Example 3.1 and 3.2). We assume here that we have a matrix acting on a
manifold by matrix-products, and that our isotropy subalgebra is one-dimensional. Let ζ(p)
be a basis element for the isotropy subalgebra at the point p ∈ M , and let σ : M → R be a
scalar function meant to be multiplied by ζ. Lie-Euler with isotropy-correction then becomes

y1 = exp(h(f(y0) + σ(y0)ζ(y0)))y0

Order analysis for rk(mk) methods are found by comparing the Lie series expansion for
this numerical solution to the exact solution for any function ψ : M → R. To avoid cluttering
the notation, we employ the shorthand f∗ := λ∗(f(y0)) and similarly for ζ. The Lie series for
the numerical solution is then

ψ(y1) = ψ (exp(h(f(y0) + σ(y0)ζ(y0)))y0)

= ψ(y0) + h(f∗ + σζ∗)[ψ](y0) +
h2

2
(f∗ + σζ∗)2[ψ](y0) +O(h3)

= ψ(y0) + h(f∗ + σζ∗)[ψ](y0) +
h2

2
(f2
∗ + f∗σζ∗ + σζ∗f∗ + σ2ζ2

∗)[ψ](y0) +O(h3)

= ψ(y0) + h(f∗ + σζ∗)[ψ](y0) +
h2

2
(f2
∗ + σζ∗f∗)[ψ](y0) +O(h3)

(4.3)

because ζ∗[ψ](y0) is zero everywhere.
The Lie series for the exact flow y(t), where y(t0) = y0, becomes

ψ(y(t0 + h)) = ψ(y0) + hF [ψ](y0) +
h2

2
F 2[ψ](y0) +O(h3) (4.4)

Isotropy in geometric integration

34 Chapter 4. Using isotropy to improve the solution

where

F 2[ψ](y0) =
d

dh2

∣∣∣∣
h2=0

d
dh1

∣∣∣∣
h1=0

ψ(y(t0 + h1 + h2))

=
d

dh2

∣∣∣∣
h2=0

Tψ ◦ F (y(t0 + h2))

=
d

dh2

∣∣∣∣
h2=0

Tψ ◦ f(y(t0 + h2))(y(t0 + h2))

= TTψ ◦
(

df(y(t))
dt

y(t) + f(y(t))2y(t)
)

(4.5)

This results in the main result on how we may use isotropy to improve the solution for Lie
group methods with a one-dimensional isotropy subgroup. This result is what we are going
to implement numerically the following applications

Proposition 4.4. Lie-Euler may be raised to second order if there is a σ : M → R such
that

σ(p)ζ(p)f(p)p =
df(p)

dt
p (4.6)

for all p ∈M .

Proof. Follows from the h2-coefficient functions of Equation (4.3) and (4.5).

Note that we have not said anything about the possibility of satisfaction of Equation (4.6).
One strategy of choosing a σ will be based on minimizing the difference between the right
and left side of the equation in a suitable norm. Chapter 6 will make additional notes about
to which degree this equality is fulfilled, and what type of error is left.

Proposition 4.5. The isotropy subalgebra at a point p = Λ(Q, I) = QI ∈M where I is any
other point in M , is

AdQ(ζI) = QζIQ
−1

where ζI is the isotropy subalgebra at the origin I of M

Proof. We know that exp(ζI)I = I by definition of ζI . We are working with matrices and use
the matrix exponential:

exp(QζIQ−1)QI = Q exp(ζI)Q−1QI

= Q exp(ζI)I
= QI = p

which proves the proposition.

It is customary to define an origin in the manifold, denote it I and then find ζI . This
proposition is not being used directly in the implementation of the SO(3) and SL(2) solvers
to come, as we will use simpler ways to find ζ(p) for them.

4.3. Isotropy for actions on Stiefel manifolds 35

4.3 Isotropy for actions on Stiefel manifolds

We started of by an example concerning the SO(3)× S2 → S2 action. As the generalization
is simple, we generalize the S2 manifold to a Stiefel manifold, and increase the dimension of
the matrix group to SO(n) accordingly.

Definition 4.6 (Stiefel manifold). A (n, k)-Stiefel manifold V k
n is the set of all n×k-matrices

in which all columns are orthonormal and k ≤ n, that is if p ∈ V k
n then

pT p = Ik

where Ik is the k × k-identity matrix.

The S2 manifold is the same as the Stiefel manifold V 1
3 .

We use SO(n) to act on V k
n manifolds with arbitrary k, and define the origin in V k

n as

In,k =
(
Ik
0

)
(4.7)

where 0 is a (n− k)× k null matrix. The isotropy subalgebra at this origin is

ζIn,k
=
(

0 0
0 C

)
(4.8)

where C ∈ so(n−k), which is easily verified. We use Proposition 4.5 to determine the isotropy
subalgebra for any other point p ∈ V k

n as long as we know of a matrix Q ∈ SO(n) such that
QIn,k = p.

M dimV k
n dim so(n) dim gp M dimV k

n dim so(n) dim gp
V 1

1 0 0 0 V 1
5 4 10 6

V 1
2 1 1 0 V 2

5 7 10 3
V 2

2 1 1 0 V 3
5 9 10 1

V 1
3 2 3 1 V 4

5 10 10 0
V 2

3 3 3 0 V 5
5 10 10 0

V 3
3 3 3 0
V 1

4 3 6 3
V 2

4 5 6 1
V 3

4 6 6 0
V 4

4 6 6 0

Table 4.1: Dimension of the isotropy subalgebra for various Stiefel manifolds

We will here make no other uses of the Stiefel manifold other than V 1
3 which is the sphere

S2. For a higher-dimensional isotropy, the analysis in Section 4.2 must be redone to cater for
the additional basis elements of the isotropy subalgebra, and we will possibly be able to obtain
condition for an order increase of more than one. Lewis and Olver has found conditions and
constructed a method which is an improved second order method for the rigid body equations
in [15]. We have chosen not to pursue this any further here.

Isotropy in geometric integration

36 Chapter 4. Using isotropy to improve the solution

Typical uses of the Stiefel manifold involves matrices with n � k, where dim gm will be
large. In these situations, the time of evaluation of the exponential map is dependent on n and
not on the small k. Rather than trying to utilize this redundancy by adjusting the isotropy,
a different approach has been taken in [6]. The authors have there created retractions to
avoid use of the exponential map, and there is no isotropy left to play with. It remains to be
seen whether anything can be done to improve algorithms on Stiefel manifolds using the full
exponential map and taking advantage of the large isotropy group, and how this compares
the retraction approach.

Chapter 5

Hamiltonian and Poisson systems

5.1 Hamiltonian systems

Hamiltonian systems are a large class of dynamical systems which often is used to describe
mechanical problems in space. The first results appeared in 1834 by Hamilton, inspired by
previous research in optics, and further developed by Jacobi, which connected Hamiltonian
systems to partial differential equations. Hamiltonian theory has its feet in three domains, or-
dinary differential equations, which is where we will focus, but also in the theory of variational
principles (Lagrange) and first order partial differential equations (Jacobi).

The presentation given here is mostly based on Chapter VI of [10] and the classical book
by Arnold [2].

5.1.1 Lagrangian formulation

Joseph-Louis Lagrange introduced the variables q = (q1, . . . , qn)T for any mechanical system,
describing the positions and thereby the configuration manifold. These are called generalized
coordinates and may be dependent on each other. In addition, he assumed an expression
representing the kinetic energy of the system

T = T (q, q̇)

where q̇ is the time-derivative of the coordinates (generalized velocities). Secondly, there is
an expression for the potential energy for the system

U = U(q).

Lagrange then set
L(q, q̇) = T (q, q̇)− U(q) (5.1)

to be the Lagrangian of the system. Denote the work functional of the Lagrangian to be the
integral of L along a curve γ described by the q coordinates:

W (γ) =
∫ t1

t0

L(q(t), q̇(t)) dt (5.2)

Hamiltons principle of least action says that a solution of the mechanical system T and U
describes, is a curve γ that minimizes W (γ). That is we want to find an extremal of W .
Finding this extremal is finding a curve such that the functional’s differential is zero.

37

38 Chapter 5. Hamiltonian and Poisson systems

Theorem 5.1 (The Euler-Lagrange Equation). The curve γ(t) is an extremal of the work
functional W (q) on the space of curves passing through q(t0) and q(t1) if and only if

d
dt

(
∂L

∂q̇

)
=
∂L

∂q
(5.3)

Proof. The proof may be found on page 57 in [2].

5.1.2 Hamiltonian formulation

Hamilton introduced another variable in order to simplify the equations for mechanical sys-
tems, namely Poisson’s conjugate momenta

p =
∂L

∂q̇
(q, q̇) (5.4)

He then found that the system of ordinary differential equations

ṗ = −∂H
∂q

q̇ =
∂H

∂p

(5.5)

where H(p, q) is the Hamiltonian

H(p, q) = pT q̇ − L(q, q̇). (5.6)

is equivalent to the Euler-Lagrange equations (5.3). This is easily shown by differentiating H
given by Equation (5.6) by p and q and using the definition of p.

Writing y = (p, q)T we may write Equation (5.5) as

ẏ = J−1∇H(y), where J =
(

0 I
−I 0

)
(5.7)

5.1.3 First integrals

First integrals of systems are quantities, functions I : M → R, which have their values con-
served for all points along a solution path of a system. These may also be called invariants
or constants of motion. Physical conservation laws are often expressed as first integral, such
as energy preservation or conservation of angular momentum. We have already encountered
a first integral in Example 3.1, where ‖y‖ was a constant.

Definition 5.2. Consider the differential equations ẏ = f(y). A non-constant function I(y)
is called a first integral of the system if

I ′(y)f(y) = 0 for all y ∈M. (5.8)

If a first integral of a system is known, this is effectively a constraint in the solution space
in which the flow of the system must be at all times. Level curves of certain first integrals
will sometimes be equivalent to the solution curves, as for the Lotka-Volterra system and the
Duffing oscillator in Chapter 7.

For Hamiltonian systems, the Hamiltonian H is always a first integral. This follows from
H ′(p, q) = (∂H/∂p, ∂H/∂q) and

H ′(p, q)J−1∇H(p, q) =
∂H

∂p

(
−∂H
∂q

)T
+
∂H

∂q

(
∂H

∂p

)T
= 0.

5.2. Poisson systems 39

5.1.4 Symplecticness

Symplecticness is an important property for linear mappings. It is a sort of area preservation
which is proven to be important for Hamiltonian systems.

Definition 5.3. A linear mapping A : R2n → R2n is called symplectic if

ATJA = J (5.9)

where J is defined in Equation (5.7).

The flow of a system and the numerical integrators are differentiable mappings in h, for
which we define symplecticness as follows

Definition 5.4. A differentiable mapping g : U → R2n where U is open in R2n, is called
symplectic if its Jacobian is everywhere symplectic.

The crucial point regarding symplecticness is Poincaré’s theorem from 1899:

Theorem 5.5. The solution flow φt for a Hamiltonian system where H is at least twice
continuously differentiable, is symplectic.

Proof. See Hairer, Wanner and Lubich [10, Theorem VI.2.4]

It now seems plausible that if our numerical integrator share this symplectic property
with the corresponding exact flow, then the numerical solver will perform better. Indeed it
does, but it requires the use of backward error analysis together with results from complex
analysis to prove rigorously. In Section IX.8 of [10] it is proved that a symplectic integrator
will constrain the global error of the Hamiltonian over exponentially long time intervals.

Examples of symplectic integrators are most notably Symplectic Euler, which we will use
in Chapter 7, and its composition with its adjoint which results in the Störmer-Verlet scheme
of order two.

5.2 Poisson systems

Rigid body dynamics and the Lotka-Volterra system are not Hamiltonian systems, but Poisson
systems. Poisson systems are a generalization of Hamiltonian systems, where the crucial point
is to let the matrix J be dependent on the current position y.

5.2.1 The structure of Poisson systems

Definition 5.6. A differential system

ẏ = B(y)∇H(y) (5.10)

where H is a functional (still named the Hamiltonian) and the coefficient of the matrix B(y)
satisfy the equations

bij(y) = −bji(y) for all i, j (5.11)
n∑
l=1

(
∂bij(y)
∂yl

blk(y) +
∂bjk(y)
∂yl

bli(y) +
∂bki(y)
∂yl

blj(y)
)

= 0 for all i, j, k, (5.12)

is a Poisson system.

Isotropy in geometric integration

40 Chapter 5. Hamiltonian and Poisson systems

The matrix B(y) defines a structure of a Poisson bracket on the space of functions of the
phase space of the system in question.

Definition 5.7 (Poisson bracket). The Poisson bracket corresponding to the matrix B(y)
with elements bij(y) is defined as the operation sending the two smooth functions F (p, q) and
G(p, q) to another function {F,G}(p, q) as in

{F,G}(y) =
n∑

i,j=1

∂F (y)
∂yi

bij(y)
∂G(y)
∂yj

. (5.13)

The Poisson bracket has a close connection to first integrals. Taking the Lie derivative of
a function along the flow of a system, is equivalent to the Poisson bracket of the function and
the Hamiltonian, that is, I is a first integral if and only if

{I,H} = 0.

The Poisson bracket also satisfies bilinearity, skew-symmetry and the Jacobi-identity. We are
going to keep out of rephrasing too much details regarding Poisson systems, and rather focus
on results relevant to our applications.

Any Poisson system may be transformed to a canonical form by a differentiable variable
transformation, z = χ(y) = (Pi(y), Qi(y), Ck(y)). The Poisson system ẏ = B(y)∇H(y)
transforms to

ż = B0∇K(z) with B0 =

0 −I 0
I 0 0
0 0 0

 (5.14)

where K(z) = H(y). The functions Ck(y) are here the Casimirs, which are a special kind
of first integrals only dependent on the Poisson structure (B(y)). Writing z = (p, q, c) the
system above becomes

ṗ = −Kq(p, q, c)
q̇ = Kp(p, q, c)
ċ = 0

(5.15)

which is quite similar to how we defined Hamiltonian systems above. The Casimirs are here
seen to be constant throughout time. The proof of the existence of this transformation is
deep and covered in Section VII2.4 of [10]. It is mainly based on the Darboux-Lie Theorem.

5.2.2 Poisson maps

Many properties of Hamiltonian systems may be transformed into equivalent properties valid
for Poisson systems. The symplectic property of flows Hamiltonian systems was seen to be
vitally important for global behavior of the solution when using numerical integrators. The
integrators had to be symplectic maps, and the corresponding property we would like our
integrators to have for Poisson systems is Poisson maps.

Definition 5.8 (Poisson map). A transformation ρ : U → Rn, U ⊆ Rn is a Poisson map for
a system determined by the structure matrix B(y) if its Jacobian matrix satisfies

ρ′(y)B(y)ρ′(y)T = B(ρ(y)) (5.16)

5.2. Poisson systems 41

For Hamiltonian systems, the structure matrix is the constant matrix B(y) = J−1, and
the definition of Poisson map and Symplectic map is then equivalent.

We also have the analogue to Poincaré’s theorem (Theorem 5.5) for Poisson systems:

Theorem 5.9. The flow of a Poisson system is a Poisson map.

Proof. This may be found on page 237 of [10]

Because of this, numerical integrators for Poisson systems which are Poisson maps will
also perform well just as symplectic integrators perform well on Hamiltonian systems. Note
that the definition of a Poisson map is now dependent on the system in question, so there is
little hope to develop integrators that are Poisson maps for all possible Poisson systems.

In Appendix B we will establish that Symplectic Euler is a Poisson integrator for the
Lotka-Volterra system.

Isotropy in geometric integration

42 Chapter 5. Hamiltonian and Poisson systems

Chapter 6

Isotropy corrections for rigid body
dynamics

Rigid body dynamics is the mechanical description of how rigid bodies (rigid means that
there is a fixed distance between any two points in a body) move and rotate in space. We
will focus here on a body to which there are no applied forces or torques. An example is a
satellite in orbital motion around the earth. The satellite is under gravitational interaction,
but is in free fall, thus we may model it as an object with no present forces or torques. After
the satellite leaves the space shuttle which has brought it to space, it will probably have some
initial rotation, and the satellite will afterwards rotate accordingly.

Rigid body dynamics is about rotations in three-dimensional space, for which we choose
to apply the rotation group SO(3) for a Lie group method. But the manifold S2 which is
the phase space of the rotation, is only two-dimensional, whereas SO(3) is three-dimensional.
The extra dimension is what we call the isotropy, and is what we are going to utilize for rigid
body dynamics in this chapter.

Lewis and Olver have in [15] successfully developed an isotropy correction for the rigid
body problem. We are in this chapter going to reproduce their result, and see that the
outcome is identical to the result we found earlier on how to improve a solution by isotropy,
Proposition 4.4. The contribution here is the replacement of analytical derivations of the
vector fields by numerical differentiation, which will have the same behavior. Also it is noted
that multiplying the isotropy by a constant further improves the numerical solution.

6.1 The Euler equations

Arnold describes in [2, Chapter 6] all details of the theory up to the equations of motion
for rigid bodies which we will present here. Any object has moments of inertia. Our three-
dimensional bodies will have three axes with three corresponding moments of inertia. For
simplicity we may assume a transformed coordinate system so that the matrix of moments
of inertia is diagonal, and to each axis named 1, 2 and 3, we assign the moments of inertia
I1, I2 and I3. Let Ωi be the angular velocity around axis i. The Euler equations for angular

43

44 Chapter 6. Isotropy corrections for rigid body dynamics

velocity are

I1
dΩ1

dt
= (I2 − I3)Ω2Ω3

I2
dΩ2

dt
= (I3 − I1)Ω3Ω1

I3
dΩ3

dt
= (I1 − I2)Ω1Ω2

(6.1)

We may rephrase the Euler equations for angular velocity into the Euler equations for the
angular momentum vector m = (m1,m2,m3)T , where mi = IiΩi, and we get

ṁ1

ṁ2

ṁ3

 =

I2−I3
I2I3

m2m3

I3−I1
I3I1

m3m1

I1−I2
I1I2

m1m2

 =

0 m3

I3
−m2

I2

−m3
I3

0 m1
I1

m2
I2

−m1
I1

0

m1

m2

m3

 (6.2)

Defining a Hamiltonian

H(m1,m2,m3) =
1
2

(
m2

1

I1
+
m2

2

I2
+
m2

3

I3

)
(6.3)

this becomes a Poisson system, Section 5.2

ṁ =

 0 m3 −m2

−m3 0 m1

m2 −m1 0

∇H(m) (6.4)

Using the hat map from Definition 4.3 we may write the Poisson structure matrix B(m) as
B(m) = m̂.

6.2 Invariants

The Casimirs of a Poisson system are one form of first integrals, which are constant throughout
time. The Casimir of our rigid body equations is the conservation of angular momentum,

L(m) = m2
1 +m2

2 +m2
3 (6.5)

By use of Lie group methods (SO(3)), this invariant is automatically exactly conserved. The
update operation in our integrators will be of the form yn+1 = Ayn where A is an orthogonal
matrix, which ensures conservation of (6.5). This was also seen in Example 3.1.

The second invariant will be the Hamiltonian (6.3) itself. This is the same as the total
energy of the system, which should be conserved as no forces were applied. Our goal is to see
how this invariant may be conserved.

If the I1, I2 and I3 are distinct we have a triaxial body, and the level curves of the
Hamiltonian on the unit sphere uniquely determines the periodic paths of motion.

6.3. Known solvers 45

6.3 Known solvers

There are numerous papers with proposals of solvers for the rigid body problem. By use
of the Darboux-Lie theorem the Poisson system may be transformed into a canonical form
(a Hamiltonian system) to which a symplectic integrator may be applied. McLachlan and
Scovel [16] and Reich [23] have done this independently. Hairer, Lubich and Wanner [10,
Section VII.2] formulates this using the method rattle to a method of of order two which
conserves both the above mentioned invariants to machine accuracy. The computational
complexity involves the solution of a Riccati type equation and a linear problem in each step.

Buss [4] develops some new algorithms based on geometric understanding of the problem,
and compares them to other well known rigid body solvers. These methods are heavily
specialized to the rigid body equations for accuracy and efficiency.

The Lie group solvers is the approach we are going to follow in this text on utilization of
isotropy. A reference on Lie group methods applied to rigid body dynamics (where isotropy
is not considered) is [5].

6.4 Order conditions by Lie series expansion

We will here outline the corrected Lie-Euler algorithm for the rigid body as done by Lewis
and Olver in [15, Section 3 and 4]. The notation used here is to a little extent different from
Lewis and Olver.

Given a differential equation on the sphere S2

ṁ = F (m) m ∈ S2 (6.6)

we would like to develop a Lie group solver. This needs the corresponding f : M → g which
we here denote as

ω : S2 −→ R3 or as ω̂ : S2 −→ so(3)

by the use of the hat map in Definition 4.3. ω and ω̂ is related through

ω(m)×m = ω̂(m)m

To simplify the notation, we will when appropriate suppress the argument m of ω and ω̂. Just
note that ω̂(m) 6= ω̂m.

ω̂ is not uniquely given, as explained in Section 4.2. We therefore enforce the constraint
〈ω(m),m〉 = 0.

The exact flow φh will have a Lie series expansion as in Equation (4.4)

ψ(φh(m)) = ψ(m) + hω̂m[ψ] +
h2

2

(
ω̂2m+ ˙̂ωm

)
[ψ] +O(h3) (6.7)

Lewis and Olver then introduce the orthonormal basis in R3 ∼= so(3){
m,

ω

v
,
ω ×m

v

}
(6.8)

where v = ‖ω(m)‖ is the normalizing factor. The objective now is to expand both the
exact solution and the numerical solution in terms of this basis. This is nothing else than

Isotropy in geometric integration

46 Chapter 6. Isotropy corrections for rigid body dynamics

a specialized way of dealing with the order conditions by standard Taylor expansions, but
this special choice of basis makes it clear what role isotropy plays. Note that the isotropy
subalgebra at a point m is m (or m̂), and is thus our first basiselement.

The ω-map and its derivatives with respect to time are written in the basis as

ω(j) =
dj

dtj
ω = ajm+ bj

ω

v
+ cj

ω ×m

v
, j = 0, 1, 2, . . . (6.9)

For doing cross-product calculations in the basis, this table of cross products of the basisele-
ments is helpful

× e1 e2 e3
e1 0 e3 −e2
e2 −e3 0 e1
e3 e2 −e1 0

With respect to the basis, the exact flow (6.7) has the expansion (now suppressing the
function ψ : S2 → R which plays no role here):

φh(m) =

1
0
0

+ h

 0
0
−v

+
h2

2

−v2

c1
−b1

+O(h3) (6.10)

We write any rkmk method characterized by a ξ as

Φξ
h = exp(ξ̂(m, t))m, where ξ(m, t) =

∞∑
j=1

hj

j!
ξj(m) (6.11)

and ξj = (αj , βj , γj)T in the basis (6.8).
The expansion of any such a rkmk method becomes

Φξ
h(m) =

id +
∞∑
j=1

hj

j!
ξ̂j(m) +

 ∞∑
j=1

hj

j!
ξ̂j(m)

2

+ · · ·

m

=
(

id + hξ̂1 +
h2

2

(
ξ̂2 + ξ̂21

)
+ · · ·

)
m

=

1
0
0

+ h

 0
γ1

−β1

+
h2

2

α2

β2

γ2

×

1
0
0

+

α1

β1

γ1

×

α1

β1

γ1

×

1
0
0

+ · · ·

=

1
0
0

+ h

 0
γ1

−β1

+
h2

2

−β2
1 − γ2

1

α1β1 + γ2

α1γ1 − β2

+O(h3)

Comparing this result to the expansion of the exact flow (6.10) we have the order conditions
up to order 2 in Table 6.1. Further order conditions may be found in the same manner.
Conditions for order 3 are explicitly given in [15].

6.5. Orbit capture 47

Order 1 β1 = v
γ1 = 0

Order 2 β2 = b1
γ2 = c1 − α1v

Table 6.1: Order conditions for rkmk methods in the basis (6.8).

6.5 Orbit capture

A Lie-Euler solver is based on letting ξ1(m) = ω(m) and ξj = 0 for j ≥ 2 (when ω obeys
〈ω(m),m〉 = 0). If we intend to correct Lie-Euler by an isotropy correction of magnitude σ,
this corresponds to choosing

ξ(m) = hξ1(m) = h(ω(m) + σm) = h

σ1
0

 (6.12)

in the basis (6.8). As γ2 = 0 here, the second order condition for order 2 becomes

σ = α1 =
c1
v

(6.13)

This σ will change at every point m during integration, so we must expect to calculate the
correction at every time step. The error in integration for the isotropy-corrected Lie-Euler
with σ = c1/v is

φh(m)− Φh(m) =
h2

2

 0
0
−b1

+O(h3) (6.14)

So we have that the error done by this (still first order) method is in the direction of the
vector field (ω × m). This means that the only difference from our first order corrected
method and a true second order method is the speed of movement along the trajectory. By
a reparametrization of time of the exact flow, we adjust the reparametrization such that the
error −b1 becomes zero, and thus have a true second order method up to this reparametriza-
tion. Lewis and Olver call this orbit capture and do some calculations for proving its validity.
Lie-Euler with isotropy correction (6.13) thus have a second order orbit capture.

Recall from Proposition 4.4 which says how to correct Lie-Euler. Equation (4.6) translates
to

σm̂ω̂m = ̂̇ωm (6.15)

written componentwise in the basis (6.8)

σ

1
0
0

×

0
v
0

×

1
0
0

 =

a1

b1
c1

×

1
0
0

 (6.16)

⇔

σ

0
v
0

 =

 0
c1
−b1

 (6.17)

Isotropy in geometric integration

48 Chapter 6. Isotropy corrections for rigid body dynamics

for which we set
σ =

c1
v

(6.18)

the same as we just found above, Equation (6.13). The −b1 reappears here, there is nothing
we can do about it, as predicted by Equation (6.14).

6.6 Choosing σ for the rigid body problem

6.6.1 Exact differentiation

Lewis and Olver find an exact formula for c1, which is what we need at each point. We have
that

σ =
c1
v

=
〈ω̇, ω ×m〉

v2
=
〈m̈,m× ṁ〉
‖ṁ‖2

(6.19)

Inserting the differential equation

ṁ = F (m) = m× I−1m (6.20)

which is equivalent to Equation (6.2) when I = diag(I1, I2, I3), we get

m̈ = ṁ× I−1m+m× I−1ṁ

= F (m)× I−1m+m× I−1F (m)
(6.21)

Using this, we find

〈m̈,m× ṁ〉 = 〈F (m)× I−1m+m× I−1F (m),m× F (m)〉
= 〈F (m), I−1F (m)〉 − 〈m, I−1m〉‖F (m)‖2

This yields the easily computable σ

σ(m) =
〈F (m), I−1F (m)〉

‖F (m)‖2
− 〈m, I−1m〉. (6.22)

6.6.2 Numerical differentiation

The calculation done above may not always be available in all situations, so it is interesting
to see what can be done without doing such explicit calculations of the derivative ω̇ and m̈.
The remedy must be numerical differentiation. We propose a first order forward difference.
Say we want to evaluate ω̇ at m,

ω̇(m) ≈
ω(Φh̃(m))− ω(m)

h̃
(6.23)

where Φh̃ steps forward using Lie-Euler with no isotropy correction with a possibly very small
time step, typically h̃ � h. h̃ may be chosen as small possible as long as no roundoff errors
due to fixed machine precision occur. Experiments have shown that h̃ = h

100 is adequate for
the rigid body problem.

The drawback compared to the analytic derivation in Section 6.6.1 is increased compu-
tational time, as two Lie-Euler steps are required for every effective step. Note that for the
Lotka-Volterra system and the Duffing oscillator in Chapter 7, it turned out to be sufficient
to set h̃ = h, thus removing the need for an extra step for each effective step.

6.7. Numerical results 49

6.7 Numerical results

For all the numerical results, we have used the inertia matrix I = diag(7, 5, 2), the starting
point y0 = (0,− sin(50◦), sin(50◦)) and time step h = 0.5.

6.7.1 Uncorrected Lie-Euler

Figure 6.1 shows how a standard implementation of Lie-Euler performs on the rigid body
equations. The dotted line is heading steadily towards the equilibrium point on the top pole
of the sphere. This linear drift away from the solution is typical for both an Euler solver
and a Lie-Euler solver. The Hamiltonian in Figure 6.1(b) will eventually stabilize when the
equilibrium is reached, soon after time 50.

−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Plot of numerical solution on S2.

0 10 20 30 40 50
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Lie−Euler

Exact

A
b
so

lu
te

 e
rr

or
 i
n

 H
am

il
to

n
ia

n

Time

(b) Preservation of Hamiltonian

Figure 6.1: Failure of a standard application of Lie-Euler (dotted) with no isotropy correction com-
pared to an exact solution (solid).

6.7.2 Isotropy corrected Lie-Euler

We now employ the isotropy correction from Section 6.6 to the Lie-Euler solver. This results
in a considerably better conservation of the Hamiltonian, as seen in Figure 6.2(a) and 6.2(b).
The left figure shows the result when the numerical differentiation is performed using the
values already known, such that the extra step is unnecessary (there will be a problem with
the very first step though). This plot shows that the approach using numerical differentiation
is not quite good enough to match Lewis and Olver’s estimate, but still outperforms the
uncorrected Lie-Euler by two magnitudes and is slightly better than the second order rkmk
method of Example 3.3.

By choosing h̃ = h/100 as in Figure 6.2(b), the numerical differentiation is almost equiva-
lent to the Lewis and Olver estimate. There seems to be little gain in having an even smaller
h̃ and thereby a more correct ω̇ in terms of preservation of the Hamiltonian.

Isotropy in geometric integration

50 Chapter 6. Isotropy corrections for rigid body dynamics

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

Lewis−Olver

 Lie−RK2

 h~ = h

A
b
so

lu
te

 e
rr

or
 i
n

 H
am

il
to

n
ia

n

Time

(a) Using h̃ = h in Equation 6.23.

34 36 38 40 42 44
7

7.5

8

8.5

9

9.5

x 10
−5

Lewis−Olver

 h~ = h/100

A
b
so

lu
te

 e
rr

or
 i
n

 H
am

il
to

n
ia

n

Time

(b) Using h̃ = h/100. Zoomed plot.

Figure 6.2: Preservation of Hamiltonian for isotropy-corrected Lie-Euler, compared to a standard
second order Lie group method.

6.7.3 Long time behavior

Our algorithms are not supposed to preserve the Hamiltonian exactly. This is seen in the
Figure 6.3, where the time interval has been increased by an order of magnitude. The mean
value of the Hamiltonian increases linearly by time (thick lines), and the method by numerical
differentiation performs slightly better, although this difference is negligible (and is just a
matter of luck because h̃ was not small enough to reproduce the derivative accurately enough).
Looking at the magnitude of the Hamiltonian, we again see that the isotropy correction
performs very well, taking into account the fatal introductory plot of the underlying Lie-
Euler in Figure 6.1.

It is possible to stabilize this linear drift even further, by replacing σ by a scaled σ̃

σ̃ = ασ (6.24)

where α is a constant independent of the point in the manifold. Smart values of α must be
found by trial and error, or by “shooting”. This has been done in Figure 6.4 below for an even
longer period of time. We have currently not been able to find any mathematical rationale
for doing this other than the numerical results in the figure.

6.7.4 Order plots

We have used the local Taylor expansion for the correcting isotropy term, and from Equa-
tion (6.14) we know that our method is still of order one. In terms of local error, our correction
may only provide a better error coefficients. This is supported by the two plots in Figure 6.5
showing the local error of the basic Lie-Euler and the isotropy corrected Lie-Euler, compared
to a rkmk implementation of a standard second order solver, Example 3.3. The isotropy
correction yields a local error constant which is slightly better than the basic Lie-Euler, but
this does in no way explain the large difference in global stability found in Figure 6.2.

6.7. Numerical results 51

0 100 200 300 400 500
0

0.5

1

1.5
x 10

−4

A
b
so

lu
te

 e
rr

or
 i
n

 H
am

il
to

n
ia

n

Time

Figure 6.3: Long time behavior of the isotropy-corrected Lie-Euler. The thick line is the average of
the rapidly oscillating Hamiltonian. Dash-dot is the correction estimate of Lewis and
Olver, solid line is the correction estimate using Equation (6.23) with h̃ = h/100. Time
step 0.5.

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1
x 10

−3

 α = 1.000000

A
b
so

lu
te

 e
rr

or
 i
n

 H
am

il
to

n
ia

n

Time

 α = 1.000090

Figure 6.4: Further stabilization of the isotropy correction by scaling, σ̃ = ασ. Time step 0.5.

Isotropy in geometric integration

52 Chapter 6. Isotropy corrections for rigid body dynamics

10
−6

10
−4

10
−2

10
0

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Timestep

Lie−Euler
Lie−Euler−IsoCorr
Lie−RK2

(a) The absolute error.

10
−6

10
−4

10
−2

10
0

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Timestep

Lie−Euler
Lie−Euler−IsoCorr
Lie−RK2

(b) Absolute error in Hamiltonian

Figure 6.5: Order plots for the uncorrected Lie-Euler and the corrected Lie-Euler.

6.8 Concluding remarks

We have seen that the isotropy corrected version of Lie Euler performs very well on the rigid
body problem. The general approach using Lie series (Proposition 4.4) is equivalent to the
specialized results by Lewis and Olver [15] in the basis (6.8). Although we used a condition
for second order local behavior, we obtained global accuracy way better than our arbitrary
second order method.

Even further stabilization of the corrected version was possible through a slight scaling of
the isotropy correction, but this scaling can not currently be known a priori.

Chapter 7

Lie group methods for R2 based on
SL(2)

Differential equations in R2 has never been the primary aim of Lie group methods. This
configuration manifold is in the “domain” of the classical solvers. Using an SL(2) action
on R2 adds complexity. Comparing Euler and the Lie-version of it, Lie-Euler, we see that
Lie-Euler is more demanding computationally, as it involves the exponentiation of an sl(2)-
matrix. In addition, the formulation of Lie-Euler is not uniquely given, as the Lie group SL(2)
is of dimension three, whereas R2 is of dimension two. This extra dimension in SL(2) is the
isotropy, which we will use in the Lie-Euler solver for an improved numerical solution. The
isotropy is the only reason we have for using SL(2), as we do not gain any other qualitative
attributes for free as we did in the rigid body problem (where the SO(3)-action ensured that
our approximation stayed on the sphere).

The methods developed are applied to the Lotka-Volterra system, and a simplified Duff-
ing oscillator. Lotka-Volterra has been the area of primary focus, and some analysis and
experiments are not repeated for the Duffing oscillator. We will only be considering isotropy
correction to first order solvers, that is Lie-Euler.

Throughout the chapter, we will use u and v for the coordinates in R2 and y will always
be the vector (u, v)T .

7.1 Using an SL(2) action on R2

Instead of using affine transformations to move around in R2 which in this case works perfectly
as opposed to the last chapter’s S2, we are going to consider a new approach, using the SL(2)
matrix group to act on the plane. The action

Λ: SL(2)×R2 −→ R2 (7.1)

manifested as matrix-vector multiplication, is transitive on the punctured plane R\{0} be-
cause it is impossible to move to the point (0, 0) by any matrix with determinant equal to
1.

Say we want to move from the point p0 = (1, 1)T to p1 = (u, v)T , that is we want a matrix
A such that Ap0 = p1. Solve(

a11 a12

a21 a22

)(
1
1

)
=
(
u
v

)
, a11a22 − a12a21 = 1 (A ∈ SL(2)) (7.2)

53

54 Chapter 7. Lie group methods for R2 based on SL(2)

which gives

A =
(1+uv−γu

v
γu−1
v

−γ + v γ

)
, γ ∈ R arbitrary. (7.3)

which says that this works fine as long as v 6= 0. We can solve similarly if v = 0 but u 6= 0
and get a slightly different result. The difference between the results will always lie in the
isotropy part, that is γ. Both u and v may not be zero, as that would imply that (1, 1)T is in
the nullspace of A, but the nullspace of A is empty because it has determinant different from
zero. We are not going to use Equation (7.3), it is only used to illustrate the concept. Note
that γ plays the role of isotropy here. Our solution is a one-parameter subgroup of SL(2), in
which all group elements yields our desired transformation in R2.

7.1.1 The matrix exponential for sl(2)

The matrix exponential has a special form for the mapping sl(2) → SL(2). We develop simple
formulas in Appendix A, and the result for a matrix hS ∈ sl(2) (h is a scalar which we have
included here for use in later results) is

exphS =

cosh

√
detS I + sinh

√
detS

h
√

detS
hS detS > 0

coshh
√
−detS I + sinhh

√
− detS

h
√
− detS

hS detS < 0

I + hS detS = 0

(7.4)

This splitting into three cases is because we have chosen to work with real numbers. For
further analysis, we work with the series expansions of the above trigonometric and hyper-
bolic functions, which has identical expansions (Appendix A). The series expansion of the
exponential becomes

exphS = I + hS − 1
2

det(S)h2 − 1
6

det(S)Sh3 +O(h3) (7.5)

7.1.2 The isotropy subgroup

The isotropy subgroup may be found by solving similar to the above the equation(
a11 a12

a21 a22

)(
u
v

)
=
(
u
v

)
, a11a22 − a12a21 = 1 (7.6)

for which the solution is trivially found as a one-parameter family of solutions with the free
parameter denoted by γ

SL(2)y =
(

1 + γuv −γu2

γv2 1− γuv

)
, γ ∈ R

Equation (7.6) is an inverse eigenvalue problem, we would like to find matrices in SL(2) with
eigenvalue 1 as a function of the eigenvector y.

7.1.3 The isotropy subalgebra

Similarly as the isotropy subgroup, we may find the isotropy subalgebra by solving(
s11 s12
s21 s22

)(
u
v

)
=
(

0
0

)
, s11 + s22 = 0 (7.7)

7.1. Using an SL(2) action on R2 55

with the solution

σ

(
uv −u2

v2 −uv

)
=: σζ(y) (7.8)

which is also an inverse eigenvalue problem. We searched for matrices with eigenvalue 0 as a
function of the eigenvector. As 0 is an eigenvalue, the matrix is singular and the determinant
is zero (which is easily verified).

From Equation (7.5) we see that the determinant is crucial for the exponentiation. It is
easily seen that det(ζ(y)) = 0, and thus the exponential becomes as easy as

exp(σζ(y)) = I + σζ(y) =
(

1 + uvσ −σu2

σv2 1− uvσ

)
equivalent to the isotropy subgroup we found above.

7.1.4 Constructing f for rkmk-methods

The construction of Runge-Kutta-Munthe-Kaas methods relies on a map f : R2 → sl(2) such
that λ∗(f(y))(y) = F (y) where y = (u, v)T and F comes from Equation (7.14). Since we are
working with matrices, λ∗(f(y))(y) is just the matrix-vector product f(y)y.

We should find functions such that(
s11(u, v) s12(u, v)
s21(u, v) s22(u, v)

)(
u
v

)
=
(
F1(u, v)
F2(u, v)

)
= F (u, v), s11(u, v) + s22(u, v) = 0 (7.9)

This equation has four unknowns and three constraints, so there is one degree of freedom
(the isotropy). To develop general expressions for f(y), we choose in succession s21(u, v) = 0,
s12(u, v) = 0, and at last s11(u, v) = −s22(u, v) = 0. Straightforward algebraic manipulation
of Equation (7.9) results in the three versions of f :

f1

(
u
v

)
=

(
−F2(u,v)

v

F1(u,v)+F2(u,v)u
v

v

0 F2(u,v)
v

)
(7.10)

if s21(u, v) = 0. If s12(u, v) = 0 we get

f2

(
u
v

)
=

(
F1(u,v)

u 0
F2(u,v)+F1(u,v) v

u
u −F1(u,v)

u

)
(7.11)

and for the last choice, s11(u, v) = −s22(u, v) = 0, we get

f3

(
u
v

)
=

(
0 F1(u,v)

v
F2(u,v)

u 0

)
(7.12)

There is nothing fundamental about these three versions. They are all corresponding to
different choices of the isotropy. For example, we have

f1(u, v) +
F2(u, v)

v︸ ︷︷ ︸
σ

ζ(u, v) = f3(u, v).

Isotropy in geometric integration

56 Chapter 7. Lie group methods for R2 based on SL(2)

Whichever of these versions we should apply for our rkmk-solver, is dependent on the
functions F1 and F2 for the problem in question.

From Equation (7.5) on the exponential of sl(2)-matrices, we see that det(f(y)) is crucial.
We compute this for our first general result, Equation (7.10):

det(f1(y) + σζ(y)) =

∣∣∣∣∣−F2
v + σ

F1+F2
u
v

v − σ uv
σ vu

F2
v − σ

∣∣∣∣∣
= −

(
F2

v
+ σ

)2

− σ
v

u

(
F1 + F2

u
v

u
− σ

u

v

)
= −F

2
2

v2
+ σ

(
F2

v
− F1

u

)
(7.13)

It is now apparent that if F2/v− F1/u = 0, any isotropy correction will not play any role for
the numerical result of a rkmk-solver. We will see that this is an obstacle for some of the
following methods.

Calculating the determinant using f2 or f3 we obtain the same condition for where the
isotropy has no effect.

7.2 The Lotka-Volterra model

The Lotka-Volterra equations is a model from mathematical biology describing the growth
and decay of animal species. The Lotka-Volterra equations models two species, with the
population u(t) and v(t) respectively. The rate of change for each of the species is assumed
to be proportional to its population, and one specie eats the other one. Choosing constants
as in [10, Section I.1.1] we arrive at the equations

u̇ = u(v − 2)
v̇ = v(1− u)

(7.14)

Dividing the first with the second yields

u̇

v̇
=
u(v − 1)
v(1− u)

1− u

u
u̇ =

v − 2
v

v̇

(7.15)

which may now be integrated (separation of variables) to

lnu− u = v − 2 ln v + C

where C is the constant from the integration. Along a solution path of (7.14) C must be
constant. Pick a C, and this determines a solution curve, which may be implicitly plotted, as
in Figure 7.1 below. Writing I(u, v) = lnu − u + 2 ln v − v we denote this the invariant for
this system, in close resemblance to the invariants for Hamiltonian systems.

7.3. The Duffing oscillator 57

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

u

v

Figure 7.1: The periodic solutions of the Lotka-Volterra model (Equation (7.14)) and the vector field.

7.2.1 The Poisson structure of Lotka-Volterra

Referring back to Section 5.2, the Lotka-Volterra system may be set in the framework of
Poisson systems as follows:

ẏ =
(
u̇
v̇

)
= B(y)∇H(y) =

(
0 uv
−uv 0

)(
1
u − 1
2
v − 1

)
(7.16)

where the Hamiltonian H(y) for this Poisson system is our invariant I(u, v). We note that
the structure matrix B(y) has the necessary skew-symmetric property and also what Equa-
tion (5.12) requires for the Jacobi identity to hold.

7.3 The Duffing oscillator

The Duffing oscillator is a model of the flexing of a beam of steel, acted upon by an electro-
magnet. The Duffing oscillator is described by the following differential equation

ẍ+ αẋ− x+ x3 = β cos(ωt) (7.17)

We will only consider the case when α = 0 and β = 0,

ẍ− x+ x3 = 0 (7.18)

which transformed to a system of first order differential equations in u and v becomes

u̇ = v

v̇ = u− u3

Isotropy in geometric integration

58 Chapter 7. Lie group methods for R2 based on SL(2)

This system may be integrated as we did for Lotka-Volterra, which results in an invariant,
the Hamiltonian, for this Duffing oscillator,

H(u, v) =
1
2
(v2 − u2) +

1
4
u4 (7.19)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u

v

Figure 7.2: The periodic solutions of the Duffing oscillator (Equation (7.18)) and the associated
vector field. The ∞-shaped separatrix is associated to a value of 0 for the Hamiltonian.

7.4 Basic methods

We implement two standard classical methods for the Lotka-Volterra system, and then our Lie
group version of the Forward Euler method. The plain forward Euler method usually performs
bad, accumulating error linearly over time. This is expected here as well. The performance
of Lie-Euler (uncorrected) is unknown, but will perhaps perform roughly equivalent to Euler,
which we will also see is true.

Symplectic Euler is on the other hand known to preserve the Hamiltonian (and thereby
the trajectory of the solution) extremely well over long time periods.

7.4.1 Forward Euler

Forward Euler for the Lotka-Volterra system becomes explicitly(
un+1

vn+1

)
=
(
un
vn

)
+ h

(
un(vn − 2)
vn(1− un)

)
(7.20)

and for the Duffing oscillator (
un+1

vn+1

)
=
(
un
vn

)
+ h

(
vn

un − u3
n

)
(7.21)

7.4. Basic methods 59

7.4.2 Symplectic Euler

Symplectic Euler is a partitioned Euler method that treats the u-variable by implicit Euler
and the v-variable by explicit Euler. Its name tells us this integrator is symplectic, and it
will thereby perform well for the Hamiltonian Duffing oscillator, but in addition it is also a
Poisson map (see Section 5.2.2 and Appendix B) which is what we need for the Lotka-Volterra
system.

For systems with separable Hamiltonians like the Lotka-Volterra and the Duffing problem,
the method has an explicit form. Lotka-Volterra is(

un+1

vn+1

)
=
(
un
vn

)
+ h

(
un+1(vn − 2)
vn(1− un+1)

)
=
(un

1−h(vn−2)

vn + hvn(1− un+1)

) (7.22)

and for Duffing it is (
un+1

vn+1

)
=
(
un
vn

)
+ h

(
vn

un+1 − u3
n+1

)
(7.23)

which both are explicit as long as un+1 is calculated before vn+1.

7.4.3 Lie-Euler

For the Lie-Euler solvers, we use the results from Section 7.1.4. The solution path of the
Lotka-Volterra systems stays in the first quadrant (as long as the initial value is there), so
we can choose whichever of the f -variants we want. We have chosen f1 from Equation (7.10)
which is undefined on the u-axis (v = 0) and arrive at

f1,LV (y) =
(
u− 1 −u(u−v+1)

v
0 1− u

)
+ σζ(y) (7.24)

where the linear isotropy part σζ(u, v) has been separated out.
For the Duffing oscillator, the simplest choice is f3 from Equation (7.12), which becomes

f3,Duff (y) =
(

0 1
1− u2 0

)
(7.25)

Using f1 or f2 leads to singularites on either the u- or v-axis. As the difference between f1,
f2 and f3 is only a matter of isotropy, these singularities should not really pose a problem.
It is possible to use f1 and f2 for the Duffing oscillator if one employs switching between the
two functions according to Figure 7.3. Numerically, either choice performs equivalent.

We define the “standard” Lie-Euler to be the method that uses these f ’s uncritically with
regard to isotropy, that is using σ = 0, and the numerical Lie-Euler methods becomes

yn+1 = exp[hf(yn)]yn (7.26)

Isotropy in geometric integration

60 Chapter 7. Lie group methods for R2 based on SL(2)

����� ���
�

�
����� �	�

��
��� �	�

��
��� ���

����� �����

����� �����

����� �����

����� �����

Figure 7.3: Strategy for choosing the correct version of f : R2 → sl(2) for the Duffing oscillator if
only f1 and f2 are to be used, because of singularities. A remedy is to only use f3, for
which there is no problems of singularites. Both approaches have been tested numerically
with equivalent results.

7.4.4 Lie-Euler with isotropy correction

The isotropy correction is the usage of the value σ in Equations (7.24) and (7.25). The σ-value
should be dependent on the position in the phase plane, so we have a function σ : R2 → R,
and the isotropy corrected Lie-Euler becomes

yn+1 = exp [h(f(yn) + σ(yn)ζ(yn))] yn. (7.27)

for the respective f ’s.

7.4.5 Introductory results

We first give a preliminary result to have an idea of what performance to expect. We see in
Figure 7.4 for the Lotka-Volterra system is that letting σ = 0 yields a Lie-Euler comparable
to Forward Euler, while both are totally outperformed by the Symplectic Euler method. Our
goal will be to tweak σ such that Lie-Euler becomes comparable to Symplectic Euler. Quite
similar behavior is observed for the Duffing oscillator in Figure 7.5.

0 0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

u

v

Symplectic Euler

Forward Euler
Lie−Euler, σ=0

(a) Plot of numerical trajectories.

0 1 2 3 4 5 6 7
−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

Time

I(
u

(t
),
v(

t)
)

Symplectic Euler

Forward Euler

Lie−Euler, σ=0

(b) Invariant preservation.

Figure 7.4: Introductory results for Lotka-Volterra showing how Forward Euler and the Lie-Euler
with σ = 0 are outperformed by Symplectic Euler. Time step 0.1.

7.5. Analysis of the isotropy corrected Lie-Euler method 61

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

σ0

Forward Euler

Symplectic Euler

u

v

(a) Plot of numerical trajectories.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Symplectic Euler

σ0

Forward Euler

Time

I(
u

(t
),
v(

t)
)

(b) Invariant preservation.

Figure 7.5: Introductory results for the Duffing oscillator. As for Lotka-Volterra, Forward Euler and
Lie-Euler with no isotropy correction is outperformed by Symplectic Euler.

7.5 Analysis of the isotropy corrected Lie-Euler method

7.5.1 Local expansion

As the exponential of sl(2) matrices adopt for a very simple exact expression, we are able to
perform some analysis and expansion to see the real effect of the isotropy-correction. We use
the abbreviation fσ := f(yn)+σ(yn)ζ(yn). Using Equation (7.5) we easily find that Lie-Euler
with isotropy correction, Equation (7.27), becomes

yn+1 =
(
I + hf(yn)−

1
2
h2 det fσI −

1
6
h3 det fσ f(yn) +O(h4)

)
yn (7.28)

Note fσyn = f(yn)yn as used in the last line.
We use Equation (7.13) to find the expression for the determinant, for the Lotka-Volterra

system
det(fLV (y) + σζ(y)) = −(1− u)2 + σ(3− u− v) (7.29)

and for the Duffing oscillator

det(fDuff (y) + σζ(y)) = −(u− u3)2

v2
+ σ

(
u− u3

v
− v

u

)
(7.30)

These expressions are important, as they tell us that there are points in which any choice of
the isotropy has no effect. This happens if the coefficients of σ in Equation (7.29) or (7.30)
become zero. For Lotka-Volterra this happens on the line u + v = 3, and for the Duffing
oscillator on the implicitly given line v2 = u2 − u4, see Figure 7.6 for plots.. These lines will
always go through equilibrium points, easily seen from Equation (7.13).

For the Lotka-Volterra system, we are able to assign det fσ any value we want (excluding
the line u+ v = 3), say D, because setting

σ = −u
2 − 2u+ 1 +D

u+ v − 3
gives det fσ = D (7.31)

Note that if we choose σ such that det fσ = 0 we are left with the Forward Euler algorithm,
which has also been verified numerically. The same thing can also be done for the Duffing
oscillator.

Isotropy in geometric integration

62 Chapter 7. Lie group methods for R2 based on SL(2)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

u

v

(a) Lotka-Volterra

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u

v

(b) Duffing oscillator

Figure 7.6: The points in the phase-space where the isotropy has no effect at all on the numerical
solution. Actual solution trajectories dotted.

7.5.2 Backward error analysis

Up to now we have only considered local behavior. For our solvers we are searching for good
global behavior. We have done local analysis and are hoping it will lead to stability of the
solution and the invariant. One tool for analyzing global behavior is backward error analysis.
We search for a modified vector field for which our numerical solution is an exact solution.
This modified vector field is assumed to be of the form

˙̃y = Fh(ỹ) = F (ỹ) + hF̄2(ỹ) + h2F̄3(ỹ) + · · · (7.32)

where ẏ = F (y) is the original equation and F̄i are functions to be determined. Our (consis-
tent) numerical method has the expansion

Φh(y) = y + hF (y) + h2d2(y) + h3d3(y) + · · · (7.33)

which for us is the expansion we found in Equation (7.28). The trick is to set ỹ(t+h) = Φh(y)
and the results for F̄i appear as

F̄2(y) = d2(y)−
1
2!
F ′F (y)

F̄3(y) = d3(y)−
1
3!
(
F ′′(F, F)(y) + F ′F ′F (y)

)
− 1

2!
(
F ′F̄2(y) + F̄ ′

2F (y)
)

...

We refer to [10, Chapter IX] for details. Some work done by Maple results in the expression
for F̄2 for the Lotka-Volterra system:

F̄2(u, v) =
(

1
2u(v + u− 3)σ + 1

2u
3 − u2 − 1

2v
2u− 3

2u+ 1
2vu

2 + 3
2vu

1
2v(v + u− 3)σ − vu+ 1

2v
2u

)
(7.34)

where it is again clear that the role of isotropy disappears at the line u + v = 3. It is also
clear that there cannot be any σ that makes F̄2 zero, if there were, we would have a second
order method. We have not been able to conclude any further on how to use this result, but
it is possible that it may be used as a tool to explain why scaling the isotropy by a constant
makes for remarkable stability, as we are going to see later in Section 7.8.2.

7.6. Conservation of the Lotka-Volterra invariant 63

7.6 Conservation of the Lotka-Volterra invariant

The first integral of the Lotka-Volterra model is the function

I(u, v) = lnu− u+ 2 ln v − v. (7.35)

Every solution curve of the system follows a path where this value is preserved. Numerical
solvers should also preserve this invariant to some extent.

We may see through Taylor expansions how our methods conserve this invariant. The com-
plexity of the calculations is of such a degree that manual calculation is not recommendable,
so here results from using the Taylor-function in Maple has been merely inserted.

Forward Euler has the expansion

I(uFE, vFE)− I(u, v) =
(
−3 + 2v − 1

2
v2 − u2 + 2u

)
h2

+
(
−2 + 4v − 2v2 +

1
3
v3 − 2

3
u3 + 2u2 − 2u

)
h3 +O(h4) (7.36)

Symplectic Euler has the expansion

I(uSE, vSE)− I(u, v) =
(

1− 2v +
1
2
v2 − u2 + 2u

)
h2

+
(
−2 + 2vu− 2

3
u3 +

1
3
v3 − 2v2 − 2vu2 + 6u2 − 6u+ 4v

)
h3 +O(h4) (7.37)

Lie-Euler with isotropy correction σ. We set det fσ = β for notational simplicity:

I(uLE, vLE)− I(u, v) =
(
−3

2
β − u2 + 2u− 3 + 2v − 1

2
v2 +

1
2
βu+

1
2
βv

)
h2

+
(

1
2
βv − βu− 2 + 4v − 2v2 +

1
2
v3 − 2u+ 2u2 − 2

3
u3

)
h3 +O(h4) (7.38)

These expansions predict that all the three solvers are “equal” in their invariant preserva-
tion performance, as they all preserve the invariant to first order. The secret in the success
of Symplectic Euler lies in the long-time behavior. This is shown in Table 7.1 where the coef-
ficients of Forward Euler grows drastically while the coefficients of Symplectic Euler averages
to around zero for integration over many periods. The time-value 26.1 is chosen because it is
the last time-value before Forward Euler collapses, sending the point corresponding to 26.2
outside our quadrant and the coefficients soon go to infinity. The negativity of the Forward
Euler coefficients tells us that the invariant is decreasing, meaning an outwards spiraling.

7.7 Strategies for choosing σ

7.7.1 Minimizing Lie-series error expansion by numerical differentiation

Chapter 4 presents a general way of improving the accuracy of Lie-Euler, through the Lie-
series expansion of the error. The requirement for raising the order of Lie-Euler to two is
given in Proposition 4.4. We cannot fulfill this requirement, so we will not be able to get

Isotropy in geometric integration

64 Chapter 7. Lie group methods for R2 based on SL(2)

Integration length 1 10 26.1 100 1000 10000
Forward Euler h2-coeff. -0.558 -2.66 -13.8
Forward Euler h3-coeff. -0.184 -0.557 70.3
Symplectic Euler h2-coeff. 0.228 0.0205 0.00863 -0.001251 0.000119 0.000101
Symplectic Euler h3-coeff. -0.515 0.0575 0.105 0.0922 0.0970 0.0971

Table 7.1: Arithmetic mean values for the invariant expansion coefficients for Forward and Symplectic
Euler. Time step 0.1. One period in the system has time-length of approximately 5.

an order two method, but it could possibly perform better than Lie-Euler with no isotropy
correction.

Proposition 4.4 requires the derivative of the mapping f : R2 → sl(2). We have two options
for this, either explicitly calculating the derivative of our f , or doing numerical differentiation.
We opt for numerical differentiation, as experiments show it is sufficient, and use a first order
backwards difference.

σζ(yn)f(yn)yn =
f(yn)− f(yn−1)

h
yn (7.39)

�����
� ���

� �������
	����������� � ���

This is an equation in R2, and we would like to adjust σ so that the two
vectors become as close as possible. We do this by projection. There are
two alternatives, either project the right hand side vector from the left
hand side vector or the other way around. Define the vectors lhs(yn) =
ζ(yn)f(yn)yn and rhs(yn) = f(yn)−f(yn−1)

h yn. We choose to project the left
hand side vector down to the right hand side vector and then equating
to find a suitable σ, as illustrated in the figure to the right. Equivalent behavior occurs if we
choose the other way around.

Proposition 4.4 mentions that“Lie-Euler may be raised to second order”. This will happen
if the two vectors lhs and rhs happen to be linearly dependent, which we cannot expect them
to be in general. Because of this, we resort to a projection, assuming that the best use of
isotropy is the one that mimics second-order behavior as close as possible.

σDiff (y) =
lhs(y)T rhs(y)
lhs(y)T lhs(y)

(7.40)

Choosing this isotropy correction leads to better results than no isotropy correction at
all, but it is not stable for long time integration on the Lotka-Volterra system. This is the
correction used for the rigid body problem in Chapter 6 where it also performed well, and it
will also perform reasonably well for the Duffing oscillator.

An important remark is that we are going to see that a constant scaling of this σ results
in a significantly better long time behavior.

Note that we in Chapter 6 used the same method (Proposition 4.4), but used an extra
step with a smaller step size to make sure the numerical differentiation for rhs was accurate
enough, Equation (6.23). Experiments have shown that this was not necessary for the solution
of Lotka-Volterra or the Duffing oscillator, and thus no extra step is necessary, we just use
the value of f evaluated at the previous point.

The remaining suggestions for σ in this section has only been calculated for the Lotka-
Volterra system.

7.7. Strategies for choosing σ 65

7.7.2 Minimizing h2-coefficient in the invariant expansion

Equation (7.38) gives the error expansion for Lotka-Volterra in the invariant which we are to
conserve. We may solve the h2-coefficient in terms of β, and then using Equation (7.31) to
find an expression for σ.

For β we get

det(fσ(y)) = β(y) =
2u2 + v2 − 4u− 4v + 6

u+ v − 3
(7.41)

and which gives the σInvCoeff : R2 → R

σInvCoeff (y) = −u
3 − 3u2 + u2v + 3u− 2vu− 3v + 3 + v2

(u+ v − 3)2
(7.42)

Numerical results are in Section 7.8.

7.7.3 Making a Poisson integrator

The Lotka-Volterra system is a Poisson system with the structure matrix

B(y) =
(

0 uv
−uv 0

)
.

The reason for Symplectic Euler to perform as well as it does for the Lotka-Volterra is not
because of its symplectic property, but because of the fact that it is a Poisson integrator. We
may see if it is possible to adjust σ such that our Lie-Euler also becomes a Poisson integrator.

From [10, Section VII.2.5] we have the requirement for a mapping Φ: R2 → R2 to be a
Poisson map:

Φ′(y)B(y)Φ′(y)T = B(Φ(y));

The elements of Jacobian Φ′
LE(y) (found by differentiating Equation (7.28) and inserted for

det fσ) become after truncation of their Taylor-series

Φ′
LE (y, σ)11 = 1 + (v − 2)h+

(
1
2
(2u− 2 + σ)u+

1
2
u2 − u+

1
2
σu+

1
2
− 3

2
σ +

1
2
σv

)
h2

Φ′
LE (y, σ)12 = uh+

1
2
h2σu

Φ′
LE (y, σ)21 = −vh+

1
2
(2u− 2 + σ)vh2

Φ′
LE (y, σ)22 = 1 + (1− u)h+

(
σv +

1
2
u2 − u+

1
2
σu+

1
2
− 3

2
σ

)
h2

(7.43)

Now the computation

Φ′
LE (y, σ)B(y)Φ′

LE (y, σ)T −B(Φ′
LE (y, σ)) =

(
0 1
1 0

)
C(y, σ)h2 +O(h3)

is done in Maple, and we solve for the coefficient-function C(y, σ) to be zero. This results in
the following simple expression for σ : R2 → R

σPoiss(y) = −2
u(u+ v − 1)

u+ v
(7.44)

Isotropy in geometric integration

66 Chapter 7. Lie group methods for R2 based on SL(2)

7.7.4 Projecting away isotropy

This strategy is inspired by the “orthogonal” rigid-body solver from [15], where the isotropy-
part of the so(3)-matrix is projected away. We may do so here too by requiring

〈f + σζ, ζ〉 = 0 which gives σ = −〈f, ζ〉
〈ζ, ζ〉

Using a Froebenius norm on sl(2) this results in the function σOrth : R2 → R

σOrth(y) = −Trace(f(y)T ζ(y))
Trace(ζ(y)T ζ(y))

(7.45)

This method is expected to perform in the league of the uncorrected Lie-Euler and has only
been numerically tested on the Lotka-Volterra system. This method will be equivalent for
all the three choices of f as their mutual differences lie in the isotropy, and we could have
used it to define the “standard” Lie-Euler method. This would not do much else than clutter
our notation, so we have rather defined the “standard” Lie-Euler as one of the versions of f
together with σ = 0.

7.8 Numerical results

7.8.1 Lie-Euler with isotropy correction

Here we test the methods, first for Lotka-Volterra, over a fairly small integration period of
time, up to T = 7, using the above choices of σ. The results are in Figure 7.7. All non-trivial
choices of σ seem to be decent improvements over σ0 which collapses soon after the here
shown time-interval.

0 1 2 3 4 5 6 7
−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

Symplectic Euler

σDiff

σ0

σPoiss σInvcoeff

σOrth

Time

I(
u

(t
),
v(

t)
)

Figure 7.7: The invariant of all choices of σ for Lotka-Volterra plotted against Symplectic Euler. The
choice σ = 0 collapses soon after T = 7.

7.8. Numerical results 67

From now on we ignore the trivial choice σ = 0. First we show that σOrth and σInvCoeff

collapse after long enough time, Figure 7.8 (the invariants jump over several magnitudes right
after the shown time intervals).

0 5 10 15 20 25
−40

−35

−30

−25

−20

−15

−10

−5

0

σOrth

Time

I(
u

(t
),
v(

t)
)

0 10 20 30 40 50 60 70
−25

−20

−15

−10

−5

0

σInvcoeff

Time

I(
u

(t
),
v(

t)
)

Figure 7.8: Failure of σOrth and σInvCoeff for the Lotka-Volterra problem.

Now neglecting the methods which until now have performed badly in Figure 7.7 and
Figure 7.8, we turn our attention to a somewhat bigger interval of time. Figure 7.9 shows
σPoiss , σDiff and Symplectic Euler up to T = 30. σDiff does net seem to be any better than
σOrth or σInvCoeff , but it is possible to stabilize it as we will see shortly.

0 5 10 15 20 25 30
−9

−8

−7

−6

−5

−4

−3

−2

−1

Symplectic Euler

σDiff1

σPoiss

Time

I(
u

(t
),
v(

t)
)

Figure 7.9: The invariant of the better-performing choices of σ up to T = 30 for the Lotka-Volterra
problem. Time step 0.1.

For the Duffing oscillator, we have available the corresponding σDiff and Symplectic Euler.
We compare them both to a second order Runge-Kutta method (not a Lie group version),
as the local analysis which has determined σDiff , predicts that Lie-Euler with σDiff should
perform worse than a standard second order method. The results are plotted in Figure 7.10.
Lie-Euler with σDiff spirals outwards, but stabilizes at a trajectory slightly outside the exact

Isotropy in geometric integration

68 Chapter 7. Lie group methods for R2 based on SL(2)

trajectory (very well approximated by Symplectic Euler). The second order method on the
other hand, spirals outwards (the trajectory is not plotted) and shows no sign of stabilization.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

σDiff

Symplectic Euler

u

v

(a) Trajectories in the phase plane

0 50 100 150 200 250 300 350
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Symplectic Euler

σDiff

RK2

Time
I(
u

(t
),
v(

t)
)

(b) Preservation of the hamiltonian

Figure 7.10: Results for the Duffing oscillator. Time step 0.1.

7.8.2 Tweaking σ by shooting

For the Lotka-Volterra system, the method σDiff seems to collapse in Figure 7.9 just as σOrth

and σInvCoeff did in Figure 7.8. σPoiss also has a decreasing invariant, but much slower than
σDiff . For the Duffing oscillator, σDiff seems stable enough, but stabilizes on a wrong orbit.
Anyhow, numerical experiments have shown that, both σDiff and σPoiss may be significantly
improved by scaling them with appropriate constants. Let

σ̃(y) = ασ(y) (7.46)

and let α be a constant throughout the integration. The values for α has been found by
trial and error for each system and for each choice of σ, plotting the invariant for large time
intervals. Sadly enough, these constants seems in addition to be dependent on the time step
h.

7.8. Numerical results 69

0 100 200 300 400 500 600
−2.06

−2.04

−2.02

−2

−1.98

−1.96

−1.94

α=1.210

Time

I(
u

(t
),
v(

t)
)

α=1.220

α=1.230

(a) σ̃Poiss

0 100 200 300 400 500 600
−2.04

−2.02

−2

−1.98

−1.96

−1.94

α=1.83

Time

I(
u

(t
),
v(

t)
)

α=1.84

α=1.85

(b) σ̃Diff

Figure 7.11: Shooting method to find the α’s for Lotka-Volterra. The invariant has been averaged
over sequential intervals of time, only 20 data points are used for the plotted invariants.
Otherwise the plots would have shown nothing but wild oscillations. Time step 0.1.

0 50 100 150 200 250 300 350
0.22

0.23

0.24

0.25

0.26

0.27

0.28

Symplectic Euler

α=1.16

Time

I(
u

(t
),
v(

t)
)

α=1.17

α=1.18

Figure 7.12: Shooting method to find optimal α for the Duffing oscillator. The plot is an average
over 30 buckets of invariant values. The optimal α is 1.17 for the time step h = 0.1.

What is remarkable by these α’s is that the methods now remain stable and more correct
for much larger time intervals than shown in Figure 7.11. They have been tested to be stable
for time intervals up to 105 (one million time steps).

These methods may now be compared to Symplectic Euler as in Figure 7.13. Compared
to the exact solution, calculated by Matlab’s ode23-function, the σ̃Diff may be claimed to
be the best solver, as Symplectic Euler misses more of the exact path in the upper right part
of the solution curves. Note that both σ-methods may be further tweaked by using more
decimals for the α’s.

Numerical tests for stabilization was unsuccessful for the σOrth and σInvCoeff of Figure 7.8.

Isotropy in geometric integration

70 Chapter 7. Lie group methods for R2 based on SL(2)

0 0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

3

3.5

4

Exact

σDiff

Sympl

σPoiss

u

v

Figure 7.13: Comparing the best σ̃Diff and σ̃Poiss for Lotka-Volterra with Symplectic Euler and
the exact solution. Only the trajectory at times in [1800, 2000] are plotted to avoid
cluttering the figure. Time step 0.1

7.8.3 Using Newton iteration to find an optimal correction

At the end we implement a Newton solver to find the σ which yield a zero change in the
invariant for the Lotka-Volterra system. This is not viable as a solver, as it is way too slow,
but could perhaps contribute to the analysis.

Numerical results are shown in Figure 7.14. We knew that along the line u + v = 3 the
isotropy has no effect on the solution. The Newton algorithm is therefore expected to have
convergence problems near the line, and if it converges, the proposed σ value could be very
large. The experiments confirm this.

The Newton algorithm for choosing σ performs flawlessly until it is about to cross the line
u+ v = 3 for the first time, around t = 2.1. Around this line, values for σ is not be found, so
σ = 0 is chosen. This results in a significant degradation of the invariant preservation, which
affects the further integration when we are far enough from u+v = 3 again. The lower plot of
Figure 7.14 shows that σDiff and σPoiss does not choose “optimal”σ-values, but the selections
lead globally to a better solution.

7.8.4 Timing issues

There is of course the issue of computational time. Symplectic Euler, Equation (7.22), is
extremely simple and fast to execute compared to what has to be done for the other methods.
This issue is not considered important for the current analysis of methods exploiting isotropy,
and nothing has been done regarding optimization of the new methods. Our primary goal is
to discover new possibilities raised by isotropy, rather than to compete with Symplectic Euler
for solving Lotka-Volterra or the Duffing oscillator in real-world applications.

The methods have the following execution time for a time interval of 100 on the Lotka-
Volterra system.

7.8. Numerical results 71

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2.15

−2.1

−2.05

−2

−1.95

−1.9

σNewton

σPoissσDiff

I(
u

(t
),
v(

t)
)

Time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−5

0

5

σPoiss

σDiff

σNewtonIs
ot

ro
p
y

co
rr

ec
ti

on

Time

Figure 7.14: Conservation of the invariant for the three methods, compared to the actually chosen
σ-values. The Newton algorithm produces very large σ-values near the line u+ v = 3.
This line is crossed around t = 2.1 and t = 4.6. The constant α is used here, but has
negligible effect for such a short time interval. Approximately one period shown with
time step 0.1.

Isotropy in geometric integration

72 Chapter 7. Lie group methods for R2 based on SL(2)

Method Time, T = 100
Euler 1.2 s
Lie-Euler, σ = 0 2.3 s
Symplectic Euler 1.3 s
σDiff 5.8 s
σPoiss 2.6 s
σOrth 3.7 s
σInvCoeff 2.5 s

Table 7.2: Execution time.

7.9 Concluding remarks

We have shown that using a Lie group method on R2 might be a viable alternative, as long as
isotropy is considered, and if more theory explaining the behavior of the α becomes available.

Symplectic Euler is the method that still outperforms all other attempts. It is fast and
it is a Symplectic and Poisson integrator which yields extreme stability properties for these
problems.

Another important property of Symplectic Euler is the possibility to find its adjoint
method, and then composing Symplectic Euler with its adjoint, which results in the Störmer-
Verlet scheme. Störmer-Verlet is also a Poisson-integrator. The other methods are not at
all this flexible in gaining a higher order of accuracy. Important to notice is that Symplectic
Euler is not a Poisson integrator for all Poisson systems.

The σDiff is perhaps the most interesting method, as it does not use any information of
the differential equation other than the tweaking of the α (though which are quite critical for
its performance on Lotka-Volterra). The price for this is paid in execution time, as it is also
the most demanding method. It is the application of Proposition 4.4 which also performed
well on the rigid body. σPoiss also performed equivalently, but was dependent on complicated
expansions in Maple to be determined and algebraic solutions therefrom.

A remarkable thing to notify is the comments in Section 7.8.3. The isotropy correction
chosen by the successful algorithms, σDiff and σPoiss , are not optimal at each point (if they
were, they should be equal to the Newton iterates in Figure 7.14). The formulas for σDiff and
σPoiss are based on a local result (excluding the role of the α’s), but excels in global behavior.
This indicates an intricate relationship between these isotropy corrections and global behavior
of the solver, which is an interesting candidate for future research.

Chapter 8

Conclusions

We have shown as in Lewis and Olver [15] that it is possible to take advantage of isotropy
subgroups in the formulation of Lie group methods. The added isotropy term does not affect
the original differential equation, but has a significant effect on the solution produced by the
numerical solver.

Lewis and Olver used analytic derivatives of the differential equation to determine the
isotropy correction. We have shown that it is possible to obtain the same effect by just using
numerical differentiation.

The main contribution of the isotropy correction is not the decreased error constant of
the second order error term, as predicted by the analysis done, but the global behavior. Lie-
Euler, which performs badly on problems of this type, has been improved to the league of the
superior Symplectic Euler.

As it stands, our isotropy corrected solvers are not ready to replace other numerical solvers,
as the numerical cost is still high, in addition to the mysteriousity of the α-constants. The
α for the rigid body problem was significantly closer to 1 than for Lotka-Volterra and the
Duffing oscillator. Was that a property of the Lie group action, SO(3) contra SL(2), or was
it pure luck? Nevertheless, isotropy corrections are an interesting new direction in geometric
integration, and future research will hopefully reveal more theory that are able to explain the
phenomenas observed.

73

74 Chapter 8. Conclusions

Bibliography

[1] F. Adams. Lectures on Lie Groups. 1965.

[2] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, GTM 60,
Second edition, 1989.

[3] C. J. Budd and M. D. Piggott. Geometric integration and its applications, 2001. To
appear in Foundations of Computational Mathematics, a volume of the Handbook of
Numerical Analysis, ed. Ph. G. Chiarlet and F. Cucker, published by Elsevier Science.

[4] S. R. Buss. Accurate and Efficient Simulation of Rigid Body Rotations. Journal of
Computational Physics, (164):374–406, 2000.

[5] E. Celledoni and B. Owren. Lie group methods for rigid body dynamics and time in-
tegration on manifolds. Technical report, The Norwegian University of Science and
Technology, Trondheim, Norway, 1999.

[6] E. Celledoni and B. Owren. On the implementation of Lie group methods on the Stiefel
manifold. Technical Report Numerics No. 9/2001, The Norwegian University of Science
and Technology, Trondheim, Norway, 2001.

[7] N. Curtis. Matrix Groups. Springer-Verlag, 1988.

[8] B. I. Dundas. Differential topology. 2002.

[9] K. Engø. On the construction of geometric integrators in the RKMK class. BIT, 40(1):41–
61, 2000.

[10] E. Hairer, Ch. Lubich, and G. Wanner. Geometric Numerical Integration. Springer-
Verlag, 2002.

[11] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I,
Nonstiff Problems. Springer-Verlag, Second revised edition, 1993.

[12] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II, Stiff and
Differential-Algebraic Problems. Springer, Berlin, 1991.

[13] A. Iserles. Brief introduction to Lie-group methods. To appear in proceedings of the Fort
Collins workshop on preservation of stability under discretization (Don Estep & Simon
Tavener, eds.), to be published by SIAM, 2001.

[14] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna. Lie-group methods. Acta
Numerica, 9:215–365, 2000.

75

76 Bibliography

[15] D. Lewis and P. Olver. Geometric Integration Algorithms on Homogeneous Manifolds.
2001.

[16] R. McLachlan and C. Scovel. Equivariant constrained symplectic integration. Technical
Report LA-UR-93-3225, Los Alamos National Lab., New Mexico, USA, 1993.

[17] H. Munthe-Kaas. Lie–Butcher theory for Runge–Kutta methods. BIT, 35(4):572–587,
1995.

[18] H. Munthe-Kaas. Runge–Kutta methods on Lie groups. BIT, 38(1):92–111, 1998.

[19] H. Munthe-Kaas. High order Runge–Kutta methods on manifolds. Appl. Numer. Math.,
29:115–127, 1999.

[20] A. L. Onishchik and E. B. Vinberg. Foundations of Lie Theory. Springer-Verlag, 1997.

[21] B. Owren. Lecture notes, Geometric Integration. 2002.

[22] L. Perko. Differential Equations and Dynamical Systems. Number 7 in Texts in Applied
Mathematics. Springer-Verlag, 1996.

[23] S. Reich. Momentum conserving symplectic integrators. Physica D, 76:375–383, 1994.

[24] V. S. Varadarajan. Lie Groups, Lie Algebras, and Their Representations. GTM 102.
Springer-Verlag, 1984.

Appendix A

Matrix exponential for
sl(2)-matrices

Recall that sl(2) is all matrices with zero trace, generally in the form

A =
(
a b
c −a

)
(A.1)

Squaring this matrix we get

A2 =
(
a2 + bc 0

0 a2 + bc

)
= −det(A)I = −βI

where I is the two by two identity matrix.
We use this property in the following lemma:

Lemma A.1. The matrix exponential for 2× 2 skew-symmetric matrices A is

expA =

cos

√
detAI + sin

√
detA√

detA
A detA > 0

cosh
√
−detAI + sinh

√
− detA√

− detA
A detA < 0

I +A detA = 0

(A.2)

Proof. We use β = detA as above for simplicity. Use the infinite sum expression for the
matrix exponential

∞∑
k=0

Ak

k!
=

∞∑
m=0

A2m

(2m)!
+

∞∑
m=0

A2m+1

(2m+ 1)!

=
∞∑
m=0

βm

(2m)!
I +A

∞∑
m=0

βm

(2m+ 1)

(A.3)

We split up the proof depending on the sign of β:

77

78 Appendix A. Matrix exponential for sl(2)-matrices

β > 0) Set γ =
√
β and continue Equation (A.3):

=
∞∑
m=0

(−γ2)m

(2m)!
+A

∞∑
m=0

(−γ2)m

(2m+ 1)!

=
∞∑
m=0

(−1)mγ2m

(2m)!
+
A

γ

∞∑
m=0

(−1)mγ2m+1

(2m+ 1)!

= cos γI +
sinh γ
γ

A.

(A.4)

β < 0) Set γ =
√
−β and continue Equation (A.3):

=
∞∑
m=0

γ2m

(2m)!
I +

A

γ

∞∑
m=0

γ2m+1

(2m+ 1)!

= cosh γI +
sinh γ
γ

A.

(A.5)

β = 0) This means that A is nilpotent, and the sum for exp(A) is merely truncated

∞∑
k=0

Ak

k!
= I +A. (A.6)

Note the effect of multiplying the matrix by a constant h > 0, as det(hA) = h2 detA

exphA =

cosh

√
detAI + sinh

√
detA

h
√

detA
hA detA > 0

coshh
√
−detAI + sinhh

√
− detA

h
√
− detA

hA detA < 0

I + hA detA = 0

(A.7)

The splitting of the result in Lemma A.1 is only because we have restricted ourselves to
using real numbers in the argument to the trigonometric functions. Their Taylor-expansions
are equal:

cosh
√
β = 1− 1

2
βh2 +

1
24
β2h4 +O(h6)

coshh
√
−β = 1− 1

2
βh2 +

1
24
β2h4 +O(h6)

sinh
√
β

h
√
β

= 1− 1
6
βh2 +

1
120

β2h4 +O(h6)

sinhh
√
−β

h
√
−β

= 1− 1
6
βh2 +

1
120

β2h4 +O(h6)

Appendix B

Symplectic Euler for Lotka-Volterra

We are here going to prove that the Symplectic Euler method is a Poisson integrator for any
Poisson systems with a separable Hamiltonian. This includes in particular the Lotka-Volterra
system.

The Symplectic Euler method reads

Φh(un, vn) =
(
un+1

vn+1

)
=
(
un + hun+1vnHv(un+1, vn)
vn − hun+1vnHu(un+1, vn)

)
(B.1)

where H(u, v) is the Hamiltonian for the system in question. For Lotka-Volterra it is

H(u, v) = I(u, v) = lnu− u+ 2 ln v − v.

The criterion for a Poisson integrator is the one from Definition 5.8, namely

Φ′(y)B(y)Φ′(y)T = B(Φ(y)) (B.2)

where B(y) = B(u, v) is the structure matrix for the Lotka-Volterra system,

B(y) =
(

0 uv
−uv 0

)
.

Equation (B.2) requires the Jacobian of the mapping (un, vn) 7→ (un+1, vn+1). We will
calculate this for any Hamiltonian H for the Symplectic Euler method. Implicit differentiation
of Equation (B.1) gives the four equations

∂un+1

∂un
= 1 +

∂un+1

∂un
hvnHv

∂un+1

∂vn
= h

∂un+1

∂vn
vnHv + hun+1Hv + hun+1vnHvv

∂vn+1

∂un
= −h∂un+1

∂un
vnHu − hun+1vnHuu

∂un+1

∂un
∂vn+1

∂vn
= 1− h

∂un+1

∂vn
vnHu − hun+1Hu − hun+1vn

∂un+1

∂vn

(B.3)

where the partial derivatives are evaluated at (un+1, vn)T . We can sort these equations into
the more tractable form(

1− hvnHv 0
hvn(Hu + un+1Huu) 1

)(∂un+1

∂un

∂un+1

∂vn
∂vn+1

∂un

∂vn+1

∂vn

)
=
(

1 hun+1(Hv + vnHvv)
0 1− hun+1Hu

)
(B.4)

79

80 Appendix B. Symplectic Euler for Lotka-Volterra

written compactly as A ·DΦh = C. The requirement (B.2) now reads

A−1CB(y)(A−1C)T = B(Φh(y))
⇔

CB(y)CT = AB(Φh(y))AT

Multiplying out this matrix equation results in(
0 unvn(1− hun+1Hu)

−unvn(1− hun+1Hu)

)
=
(

0 un+1vn+1(1− hvnHv)
−unvn(1− hvnHv) 0

)
(B.5)

equivalent to the single equation

unvn(1− hun+1Hu) = un+1vn+1(1− hvnHv). (B.6)

We are able to prove the validity of Equation (B.6) for separable Hamiltonians, H(u, v) =
K(u) + L(v), because we then get an explicit expression for the method itself, as in Equa-
tion (7.22):

un+1 =
un

1− hLv(vn)
vn+1 = vn(1− hun+1Ku(un+1)).

Inserting these expressions for un+1 and vn+1 into Equation (B.6) immediately yields our
desired result.

