
Automatic differentiation

Håvard Berland

Department of Mathematical Sciences, NTNU

September 14, 2006

1 / 21



Abstract

Automatic differentiation is introduced to an audience with
basic mathematical prerequisites. Numerical examples show
the defiency of divided difference, and dual numbers serve to
introduce the algebra being one example of how to derive
automatic differentiation. An example with forward mode is
given first, and source transformation and operator overloading
is illustrated. Then reverse mode is briefly sketched, followed
by some discussion.

(45 minute talk)

2 / 21



What is automatic differentiation?

I Automatic differentiation (AD) is software to transform code
for one function into code for the derivative of the function.

y = f (x) y ′ = f ′(x)

f(x) {...}; df(x) {...};

human

programmer

symbolic differentiation

(human/computer)

Automatic
differentiation

3 / 21



Why automatic differentiation?

Scientific code often uses both functions and their derivatives, for
example Newtons method for solving (nonlinear) equations;

find x such that f (x) = 0

The Newton iteration is

xn+1 = xn −
f (xn)

f ′(xn)

But how to compute f ′(xn) when we only know f (x)?

I Symbolic differentiation?

I Divided difference?

I Automatic differentiation? Yes.

4 / 21



Divided differences

By definition, the derivative is

f ′(x) = lim
h→0

f (x + h)− f (x)

h

so why not use

f ′(x) ≈ f (x + h)− f (x)

h

for some appropriately small h?
x x + h

f (x)

f (x + h)

approximate

exact

5 / 21



Accuracy for divided differences on f (x) = x3

desired accuracy

useless accuracy

10−16 10−12 10−8 10−4 100
10−16

10−12

10−8

10−4

100

104

x = 0.001

x = 0.1

x = 10

finite precision form
ula

erro
r

x = 0.1
ce
nt
er
ed

di
ffe

re
nc

e

h

error =
∣∣∣ f (x+h)−f (x)

h − 3x2
∣∣∣

I Automatic differentiation will ensure desired accuracy.

6 / 21



Dual numbers

Extend all numbers by adding a second component,

x 7→ x + ẋd
I d is just a symbol distinguishing the second component,
I analogous to the imaginary unit i =

√
−1.

I But, let d2 = 0, as opposed to i2 = −1.

Arithmetic on dual numbers:

(x + ẋd) + (y + ẏd) = x + y + (ẋ + ẏ)d

(x + ẋd) · (y + ẏd) = xy + xẏd + ẋyd +

=0︷ ︸︸ ︷
ẋ ẏd2

(x + ẋd) · (y + ẏd) = xy + xẏd + ẋyd +

=0︷ ︸︸ ︷
ẋ ẏd2

= xy + (xẏ + ẋy)d

−(x + ẋd) = −x − ẋd,
1

x + ẋd
=

1

x
− ẋ

x2
d (x 6= 0)

7 / 21



Polynomials over dual numbers

Let
P(x) = p0 + p1x + p2x

2 + · · ·+ pnx
n

and extend x to a dual number x + ẋd.
Then,

P(x + ẋd) = p0 + p1(x + ẋd) + · · ·+ pn(x + ẋd)n

= p0 + p1x + p2x
2 + · · ·+ pnx

n

+p1ẋd + 2p2xẋd + · · ·+ npnx
n−1ẋd

= P(x) + P ′(x)ẋd

I ẋ may be chosen arbitrarily, so choose ẋ = 1 (currently).

I The second component is the derivative of P(x) at x

8 / 21



Functions over dual numbers

Similarly, one may derive

sin(x + ẋd) = sin(x) + cos(x) ẋd

cos(x + ẋd) = cos(x)− sin(x) ẋd

e(x+ẋd) = ex + ex ẋd

log(x + ẋd) = log(x) +
ẋ

x
d x 6= 0

√
x + ẋd =

√
x +

ẋ

2
√

x
d x 6= 0

9 / 21



Conclusion from dual numbers

Derived from dual numbers:

A function applied on a dual number will return its derivative in
the second/dual component.

We can extend to functions of many variables by introducing more
dual components:

f (x1, x2) = x1x2 + sin(x1)

extends to

f (x1 + ẋ1d1, x2 + ẋ2d2) =

(x1 + ẋ1d1)(x2 + ẋ2d2) + sin(x1 + ẋ1d1) =

x1x2 + (x2 + cos(x1))ẋ1d1 + x1ẋ2d2

where didj = 0.

10 / 21



Decomposition of functions, the chain rule

Computer code for f (x1, x2) = x1x2 + sin(x1) might read

Original program

w1 = x1

w2 = x2

w3 = w1w2

w4 = sin(w1)
w5 = w3 + w4

Dual program

ẇ1 = 0
ẇ2 = 1
ẇ3 = ẇ1w2+w1ẇ2 = 0 · x2 + x1 · 1 = x1

ẇ4 = cos(w1)ẇ1 = cos(x1) · 0 = 0
ẇ5 = ẇ3 + ẇ4 = x1 + 0 = x1

and
∂f

∂x2
= x1

The chain rule

∂f

∂x2
=

∂f

∂w5

∂w5

∂w3

∂w3

∂w2

∂w2

∂x2

ensures that we can propagate the dual components throughout
the computation.

11 / 21



Realization of automatic differentiation

Our current procedure:

1. Decompose original code into intrinsic functions

2. Differentiate the intrinsic functions, effectively symbolically

3. Multiply together according to the chain rule

How to “automatically” transform the “original program” into the
“dual program”?

Two approaches,

I Source code transformation (C, Fortran 77)

I Operator overloading (C++, Fortran 90)

12 / 21



Source code transformation by example

function.c

double f(double x1 , double x2) {

double w3 , w4 , w5;

w3 = x1 * x2;

w4 = sin(x1);

w5 = w3 + w4;

return w5;

}

function.c

AD tool

diff function.c

C compiler

diff function.o

13 / 21



Source code transformation by example

diff function.c

double* f(double x1 , double x2 , double dx1, double dx2) {

double w3 , w4 , w5, dw3, dw4, dw5, df[2];

w3 = x1 * x2;

dw3 = dx1 * x2 + x1 * dx2;

w4 = sin(x1);

dw4 = cos(x1) * dx1;

w5 = w3 + w4;

dw5 = dw3 + dw4;

df[0] = w5;

df[1] = dw5;

return df;

}

function.c

AD tool

diff function.c

C compiler

diff function.o

13 / 21



Operator overloading

function.c++

Number f(Number x1 , Number x2) {

w3 = x1 * x2;

w4 = sin(x1);

w5 = w3 + w4;

return w5;

}

function.c++

C++ compiler

DualNumbers.h

function.o

14 / 21



Source transformation vs. operator overloading

Source code transformation:

Possible in all computer languages

Can be applied to your old legacy Fortran/C code.

Allows easier compile time optimizations.

Source code swell

More difficult to code the AD tool

Operator overloading:

No changes in your original code

Flexible when you change your code or tool

Easy to code the AD tool

Only possible in selected languages

Current compilers lag behind, code runs slower

15 / 21



Forward mode AD

I We have until now only described forward mode AD.

I Repetition of the procedure using the computational graph:

x1 x2

d

sin ∗

ẇ1 ẇ2
ẇ1

+

ẇ4 = cos(w1)ẇ1 ẇ3 = ẇ1w2 + w1ẇ2

f (x1, x2)

ẇ5 = ẇ3 + ẇ4

w5

w4 w3

F
or

w
ar

d
pr

op
ag

at
io

n
of

d
er

iv
at

iv
e

va
lu

es

seeds, ẇ1, ẇ2 ∈ {0, 1}

16 / 21



Reverse mode AD

I The chain rule works in both directions.

I The computational graph is now traversed from the top.

x1 x2

d

sin ∗

w̄a
1 = w̄4 cos(w1)

w̄2 = w̄3
∂w3
∂w2

= w̄3w1

w̄b
1 = w̄3w2

x̄1 = w̄a
1 + w̄b

1 = cos(x1) + x2 x̄2 = w̄2 = x1

+

w̄4 = w̄5
∂w5
∂w4

= w̄5 · 1 w̄3 = w̄5
∂w5
∂w3

= w̄5 · 1

f (x1, x2)

f̄ = w̄5 = 1 (seed)

w5

w4 w3

B
ac

kw
ar

d
pr

op
ag

at
io

n
of

d
er

iv
at

iv
e

va
lu

es

17 / 21



Jacobian computation

Given F : Rn 7→ Rm and the Jacobian J = DF (x) ∈ Rm×n.

J = DF (x) =

∂f1
∂x1

∂f1
∂xn

∂fm
∂x1

∂fm
∂xn

I One sweep of forward mode can calculate one column vector
of the Jacobian, J ẋ, where ẋ is a column vector of seeds.

I One sweep of reverse mode can calculate one row vector of
the Jacobian, ȳJ, where ȳ is a row vector of seeds.

I Computational cost of one sweep forward or reverse is roughly
equivalent, but reverse mode requires access to intermediate
variables, requiring more memory.

18 / 21



Forward or reverse mode AD?

Reverse mode AD is best suited for

F : Rn → R

Forward mode AD is best suited for

G : R → Rm

I Forward and reverse mode represents
just two possible (extreme) ways of
recursing through the chain rule.

I For n > 1 and m > 1 there is a golden
mean, but finding the optimal way is
probably an NP-hard problem.

?
19 / 21



Discussion

I Accuracy is guaranteed and complexity is not worse than that
of the original function.

I AD works on iterative solvers, on functions consisting of
thousands of lines of code.

I AD is trivially generalized to higher derivatives. Hessians are
used in some optimization algorithms. Complexity is quadratic
in highest derivative degree.

I The alternative to AD is usually symbolic differentiation, or
rather using algorithms not relying on derivatives.

I Divided differences may be just as good as AD in cases where
the underlying function is based on discrete or measured
quantities, or being the result of stochastic simulations.

20 / 21



Applications of AD

I Newton’s method for solving nonlinear equations

I Optimization (utilizing gradients/Hessians)

I Inverse problems/data assimilation

I Neural networks

I Solving stiff ODEs

For software and publication lists, visit

I www.autodiff.org

Recommended literature:

I Andreas Griewank: Evaluating Derivatives. SIAM 2000.

21 / 21

www.autodiff.org

